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Abstract 

This study addresses a critical research gap in production planning by proposing an integrated model for flexible lot-sizing 

and scheduling that simultaneously considers remanufacturing, sequence-dependent setup times, and energy efficiency—

factors often studied in isolation in previous research. The model reflects the complexity of modern manufacturing systems, 

where products may return for remanufacturing and machines require specific setup times depending on operation sequences. 

The novelty of this work lies in its holistic approach, combining these elements within a flexible job-shop environment, which 

better captures the dynamics and constraints of real-world production settings. To efficiently solve this NP-hard problem, the 

study develops and applies three metaheuristic algorithms: Genetic Algorithm (GA), Whale Optimization Algorithm (WOA), 

and Particle Swarm Optimization (PSO). These algorithms are evaluated on a range of problem sizes to assess their scalability 

and performance. The key contribution is twofold: first, in the formulation of a realistic and comprehensive mathematical 

model, and second, in demonstrating the effectiveness of metaheuristic methods for solving complex large-scale problems. 

Results indicate that while all three algorithms produce feasible and high-quality solutions, the GA consistently achieves 

superior outcomes, making it a robust and efficient approach for optimizing lot-sizing and scheduling decisions in sustainable 

and flexible manufacturing environments. 
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1. Introduction 

In present time, manufacturing industries are facing a 

very competitive, unpredictable, and ever changing 

environment, with growing complexity and high levels of 

customization.(Kumar et al., 2017). In modern 

manufacturing environments, these problems are further 

complicated by factors such as remanufacturing processes, 

sequence-dependent setup times, and energy consumption 

constraints. These elements are not only essential for 

enhancing productivity and competitiveness but also align 

with the broader goals of sustainable and circular 

manufacturing systems (Jabbarzadeh et al., 2018). 
The Flexible Job Shop Scheduling Problem (FJSP) 

extends the classical Job Shop problem by allowing each 

operation to be performed on more than one machine, 

offering greater routing flexibility. However, this increased 

flexibility introduces additional layers of computational 

complexity. The problem becomes even more challenging 

when integrated with lot-sizing decisions and the 

consideration of remanufacturing and setup dependencies 

(Giglio et al., 2017). Despite growing interest, most existing 

studies address these components separately. For instance, 

literature on remanufacturing primarily focuses on 

inventory or supply chain levels (Liu et al., 2025), while 

research on FJSP often ignores setup times and 

sustainability-related factors like energy consumption (Xin 

et al., 2025). 

Research gaps emerge from this lack of integration. 

Specifically, few models simultaneously address lot-sizing 

and scheduling with remanufacturing, sequence-dependent 

setup times, and energy efficiency in a flexible job-shop 

environment (Xu et al., 2025). This fragmentation limits the 

applicability of existing models in real-world, resource-

constrained, and sustainability-aware manufacturing 

systems. Therefore, this study aims to develop a unified, 

scalable, and computationally efficient model be developed 

for the integrated lot-sizing and scheduling problem that 

includes remanufacturing, sequence-dependent setup, and 

energy efficiency considerations. 

To address this issue, the paper presents a 

comprehensive mathematical formulation of the problem, 

integrating all these critical elements into a single model. 

The novelty of the research lies in this integrated approach, 

as well as in the development and application of 

metaheuristic algorithms capable of solving the resulting 

NP-hard problem efficiently. In contrast to exact 

optimization methods that struggle with large-scale 
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instances, metaheuristics provide near-optimal solutions 

within reasonable computational times. 

The main contributions of this study are as follows: 

1. Development of an integrated lot-sizing and flexible job-

shop scheduling model incorporating remanufacturing, 

sequence-dependent setup times, and energy efficiency. 

2. Implementation and comparative evaluation of three 

metaheuristic algorithms—Genetic Algorithm (GA), 

Whale Optimization Algorithm (WOA), and Particle 

Swarm Optimization (PSO)—to solve large-scale 

instances of the problem. 

