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Abstract 

This paper investigates the effect of a non-ideal support on free vibration of an Euler-Bernoulli composite beam carrying 

a mass-spring-damper system under an axial force. The beam simply supported boundary conditions and it is assumed that 

one of its supports is non-ideal. Therefore, it has a small non-zero deflection and a small non-zero moment. The governing 

equations of the problem constitute a coupled system including a PDE and an ODE. To solve the problem, the Galerkin 

method is employed in the displacement field in conjunction with the average acceleration method in the time domain. The 

effect of a non-ideal support of composite beam, under axial force on natural frequencies and mode shapes of the system, is 

studied in details. For the validation of the performed solution and the obtained results, in a special case, the fundamental 

frequency was compared with those cited in the literature. The obtained results show that with increasing the perturbation 

parameter, the fundamental frequency decreases. This behavior is independent of the fiber directions of the beam. Also, the 

beams having fully-ideal supports will be buckled sooner than the beams with semi-ideal supports. 
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1. Introduction 

Although the beams are still used as a design model for 

the vibration analysis of various realistic systems, most of 

the research studies are conducted on the vibration analysis 

of the beams with ideal supports and there are very few 

studies related to the ones having non-ideal supports. 

Rayleigh [1] determined the fundamental frequency of 

a uniform cantilever beam carrying a tip mass. He used the 

static deflection curve of the beam acted upon 

concentrated tip load as a good estimation of fundamental 

mode shape estimate. Timoshenko [2] developed a series 

of formulae corresponding to various beam-point mass 

configurations. Turhan [3] studied the beams with various 

ideal end conditions. He presented an exact frequency 

equation for each case and compared the results in a broad 

range of relevant parameters. Matsunaga [4] analyzed the 

natural frequencies and buckling loads of a simply 

supported beam to initial axial tensile and/ or compressive 

forces. He applied Hamilton's principle to derive the 

equations of dynamic equilibrium and natural boundary 

conditions of a beam. He presented a one-dimensional 

higher order theory of thin rectangular beams to take into 

account the effects of both shear deformations and depth 

changes. He showed that with the help of his method, the 

natural frequencies and buckling loads of such beams 

could be evaluated more accurately than the previous 

methods. Banerjee [5] studied the free vibrations of axially 

loaded composite Timoshenko beams using the dynamic 

stiffness method. The solution technique, which he used to 

yield the natural frequencies, was that of the Wittrick-

Williams algorithm. The effects of axial force, shear 

deformation and rotatory inertia on the natural frequencies 

were demonstrated. He showed that the shear deformation 

and rotatory inertia are seen to have a relatively marginal 

effect on the natural frequencies of this particular 

composite beam. However, the axial force was seen to 

have quite a significant effect on the fundamental natural 

frequency of the beam whereas it was seen to have a 

relatively lesser effect on other natural frequencies. He 

demonstrated that the natural frequency diminishes when 

the axial load changes from tensile to compressive, as 

expected. Naguleswaran [6] studied the transverse 

vibration of uniform Euler–Bernoulli beams linearly 

varying fully tensile, partly tensile or fully compressive 
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axial force distribution. He derived the general solution, 

expressed as the super-position of four independent power 

series solution functions. He showed that an increase in the 

values of one or both of the system parameters stiffens the 

system and results in an increase in the frequency 

parameter. He also presented that if one or both of the 

system parameters are negative; combinations exist for 

which a frequency parameter is zero. He stated that a 

necessary (but not sufficient) condition for the onset of 

buckling is when one or both system parameters are 

negative. 

Naguleswaran [7] also studied the vibration of beams 

with up to three-step changes in cross-section and in which 

the axial force in each portion is constant but different. He 

showed that the Euler buckling occurs for certain 

combinations of the axial forces for which a frequency 

parameter is zero. A necessary (but not sufficient) 

condition for this to occur is at least one of the axial forces 

must be compressive.  

Yesilce et al. [8] presented an extensive literature 

review of the beams carrying simply spring-mass systems 

and additional complexities. He also studied the effect of 

axial force on free vibration of Timoshenko multi-span 

beam with multiple attached spring-mass systems. He 

showed that an increase in the value of axial force causes a 

decrease in the frequency values; however, the amount of 

this decrease due to the modes is related to the number of 

spring-mass systems attached to the model. He also 

demonstrated that the frequency values show a very high 

decrease as a spring-mass system is attached to the bare 

beam; the amount of this decrease considerably increases 

as the number of spring-mass attachments is increased. 

It is normally assumed that the ideal conditions are 

satisfied exactly. However, small deviations from ideal 

conditions in real systems occur. Pakdemirli et al. [9] 

studied the effect of non-ideal boundary conditions on the 

vibrations of the beams. He considered two different beam 

vibration problems and an axially moving string problem. 

He treated them using the Lindstedt-Poincare technique 

and the method of multiple scales. He showed that non-

ideal boundary conditions may affect the frequencies as 

well as amplitudes of vibration. He also demonstrated that, 

depending on the location of non-ideal support conditions 

and their small variations in time, frequencies may 

increase or decrease. Pakdemirli et al. [10] also studied the 

non-linear vibrations of a simple-simple beam with a non-

ideal support in between. He presented the approximate 

analytical solution of the problem using the method of 

multiple scales. He showed that depending on the mode 

shape numbers and locations, the frequencies may increase 

or decrease or remain unchanged. He also demonstrated 

that derivations from the ideal conditions lead to a drift in 

frequency-response curves which may be positive, 

negative or zero, depending on the mode number and 

locations.  

Boyaci [11] widened the idea of non-ideal supports to a 

damped forced non-linear simple-simple beam vibration 

problem in which the nonlinearity was due to stretch 

effects. He combined the effects of non-linearity and non-

ideal boundary conditions on the natural frequencies and 

mode shapes and examined them using the method of 

multiple scales. He stated that the stretching effect may 

increase the frequency while the non-ideal boundary 

conditions may increase or decrease them. Malekzadeh et 

al. [12] investigated the effect of non-ideal boundary 

conditions and initial stresses on the vibration of laminated 

plates on Pasternak foundation studied. The plate had 

simply supported boundary conditions and it was assumed 

that one of the edges of the plate allowed a small non-zero 

deflection and moment. The vibration problem was solved 

analytically using the Lindstedt-Poincare perturbation 

technique. So the frequencies and mode shapes of the 

plate, with a non-ideal boundary condition, was extracted 

by considering the Pasternak foundation and in-plane 

stresses. The results of the finite element simulation, using 

ANSYS software, were presented and compared with the 

analytical solution. The effect of various parameters, like 

stiffness of foundation, boundary conditions and inplane 

stresses on the vibration of the plate, was discussed. The 

Lindstedt-Poincare perturbation technique was used to 

study the effect of non-ideal boundary conditions on 

buckling load of laminated plates on elastic foundations by 

Khalili et al. [13]. The plate was simply supported and it 

was assumed that one of the edges of the plate allowed a 

small non-zero deflection and a small non-zero moment. 

The cross-ply rectangular plate rested on Pasternak 

foundation. The results of finite element simulations, using 

ANSYS FE code were presented and compared with the 

analytical solution. After determining the buckling load, 

the effect of various parameters, like stiffness of the 

foundation and in-plane pre-loads on the buckling load, 

was discussed. The proposed non-ideal boundary model 

was applied to the free vibration analyses of Euler-

Bernoulli beam and Timoshenko beam by Jinhee [14]. The 

free vibration analysis of the Euler-Bernoulli beam was 

carried out analytically and the pseudospectral method was 

employed to accommodate the non-ideal boundary 

conditions in the analysis of the free vibration of 

Timoshenko beam. It was found that when the non-ideal 

boundary conditions are close to the ideal clamped 

boundary conditions, the natural frequencies are reduced 

noticeably as k increases. When the non-ideal boundary 

conditions are close to the ideal simply supported 

boundary conditions, however, the natural frequencies 

hardly change as k varies, which indicates that the 

proposed boundary condition model is more suitable for 

the non-ideal boundary condition close to the ideal 

clamped boundary condition. Ghadiri et al. [15] 

investigated the vibration analysis of an Euler-bernouli 

composite beam subjected to axial loading. The boundaries 

are assumed to allow small deflections and moments. So, 

the boundary conditions of the beam were considered as 

non-ideal. The governing equation of the system was 

solved by Lindstedt-Poincare technique. Finally, the 

effects of the non-ideal boundary conditions on the 

amplitude and frequency of vibration as well as the critical 

buckling load were studied. 