3. Empirical evidence showing the superiority of the GA in 

terms of solution quality and robustness, highlighting its 

potential for application in complex, real-world 

production systems. 

By addressing these challenges, the study offers 

practical insights for sustainable production planning and 

advances the methodological frontier of integrated 

manufacturing optimization. 

Figure 1 represents a simplified schematic view. The 

production system discussed here handles multiple product 

classes, each with unique properties and a specific 

precedence network. Each product class follows a single 

processing path across different workstations, with at least 

two similar machines performing each step in parallel. The 

processing path remains consistent for both production and 

remanufacturing methods, with fixed and predetermined 

nominal processing times on different machines. The 

allocated time interval for each operation has a 

predetermined duration. Metaheuristicsare effective 

methods for solving complex scheduling problems. They 

are iterative and stochastic procedures that can search for 

good solutions.  

The main research gaps addressed by this study stem 

from the lack of integrated approaches that simultaneously 

consider lot-sizing and scheduling in the presence of 

remanufacturing, sequence-dependent setup times, and 

energy efficiency. While prior studies have individually 

addressed components such as flexible job-shop scheduling 

or remanufacturing, few have combined all these critical 

aspects into a unified model. Moreover, traditional exact 

optimization tools struggle to solve large-scale instances of 

such complex models within reasonable computation times, 

leaving a performance and scalability gap for practical 

applications. This paper specifically targets this void by 

constructing a comprehensive model that integrates all these 

real-world complexities into the flexible job-shop 

environment. 

To tackle the computational challenges posed by the 

problem's NP-hard nature, the authors propose and 

implement three metaheuristic algorithms—Genetic 

Algorithm (GA), Whale Optimization Algorithm (WOA), 

and Particle Swarm Optimization (PSO). The key 

contribution lies not only in formulating the problem but 

also in evaluating the performance of these algorithms in 

large-scale scenarios, where exact solvers fail. The study 

demonstrates that the GA outperforms WOA and PSO in 

most tested scenarios, particularly in finding higher-quality 

solutions for large problem sizes. These findings contribute 

to both the methodological advancement in production 

planning optimization and the practical deployment of 

metaheuristic algorithms in modern, sustainable 

manufacturing systems that involve remanufacturing 

processes. 

This study centers on the Sequence-Dependent FJSP 

(SDFJSP) and introduces meta-heuristic methods to address 

it. The research aims to create effective algorithms to yield 

good solutions for the FJSP, offering a useful understanding 

of meta-heuristic methods’ effectiveness in tackling 

scheduling challenges in manufacturing. The paper 

continues with a literature review, mathematical modeling 

and problem formulation, and experimental results, 

followed by the conclusion and future research directions. 

 

 
Figure 1. Schematic view of the problem  
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2. Previous Research 

2.1. Flexible Job-shop Scheduling Problem (FJSP) 

The FJSP encompasses versatile machinery for various 

operations. Researchers have developed numerous solution 

methods. Brucker and Schlie (1990) offered an efficient 

algorithm. Many others used Tabu search (Brandimarte, 

1993; Hurink et al.,1994), mixed integer programming 

(Choi and Choi, 2002), Genetic Algorithm(Kacem et al., 

2002; Chan et al., 2006; Gao et al.,2008; Pezzella et al., 

2008). Later, approaches like decision support systems, 

hybrid algorithms, and multi-agent systems have been 

utilized. Industrial applications have been studied, and 

adaptive strategies for set-up times, batch processing, and 

machine failure have been proposed to optimize scheduling 

efficiency (Xing et al., 2010; Chen et al., 2008; Zhang et al., 

2011; Mahdavi et al. 2010; Chan and Choy, 2011; Al-Turki 

et al., 2011; Xiong and Fu, 2018; Gao et al., 2015; Ahmadi 

et al., 2016). 

In recent research, Mahmud et al. (2022) present a 

scheduling problem that addresses the challenges of 

achieving customized, on-time deliveries while minimizing 

costs. Their approach combines a supply portfolio with 

production planning by utilizing a flexible job shop (FJS) 

model to represent manufacturing adaptability.They 

develop CD-MOPSO and RP-MOPSO methods to enhance 

multi-objective PSO, with RP-MOPSO outperforming by 

providing diverse Pareto solutions efficiently. In a related 

context, Thi et al. (2022) propose an improved algorithm for 

FJSP under the failure of machines, utilizing GA for initial 

solutions during failures. Meanwhile, Momenikorbekandi 

and Abbod (2023) introduce a novel metaheuristic for FJSP. 

The algorithm combines genetic and parthenogenetic 

algorithms, incorporating ethnic selection and various 

selection operators, demonstrating better performance for a 

range of scheduling scenarios. These studies collectively 

contribute to the optimization of complex scheduling 

problems through innovative metaheuristic approaches and 

practical adaptability. 

Shen et al (2023) addresses energy-efficient scheduling 

in flexible job shops under time-of-use electricity pricing, 

aiming to minimize total energy cost without exceeding a 

maximum makespan. They develop heuristics and a tabu 

search based on problem properties, showing how energy 

pricing structures impact solution complexity and cost 

savings. Fontes et al (2024) extends energy-efficient job 

shop scheduling by incorporating speed-adjustable 

machines and transport vehicles, optimizing both 

processing and transport tasks. A bi-objective MILP model 

and a multi-objective genetic algorithm are proposed to find 

Pareto-optimal trade-offs between makespan and energy 

consumption, with results demonstrating efficiency even for 

large instances. Adams (2025) develops a mixed-integer 

linear production planning model for energy-intensive 

manufacturing using hybrid battery–hydrogen storage 

systems. Numerical results show up to 29.3% cost savings, 

with batteries reducing energy costs and hydrogen storage 

enhancing energy independence under fluctuating 

renewable supply and tariffs. 

2.2. Lot-Sizing with remanufacturing 

Recently, there has been an increasing focus on 

improving production systems, specifically concerning lot-

sizing and scheduling. Efforts are directed towards creating 

better solutions through metaheuristic algorithms like 

genetic algorithms and simulated annealing, alongside 

decision support systems and dispatching rules. 

The FJSP, which entails the assignment of various 

products to parallel machines considering setup times, 

stands out as a significant area of interest. Various 

strategies, such as genetic algorithms and decision support 

systems, have been suggested to tackle this problem, but its 

inherent complexity and the requirement to harmonize 

competing goals continue to make it a difficult problem to 

solve. 

The DLSPR problem (which stands for Dynamic Lot 

Sizing with Product Returns and Remanufacturing) focuses 

on determining the optimal quantities for the production of 

both new and remanufactured items, considering the 

fluctuating and uncertain nature of product returns. 

Overall, the optimization of production systems is a 

complex and challenging problem that requires a 

multidisciplinary approach. By combining mathematical 

modeling, metaheuristic algorithms, and decision support 

systems, researchers can develop more effective methods 

for solving these problems and improving the efficiency of 

production systems. 

Over the past five decades, the DLSPR has been 

reviewed by many researchers (Drexl and Kimms, 1997;  

Jans and Degraeve, 2008). Richter and Sombrutzki (2000) 

as well as Golany et al. (2001) have contributed to this field 

by providing mathematical formulations for DLSP in 

remanufacturing and analyzing single product systems with 

reproduction and disposal options, respectively. Teunter et 

al. (2006) analyzed capacity planning without capacity 

constraints for joint and separate production and 

remanufacturing lines. 

Teunter et al. (2009) formulated heuristic approaches for 

problems initially introduced by Teunter in 2006. Pineyro 

and Viera (2009) developed a Tabu Search algorithm aimed 

at solving a DLSR problem that encompasses 

sustainableobjectives. Additionally, Pineyro and Viera. 

(2010) examined a lot-sizing problem where the demand for 

new products does not match the demand for 

remanufactured ones, resulting in a situation of one-way 

substitution, and they offered a Tabu Search technique to 

find a solution that is close to optimal.Wang et al. (2011) 

considered separate production lines for production and 

remanufacturing, allowing outsourcing to meet demand. 