The present paper investigates the effect of non-ideal 

simply supported boundary conditions under axial force on 

the vibration of laminated composite beams. Effect of non-

ideal boundary condition on the natural frequencies and 

mode shapes are examined. An Euler-Bernoulli composite 

beam having fully-ideal (both ideal) and semi-ideal (one 

ideal and one non-ideal) boundary conditions under axial 

force is studied with the presence of an attached mass-

spring-damper system. The governing equations of the 

http://www.springerlink.com/content/?Author=Hakan+Boyac%c4%b1
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beam are derived using the D'Alembert's principle. The 

Galerkin method is employed in the displacement field in 

conjunction with the average acceleration method in the 

time domain to solve the problem. The effect of ideal and 

non-ideal support of the composite beam under axial force 

on natural frequencies and mode shapes of the system is 

investigated. In order to validate the performed solution 

and the obtained results, in a special case, the fundamental 

frequency is compared with those cited in literature. 

2. The Mathematical Model and Formulation 

A laminated composite beam is considered, as shown 

in Figure 1. The governing equations of the uniform beam 

with an attached spring-mass system could be derived with 

the help of equilibrium of the dynamic forces by the 

D'Alembert's principle as follows [16]: 
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Considering Eq. (1) and Figure 1,  f(x) could be defined 

as follow as: 

     oxxgmFxf                                             (2) 

Therefore, Eq. (1) could be written as: 

𝐷
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�𝑚𝑔 − 𝑚 𝑦  𝑡   𝛿 𝑥 − 𝑥0           t > 0 

   (3) 

 
Figure 1. A schematic view of an Euler-Bernoulli laminated beam 

where D is the reduced bending stiffness and w(x,t) is 

the transverse displacement of the beam. y(t) is the 

displacement of the attached mass relative to base level, ρ, 

A, L and m are density, cross section, length and amount of 

the attached mass to the beam, respectively. Also δ(x-x0) is 

the Dirac delta function.  

The reduced bending stiffness is as follows [17]: 
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where A11is the extensional stiffness, B11 is the 

coupling stiffness, D11 is the bending stiffness, 
k

Q11  is the 

coefficient of reduced stiffness of the lamina, b is the 

width, H is the height, ni is the number of plies, E11 and E22 

are the longitudinal and transverse Young’s moduli, 

respectively, G12 is the in-plane shear modulus, υ12 and υ21 

are the longitudinal and transverse Poisson’s ratio, 

respectively,   is the angle of the kth  lamina orientation 

and zk and zk-1 are the locations of the kth lamina with 

respect to the midplane of beam (Figure  2) [17,18]: 

 
Figure 2. A schematic view of the stacking sequence of the 

laminated beam. 

From Figure 1, the governing equation of the attached 

mass could be written as follows: 

wcwkymycyk                                                (13) 

For writing the governing equations of the problem, 

i.e., Eqs. (3) and (13), in their dimensionless forms, the 

relations between the dimensional and dimensionless 

(denoted by “־”) quantities are defined: 
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   (14) 

Substituting the above dimensionless quantities into 

Eqs. (3) and (13), the dimensionless defining equations of 
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the behavior of the beam and its attached mass could be 

written as: 
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Hereinafter, we simplify the above equations by 

removing the “־” symbol.  

In general form, the dimensionless governing equations 

of an Euler-Bernoulli composite beam with an attached 

spring-mass-damper system could be written as: 
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The boundary condition of the problem is as: 
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ε is small perturbation parameter denoting that the 

variations in deflections and moments are not zero but 

small at the end of the beam (here, at the right end of the 

beam). The symbol “1” in (1,t) shows this non-ideal 

condition at the right end of the beam. 

Having the same time variations in the boundaries, the 

following equations must be satisfied: 
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where a and b are constant amplitudes and are: a=b=1 

[9]. 

3. The Solution Method 

To solve the coupled Eqs. (17) and (18), the Galerkin’s 

method in coordinate domain and the method of average 

acceleration to time discretizing are employed. The test 

function should be predicted in a proper way to satisfy the 

boundary conditions of the problem. It must be noted that 

in ideal support condition (ε = 0), the test function must 

satisfy the boundary conditions of the problem too. 

Therefore, 
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where c and d could be determined with the help of 

boundary conditions. Therefore, the test function is:  
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It is seen that for ε = 0 (ideal boundary conditions), 

 xn  could satisfy the boundary conditions of the 

problem too. 

Finding the test function, w(x,t) is considered as 

follows: 
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where  tn  is the time dependent functions. 

Substituting the above equations into Eqs. (17) and 

(18): 
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Considering the Galerkin’s method, the weight function 

could be chosen as: 

𝜙𝑚  𝑥 = 𝑠𝑖𝑛 𝑚𝜋 𝑥 + 𝜀  
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 Multiplying the above equation in Eq. (24) and integrating 

on 0<x<1: 
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The above equations could be simplified with the help 

of orthogonality condition.  

The method of average acceleration is employed for 

discretizing the time. This method is mostly used in finite 

element analysis of time discretized dynamic equations. In 

this method, estimations of finite differences for 

displacement and velocity could be found using of 

Taylor’s series as follows [19]: 
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where w is a time dependent variable, Δt is the time 

step size and the superscripts show the time in which the 

proposed expression must be calculated.  

In average acceleration method, the additional 

assumption is: 
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 where   denotes substituting. Therefore, 

substituting Eq. (30) in Eqs. (28) and (29): 
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and c1w and c2w show the expressions which are as 

follows: 
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With this method, the linear differential equations 

would be reduced to a system of linear algebraic equations 

including acceleration in time t+Δt, displacement, velocity 

and acceleration in time t [19]. 

Noticing Eqs. (31) and (32), variables of the system of 

equations could be defined as: 
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Substituting the above equations in the motion 

equations of the system, linear partial differential 

equations would be changed to linear algebraic equations. 

The above equations could be defined as time discretized 

equations that )(t  is its unknown parameter. In order to 

avoid lengthy explanations, the motion equations are not 

shown after the above-mentioned substitution. Solving the 

resulted system of algebraic equations simultaneously, 

having the value of variables in time t, the corresponding 

values could be easily determined in time t+Δt.  

4. Calculation of Fundamental Natural Frequency 

The equation of fundamental natural frequency of a 

simply supported beam with one non ideal boundary 

condition and carrying a spring-mass system is derived 

using Rayleigh’s method as follow as [16]: 

maxmax VT 
                                                         

 (38) 

where Vmax is maximum potential energy and Tmax is 

maximum kinematics energy of the total system. 

Assuming identical phase for beam and the attached mass 

oscillations, the maximum kinetic energy can be calculated 

as follows: 

massTbeamTT max  

 
l

YmdxxWAT
0

22

2

12
)(

2
  

2

1

max                    (39) 

which ω is a fundamental natural frequency of the 

system, W(x) and Y are transverse deflections of beam and 

the attached mass to it, respectively. Using Eq. (26), the 

first mode shape can be considered as:  

𝑊 𝑥 = 𝜙1 𝑥 = sin 𝜋 𝑥 + 𝜀  
  11

6
𝑥3 −

 5

6
𝑥4  ; 

    (40) 

The beam and the mass attached to it are supposed to 

oscillate with the same phase and fundamental frequency. 

The maximum potential energy can be calculated as 

follows: 

massVbeamVV max                                                
(41)

 
and 

 
l

dxxWDxWYkV
0

 )( 
2

))0((
2

1

max                     (42) 

where, 

))0(( xWYkmg                                                        (43) 

Therefore, the fundamental natural frequency of a 

simply supported beam with one non ideal boundary 

condition and carrying spring-mass system is given as 

follows: 

5. Model Verification 

The fundamental frequency of the composite beam 

with ideal supports, which is derived with the help of Eq. 