Baki et al (2014)., Sifaleras et al. (2015), and Mehdizadeh 

and Fatehi (2017) proposed various algorithms for DLSPR 

and recycling without assuming capacity constraints. 

Soleimaninia and Mehdizadeh (2018) developed a 

model for FJSPand a GA to solve it.Aghighi et al. (2021)a 

sustainable JSP model without taking into account the 

processing dependencies. 

Van Zyl and Adetunji (2022) presented a lot-sizing 

problem involving imperfect manufacturing processes, 

time-varying demand, and return rates. Recognizing the 

importance of return logistics in the face of natural resource 

scarcity, the study proposes an inventory system that 

integrates remanufactured returns with new products, 
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optimizing value creation throughout the product life cycle. 

The authors devise a sophisticated approach, including the 

consideration of returns that cannot be fully 

remanufactured, along with failed manufacturing items 

treated as returns. Remanufactured items are classified into 

different quality grades, aligning them with diverse 

customer demands. The study employs a modified 

Wagner/Whitin model to efficiently balance 

remanufacturing and manufacturing activities while 

minimizing costs, showing sensitivity to manufacturing 

setup costs and return proportions. 

In a parallel vein, Rocha (2023) introduces a novel 

model for the capacitated lot-sizing problem with 

remanufacturing (CLSP-RM). The study explores two 

distinct instance groups: those amenable to relaxation-based 

solutions yielding near-optimal outcomes and those 

categorized as NP-hard, solved through straightforward 

period-by-period simulation techniques. By offering an 

innovative model formulation that considers setup costs, 

product returns, and remanufacturing, Rocha contributes to 

the advancement of solution approaches for the complex 

CLSP-RM, providing valuable insights into efficient 

optimization strategies for manufacturing and 

remanufacturing scenarios. 

Mat Ropi et al (2023) develops a cost-minimization 

model for managing disruptions in remanufacturing systems 

caused by spare parts shortages, focusing on optimal 

recovery scheduling in a two-stage production–inventory 

setup. Rohaninejad et al (2024) addresses integrated lot-

sizing and scheduling using Reconfigurable Machine Tools 

(RMTs) under workforce constraints, formulating the 

problem as a MILP model. A decomposition heuristic 

combining MILP and constraint programming is proposed, 

demonstrating improved performance and highlighting the 

operational benefits of RMTs through key performance 

indicators. Vidal et al (2025) addresses lot-sizing and 

transportation planning in a hybrid production–

remanufacturing system with recovery targets, inventory 

costs, and setup costs. A mixed-integer linear model and 

Tabu Search-based heuristics are developed, with results 

showing the heuristics outperform exact methods on large 

instances in both cost and computational time. 

 

2.3. The problem of Integrated lot-sizing and scheduling 

Rohaninejad et al. (2015) introduced models and hybrid 

optimization techniques to solve lot-sizing and FJSP. In 

addition, Rohaninejad et al. (2016) investigated both 

problems using a hybrid metaheuristic method that merges 

genetic algorithms with PSO. Sahraeian et al. (2017) 

approached the integration of lot-sizing with job-shop 

scheduling by applying harmony search along with mixed 

integer programming. The FJSP is a scheduling challenge 

that assigns various jobs to machines. The sequence-

dependent FJSP (SD-FJSP) adds constraint to the problem 

for sequences (Xie et al., 2019). 

Several studies have addressed the SD-FJSP in recent 

years, with a focus on developing effective optimization 

algorithms that can solve the problem efficiently. For 

example, some researchers have proposed using GA, PSO, 

and other metaheuristic techniques (Jiang et al., 2022). 

One of the key challenges in solving the SD-FJSP is the 

large search space resulting from the sequencing constraint. 

In addition, the problem is NP-hard (Xie et al., 2019). 