(44), is compared to the calculated one by [3] for a 

concentrated mass without a spring. To model the present 

spring-mass system with a system consisting of one 

concentrated mass only, the spring constant k is tended to 

infinity. The first, second and third rows of Table 1 show 

that a good verification is reached for the case of ideal 

supports. Table 1 also demonstrates that with the increase 

of ε, the fundamental natural frequency decreases. 

ω1
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Table1. Verification of the present method with [3], in comparison with first fundamental frequency of beam 

Distance of the concentrated mass 

from the left side of beam support x0 = 0.1 x0 = 0.2 x0 = 0.3 x0 = 0.4 x0 = 0.5 

Ideal supports (ε = 0.0) [3] 120.628 80.869 64.204 56.978 54.901 

Ideal supports (ε = 0.0)  

[Present method (Eq. (44))] 
122.726 82.384 65.335 57.722 55.218 

Non-Ideal support ( 0.1  ) 

[Present method (Eq. (44))] 
118.841 82.039 63.707 55.199 52.418 

Non-Ideal Support ( 0.2  ) 

[Present Method (Eq. (44))] 
113.083 80.869 64.204 56.978 49.770 

 

6. Numerical Analysis and Discussions 

All numerical analyses of the present paper are 

obtained based on the following data [17]:  
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In all of the presented results, in form of time 

dependent curves, the oscillation amplitude of the beam is 

determined and drawn at the point: x=x0. 

It is worth mentioning that for the sake of the facility of 

the calculations, Matlab software is used to get the results. 

7. Effect of Non-Ideal Support 

Figure 3 illustrates a comparison of the first four mode 

shapes of the composite beam with different perturbation 

parameters. The layer sequence of the laminated composite 

beam is [90 60 30 0]s. It is observed that the mode shapes 

of the beam with two ideal supports are different from the 

mode shapes of the beam with non-ideal support. It means 

that as one of the supports is non ideal (ε = 0.1), the 

amplitude of mode shape is higher. 
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Figure 3. Comparison of mode shapes of the beam in the cases of two ideal supports and one non-ideal and one ideal support 
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The oscillation amplitude of the middle point of the 

beam and its attached mass for different perturbation 

parameter are shown in Figures 4 and 5, respectively. The 

beam is considered as a composite laminate having 8 plies 

which its layer sequence is: [90 60 30 0]s. The mass 

oscillation is begun from point y (t = 0) = 0.144 that is 

given to the mass as an initial condition. 

Figure 4 shows that the increase in ε causes an increase 

in the oscillation amplitude and the phase difference 

between the oscillations amplitudes. 

Figure 5 shows that with increasing the perturbation 

parameter, the oscillations amplitude of the attached mass 

to the beam decreases. 

The oscillations amplitude of the middle point of the 

beam and its attached mass with two ideal supports are 

shown in Figures 6 and 7, respectively. The effect of fiber 

directions on the oscillation of the beam and its attached 

mass could be seen in these figures, respectively. It is seen 

that in some fiber directions, the oscillation amplitude of 

the middle point of beam decreases. For instance, the 

oscillation amplitude of the middle point of the beam 

decreases in unsymmetrical fiber directions. Whereas the 

effect of the fiber directions on the oscillation amplitude of 

the attached mass is only a phase difference. 

The effect of the fiber directions on the oscillation 

amplitude of the beam and its attached mass with a non-

ideal support (ε = 0.1) are shown in Figures 8 and 9, 

respectively. 
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Figure 4. Comparison of vibrations of middle point of beam for different perturbation parameter 
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Figure 5. Comparison of vibrations of the attached mass to beam for different perturbation parameter. 
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Figure 6. Comparison of vibration of the middle point of beam with two ideal supports for different fiber directions 
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Figure 7. Comparison of vibration of the attached mass to beam with two ideal supports for different fiber directions 
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Figure 8. Comparison of vibration of the middle point of beam with one non-ideal support ( 0.1  ) for different fiber directions 
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Table 2. The effect of fiber directions of beam on its bending 

stiffness (D). 