Despite these challenges, the SD-FJSP has important 

applications in manufacturing and other industries, where 

efficient scheduling can lead to significant cost savings and 

productivity improvements. As a result, there is ongoing 

research aimed at developing new algorithms and 

techniques for solving the problem, as well as improving the 

accuracy and realism of the models used to represent real-

world scenarios. 

Zarrouk et al. (2019) and Zhang et al. (2020) present a 

two-stage PSO to solve FJSP with a boundary-checking 

strategy for efficiency in reducing scheduling decision 

variables in flexible jobshops. Hajibabaei and Behnamian 

(2021) examine flexible resources impact on scheduling 

with parallel machines, using linear models and comparing 

with genetic algorithms aided by Tabu Search for larger 

instances. Osati et al. (2022) tackle integrated lot-sizing and 

FJSP, emphasizing energy efficiency, through a MINLP 

model solved by exact methods.  

Carvalho & Nascimento (2022) addresses integrated lot-

sizing and scheduling problem on parallel non-identical 

machines with complex setup constraints, aiming to 

minimize production, setup, and inventory costs. The results 

show that novel matheuristic approaches combining relax-

and-fix, fix-and-optimize, path-relinking, and kernel search 

outperform CPLEX in solving industrial-scale instances 

efficiently. 

Rosyidi et al (2024) developed an integrated model for 

simultaneous procurement and production lot sizing and 

scheduling, considering multiple suppliers with quantity 

discounts to maximize profit. A real-world case in the 

noodle industry demonstrates the model's effectiveness, 

revealing sensitivity of results to procurement and pricing 

parameters. 

Kumar et al (2025) presents a hybrid optimization model 

combining stochastic programming and MILP to solve the 

Lot Sizing and Scheduling Problem under demand 

uncertainty. The model enhances cost-effectiveness and 

robustness, offering improved production planning in 

uncertain manufacturing environments. 

Rohaninejad et al (2025) addresses a multi-product lot-

sizing and scheduling problem with a novel period-based 

learning effect, formulating a MILP model to minimize 

tardiness and overtime costs. Cutting planes, matheuristics, 

and post-processing improve solution quality, with results 

highlighting the learning effect's significant influence on 

performance and sensitivity to time-based parameters. 

2.4. Research Gaps and Contributions: 

Despite extensive studies on lot-sizing, scheduling, and 

remanufacturing, a significant research gap remains in the 

integrated treatment of these aspects within flexible job-

shop environments that include sequence-dependent setup 

times and energy efficiency considerations. Prior works 

often handle these elements in isolation, limiting their real-

world applicability, especially in sustainable and resource-

constrained production systems. This study fills that gap by 

proposing a unified mathematical model that integrates lot-

sizing and sequence-dependent flexible job-shop 

scheduling with remanufacturing and energy efficiency 
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objectives. To overcome the NP-hard nature of the problem, 

we implement and compare three metaheuristic 

algorithms—Genetic Algorithm (GA), Whale Optimization 

Algorithm (WOA), and Particle Swarm Optimization 

(PSO). The research contributes novel insights by 

demonstrating the GA's superiority in solution quality for 

large-scale scenarios and offering a practical, scalable 

optimization framework that advances both theory and 

practice in sustainable production planning.More 

specifically, the research questions include: 

1. How can the problem of Flexible Lot-sizing and 

Scheduling with Remanufacturing and Sequence-

dependent Setup Time be modeled in an integrated 

manner? 

2. How can the problem of Flexible Lot-sizing and 

Scheduling with Remanufacturing and Sequence-

dependent Setup Time be solved using metaheuristic 

algorithms? 

3. Problem formulation  

This section outlines model variables, constraints, and 

objectives as a mathematical model which is a mixed integer 

non-linear model. 