Fiber Directions 
Bending Stiffness of the 

Beam ( D ) 

[90,60,30,0]s 100.03 

[90,45,30,0]s 76.47 

[90,60,45,30]s 105.64 

[0,60,90,30,0,15,45,75] 153.56 

Considering Table 2 and figures 8 and 9, it is visible 

that the bending stiffness of the beam with the 

unsymmetrical fiber directions is more than the symmetric 

ones. This leads to a reduction in the oscillation amplitude 

of the beam. Figures 8 and 9 also show that the effect of 

the different bending stiffness on the oscillation amplitude 

of the attached mass is only a phase difference. 

Figure 10 shows the behavior of the fundamental 

frequency of the whole system (including the beam and its 

attached mass) with respect to the perturbation parameter 

(ε) for the different fiber directions. 
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Figure 9. Comparison of vibration of the attached mass to beam with one non-ideal support ( 0.1  ) for different fiber directions 
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Figure 10. Comparison of vibration of the whole system with respect to perturbation parameter (ε) for different fiber directions 

 

It is seen that for the unsymmetrical fiber directions, 

the fundamental is the most frequency. The more 

perturbation parameter is, the less fundamental frequency 

(no matter whether the fiber directions are symmetric or 

unsymmetrical). 

The effect of the tensile and the compressive force on 

dimensionless oscillation amplitude of a laminated beam 

with constant fiber directions [90 60 30 0]s for fully-ideal 

and semi-ideal (having one support with ε= 0.1) supports 

is shown in Figures 11 and 12, respectively. The more 

tensile axial force, the less oscillation amplitude of the 

beam. Figures 11 and 12 show that increasing the 

compressive axial force (smaller than the axial force of the 

first buckling mode of the beam), increases the average of 

dimensionless oscillation amplitude of the middle point of 

beam. Because the compressive axial force decreases the 

bending stiffness of the beam, therefore, the average of 

dimensionless oscillation amplitude of the beam increases. 
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Figure 11. Comparison of vibration of the mid-point of the beam with fully-ideal supports for different axial forces 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time

a
m

p
li
tu

d
e
 o

f 
m

id
d

le
 p

o
in

t 
o

f 
b

e
a
m

 

 

P = 100

P = -100

P = 500

P = -500

P = 0

 
Figure 12. Comparison of vibration of the mid-point of the beam with semi-ideal supports (ε= 0.1) for different axial forces

The effect of the tensile and the compressive axial 

forces on dimensionless oscillation amplitude of the 

attached mass to the composite beam with constant fiber 

directions [90 60 30 0]s for fully-ideal and semi-ideal (ε = 

0.1) supports is shown in Figures 13 and 14, respectively. 

No matter whether the axial force is tensile or 

compressive, for the case of semi ideal supports (ε = 0.1), 

it leads to an increase in the oscillation motion of the 

attached mass to the beam. When the axial force is tensile, 

the oscillation amplitude tends to the equilibrium point 

(i.e., the point that amplitude is equal to zero). The mass 

begins its oscillation from the point y(t = 0) = 0.144 that is 

given initial condition. Also, the compressive axial force 

increases the oscillation amplitude of the attached mass. 

This is because of the variation of the bending stiffness of 

the beam due to axial force. 

The effect of the non-ideal supports in the reduction of 

the buckling probability of a laminated composite beam 

with the constant symmetric fiber directions [90 60 30 0]s 

under a compressive axial force (P = -2000 N), near the 

first mode of the buckling load is shown in Figure 15. It is 

seen that having a non-ideal support postpones the 

buckling of a beam under compressive forces near the first 

mode of the buckling load. Therefore, a beam with fully-

ideal supports will be buckled sooner than with semi-ideal 

ones at the same loading condition. 



 © 2015 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 9, Number 3  (ISSN 1995-6665) 205 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time

a
m

p
li
tu

d
e
 o

f 
m

a
s
s
 v

ib
ra

ti
o

n

 

 

P = 100

P = -100

P = 500

P = -500

P = 0

 
Figure 13. Comparison of vibration of the attached mass to beam with fully-ideal supports for different axial forces 
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Figure 14. Comparison of vibration of the attached mass to beam with semi-ideal (ε = 0.1) supports for different axial forces 
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Figure 15. The effect of perturbation parameter (ε) on buckling of a beam. 