3.1. Sets 

Classes of products: 𝒫 = {1. … . 𝑃} 

Machines: 𝒦 = {1. … . 𝐾} 

Periods: 𝒯 = {1. … . 𝑇} 

Production methods: ℱ = {𝑀. 𝑅}; including manufacturing 

(𝑀) and remanufacturing (𝑅( 

Operations: ℋ𝑖 = {1. … . 𝐻𝑖}, 𝑖 ∈ 𝑃 

Processing Machines: 𝒪𝑖 = {𝛫(1). 𝛫(2). … . 𝛫(𝑜𝑖𝐻𝑖
)}, 

where 𝛫(𝑜𝑖ℎ)denotes the machines that can 

operate𝑜𝑖ℎ (ℎ ∈ ℋ𝑖). 

3.2. Parameters 

𝐻𝑖: Total operations of product 𝑖 ∈ 𝑃 

𝑞𝑖ℎ𝑘
𝑓

: Normal time needed forℎ ∈ ℋ𝑖, 𝑖 ∈ 𝑃,𝑘 ∈ 𝛫(𝑜𝑖ℎ), 

𝑓 ∈ 𝐹 

𝑒𝑖ℎ𝑘
𝑓

: Allowable compression of ℎ ∈ ℋ𝑖, 𝑖 ∈ 𝑃, 𝑘 ∈ 𝛫(𝑜𝑖ℎ), 

𝑓 ∈ 𝐹 

𝑟𝑖𝑡: Quantity ofproducts returned, 𝑖 ∈ 𝑃,𝑡 ∈ 𝑇 

𝑑𝑖𝑡: Demand, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 

𝑣𝑖𝑡
𝑓

: Production cost, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 

𝑤𝑖ℎ𝑖′ℎ′
𝑘 : Setup cost, 𝑘 ∈ 𝛫(𝑜𝑖ℎ) ∩ 𝛫(𝑜𝑖′ℎ′), the operation 

ℎ′of𝑖′ ∈ 𝑃is executed afterthe operationℎof 𝑖 ∈
𝑃) 

𝑠𝑖ℎ
𝑘 : Setup time,𝑘 ∈ 𝛫(𝑜𝑖ℎ) ∩ 𝛫(𝑜𝑖′ℎ′),ℎ ∈ ℋ𝑖, 𝑖 ∈ 𝑃 

𝑝ℎℎ′
𝑖 : Precedence parameter, 𝑝ℎℎ′

𝑖 =1 if ℎis a 

predecessorofℎ′ ∈ ℋ𝑖, 𝑖 ∈ 𝑃 

ℎ𝑖𝑡
𝑢 : Holding cost (applied for returned items),𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 

ℎ𝑖𝑡
𝑠 : Holding cost (applied for normal items), 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 

ℎ𝑖𝑡
𝑏 : Cost of shortage, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 

𝑐𝑡: Total length of period,𝑡 ∈ 𝑇 

𝑐𝑝𝑘: Energy consumption cost,𝑘 ∈ 𝐾 

𝑐𝑖𝑘: Power consumption cost,𝑘 ∈ 𝐾 

𝑐𝑐𝑘: Compression cost,𝑘 ∈ 𝐾 

ψ: A sufficiently large value 

𝑏𝑖𝑡
𝑓

: Production capacity, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇,𝑓 ∈ 𝐹 

3.3. Decision variables 

3.3.1. Integer variables 

𝑋𝑖𝑡

𝑓
≥ 0: Production quantity,𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 

𝐼𝑖𝑡
𝑢 ≥ 0: Inventory of products returned,𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 

𝐼𝑖𝑡
𝑠 ≥ 0: Inventory of the normal products,𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 

𝐼𝑖𝑡
𝑏 ≥ 0: Shortage, 𝑖 ∈ 𝑃,𝑡 ∈ 𝑇 

3.3.2. Continuous variables 

𝐶𝑃𝐻𝑆: Total cost (cost of production, inventory cost, and 

setup cost) 

𝐶𝐸: Energy cost 

𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

≥ 0: Realized processing time, ℎ ∈ ℋ𝑖,𝑖 ∈ 𝑃, 𝑘 ∈

𝛫(𝑜𝑖ℎ), 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹. 

𝑍𝑖ℎ𝑘𝑡

𝑓
≥ 0: The amount of compression,ℎ ∈ ℋ𝑖,𝑖 ∈ 𝑃, 𝑘 ∈

𝛫(𝑜𝑖ℎ), 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹. 

𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

≥ 0: Execution start time, ℎ ∈ ℋ𝑖, 𝑖 ∈ 𝑃, 𝑘 ∈

𝛫(𝑜𝑖ℎ), 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹. 
𝐶𝑂𝑘𝑡: Last active time of machine𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 

𝐼𝑇𝑘𝑡: Idle time of machine 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇. 

3.3.3. Binary variables 

𝛿
𝑖ℎ𝑖′ℎ

′

𝑘𝑡𝑓𝑔
∈ {0,1}: Equal to 1 if operations ℎ′

of the product 

𝑖′
in 𝑡 and production method 𝑔 is scheduled on the machine 

𝑘 after operations ℎ of the product 𝑖 with production method 

𝑓. Otherwise 𝛿
𝑖ℎ𝑖′ℎ

′

𝑘𝑡𝑓𝑔
=0. 

𝑦
𝑖ℎ𝑘𝑡

𝑓 ∈ {0,1}: Equal to 1 if operations ℎ of the product 

𝑖 ∈ 𝑃 is scheduled 𝑡 on the machine 𝑘 using method 𝑓 ∈ 𝐹; 

Otherwise 𝑦
𝑖ℎ𝑘𝑡

𝑓
=0. 

𝐵𝑖𝑡

𝑓
: Equal to 1 if anon-zero quantity of product 𝑖 in 𝑡is 

produced using the method 𝑓 ∈ 𝐹. Otherwise 𝐵𝑖𝑡

𝑓
=0. 

3.4. Mathematical model 

(1) 𝑀𝑖𝑛 𝒞𝑃𝐻𝑆 + 𝒞𝐸 

 𝑆𝑡: 

(2) 𝒞𝑃𝐻𝑆 = ∑ ∑ ∑ 𝑣𝑖𝑡
𝑓

𝑋𝑖𝑡
𝑓

𝑓∈ℱ𝑖∈𝑃𝑡∈𝑇

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

𝑔∈ℱ𝑓∈ℱ

𝑤𝑖ℎ𝑖′ℎ′
𝑘

𝑘∈𝐾ℎ′∈𝐻𝑖′ℎ∈𝐻𝑖𝑖′∈𝑃𝑖∈𝑃𝑡∈𝑇

 + ∑ ∑(

𝑖∈𝑃𝑡∈𝑇

ℎ𝑖𝑡
𝑢 𝐼𝑖𝑡

𝑢 + ℎ𝑖𝑡
𝑠 𝐼𝑖𝑡

𝑠

+ ℎ𝑖𝑡
𝑏 𝐼𝑖𝑡

𝑏 ) 
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(3) 𝒞𝐸 = ∑ ∑ ∑ ∑ ∑ 𝑐𝑝𝑘𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

𝑓∈ℱℎ∈𝐻𝑖𝑘∈𝛫(𝑜𝑖ℎ)𝑖∈𝑃𝑡∈𝑇

+ ∑ ∑ 𝑐𝑖𝑘𝐼𝑇𝑘𝑡

𝑘∈𝒦𝑡∈𝑇

+ ∑ ∑ ∑ ∑ ∑ 𝑐𝑘𝑍𝑖ℎ𝑘𝑡
𝑓

ℎ∈𝐻𝑖𝑓∈ℱ𝑖∈𝑃:𝑘∈𝛫(𝑜𝑖ℎ)𝑘∈𝒦𝑡∈𝑇

 

(4) 𝐼𝑇𝑘𝑡 = 𝐶𝑂𝑘𝑡 − ∑ ∑ ∑ 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

ℎ∈𝐻𝑖𝑓∈ℱ𝑖∈𝑃:𝑘∈𝛫(𝑜𝑖ℎ)

       ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦 

(5) 𝐼𝑖𝑡
𝑢 − 𝐼𝑖(𝑡−1)