The effect of the damping constant on the oscillation 

amplitude of the middle point of the beam for ideal (ε = 

0) and non-ideal (ε = 0.1) supports is shown in Figure 16. 

It could be seen that the oscillation amplitude of the 

middle point of the beam with nonzero damping constant 

decreases with time. While, the oscillation amplitude of 

the beam without damping does not change. 
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Figure 16. Comparison of vibration of the middle point of beam with ideal and non-ideal support for different damping constant 
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Figure 17. Comparison of vibration of attached mass to the beam with ideal and non-ideal support for different damping constant 

 

The effect of the damping constant on the oscillation 

amplitude of the attached mass to beam for ideal (ε = 0) 

and non-ideal (ε = 0.1) supports is shown in Figure 17. It 

could be seen that the oscillation amplitude of the attached 

mass to the beam with nonzero damping constant 

decreases with time. It is shown that at the start of the 

oscillation, the amplitude of the attached mass to beam 

without damping is smaller than the amplitude of the 

attached mass to the beam with damping. The oscillation 

amplitude of the attached mass to the beam with nonzero 

damping constant decreases with time. 

We know that as the degree of freedom increases, the 

natural frequency decreases. For example, for a beam with 

a specified geometry and physical property, natural 

frequencies based on Euler-Bernoulli beam theory are 

higher than the natural frequencies based on Timoshenko 

beam theory. This is because of the degree of freedom 

which, in Timoshenko beam theory, is more than Euler- 

Bernoulli beam theory. In the Timoshenko beam theory, 

the effect of shear deformation, in addition to the effect of 

rotary inertia, is considered. In the present investigation, 

according to the obtained results, with increasing 

perturbation parameter (i.e., ε), the natural frequency 

decreases and the oscillation amplitude increases. With 

noting the foregoing expression, this is because of the 

increasing degree of freedom due to increasing 

perturbation parameter. 

8. Conclusions 

The effect of a non-ideal support on free vibrations of 

an Euler-Bernoulli laminated composite beam carrying an 

attached mass-spring-damper system under axial force was 

investigated. The effect of non-ideal support on the 

oscillation frequency and the amplitude of the beam was 

studied. The Galerkin method is employed in the 

displacement field in conjunction with the average 

acceleration method in the time domain to solve the 

governing equations of the problem. The results show that 

the non-ideal boundary conditions may affect the 

oscillation frequency as well as the amplitude of the beam 
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and the attached mass. The results could be classified as 

follows: 

 The oscillation amplitude and phase difference between 

the oscillation amplitudes of the composite beam 

increases as the perturbation parameter (ε) increases. 

This behavior is independent of the fiber directions of 

the beam. Increasing the perturbation parameter, the 

average of the beam oscillation amplitude decreases. 

 Increasing the perturbation parameter, the average of 

the attached mass oscillation amplitude decreases. 

 The oscillation amplitude of the beam with ideal 

supports reduces in some fiber directions. However, the 

effect of the fiber directions in the oscillation amplitude 

of the attached mass is only a phase difference. 

 When the fiber directions of the beam are symmetric, 

the fundamental frequency of the beam reaches to its 

maximum value. Increasing the perturbation parameter 

results in a decrease in the fundamental frequency of 

the beam, regardless of the fiber directions of beam. 

 The more increase in the tensile axial force results in a 

less oscillation amplitude of the beam for symmetric 

fiber directions with ideal supports and vice versa. It 

means that by increasing the compressive axial force at 

the same conditions, the oscillation amplitude of the 

beam increases. The more increase in compressive 

axial force results in a more increase in the average 

value of the oscillation amplitude. 

  For a specified fiber direction regardless of the kind of 

axial force, the oscillation amplitude of the beam 

increases for a semi-ideal supports case (ε = 0.1). 

 The oscillation amplitude of the attached mass to the 

beam is affected from the value and the direction of the 

axial force and the amount of perturbation parameter. 

 Using a non-ideal support postpones the buckling 

probability of the beam near the first mode of the 

buckling load. Therefore, the beams having fully-ideal 

supports would be buckled sooner than the beams with 

semi-ideal supports. 
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