𝑢 + 𝑋𝑖𝑡
𝑅 = 𝑟𝑖𝑡             ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫 

(6) 𝐼𝑖(𝑡−1)
𝑠 − 𝐼𝑖𝑡

𝑠 + ∑ 𝑋𝑖𝑡
𝑓

𝑓∈ℱ

+ 𝐼𝑖𝑡
𝑏 − 𝐼𝑖(𝑡−1)

𝑏 = 𝑑𝑖𝑡      ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫 

(7) 𝑋𝑖𝑡
𝑓

≤ 𝑏𝑖𝑡
𝑓

𝐵𝑖𝑡
𝑓

   ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀𝑓 ∈ ℱ 

(8) ∑ ∑ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑘∈𝒦ℎ∈ℋ𝑖

= |ℋ𝑖|𝐵𝑖𝑡
𝑓

     ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀𝑓 ∈ ℱ 

(9) ∑ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑘∈𝛫(𝑜𝑖ℎ)

≤ 1     ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀ℎ ∈ ℋ𝑖 . ∀𝑓 ∈ ℱ 

(10) 𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

≤ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑐𝑡 

(11) 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

≤ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑐𝑡 

(12) 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

= 𝑞𝑖ℎ𝑘
𝑓

𝑋𝑖𝑡
𝑓

− 𝑍𝑖ℎ𝑘𝑡
𝑓

+ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑠𝑖ℎ
𝑘      ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑖 ∈ 𝒫: 𝒪𝑖 ∩ {𝑘} ≠ ∅. ∀𝑓 ∈ ℱ. ∀ℎ ∈ ℋ𝑖 

(13) 𝑍𝑖ℎ𝑘𝑡
𝑓

≤ 𝑒𝑖ℎ𝑘
𝑓

𝑦𝑖ℎ𝑘𝑡
𝑓

                   ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑖 ∈ 𝒫: 𝒪𝑖 ∩ {𝑘} ≠ ∅. ∀𝑓 ∈ ℱ. ∀ℎ ∈ ℋ𝑖  

(14) 𝐶𝑂𝑘𝑡 ≤ 𝑐𝑡                            ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦 

(15) 𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

+ 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

≤ 𝐶𝑂𝑘𝑡       ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑖 ∈ 𝒫: 𝒪𝑖 ∩ {𝑘} ≠ ∅. ∀𝑓 ∈ ℱ 

(16) 
𝑝ℎℎ′

𝑖 ( ∑ 𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

+ 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

𝑘∈𝒦

) ≤ ∑ 𝑆𝑇
𝑖ℎ′𝑘𝑡

𝑓

𝑘∈𝒦

      ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀ℎ. ℎ′ ∈ ℋ𝑖 . ∀𝑓 ∈ ℱ  

(17) 𝜓(1 − 𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

) + 𝑆𝑇
𝑖′ℎ′𝑘𝑡

𝑓
− 𝑆𝑇𝑖ℎ𝑘𝑡

𝑔
≥ 𝑃𝑇𝑖ℎ𝑘𝑡

𝑔
   ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑓. 𝑔 ∈ ℱ. ∀𝑖. 𝑖′ ∈ 𝒫: 𝒪𝑖 ∩ 𝒪𝑖′ ∩ {𝑘}

≠ ∅. ((𝑖 ≥ 𝑖′) ∧ (𝑓 ≠ 𝑔)) ∨ ((𝑖 > 𝑖′) ∧ (𝑓 = 𝑔)). ∀ℎ. ℎ′ ∈ ⋃ ℋ𝑖

𝒫

𝑖=1

 

(18) 𝜓𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

+ 𝑆𝑇𝑖ℎ𝑘𝑡
𝑔

− 𝑆𝑇
𝑖′ℎ′𝑘𝑡

𝑓
≥ 𝑃𝑇

𝑖′ℎ′𝑘𝑡

𝑓
        ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑓. 𝑔 ∈ ℱ. ∀𝑖. 𝑖′ ∈ 𝒫: 𝒪𝑖 ∩ 𝒪𝑖′ ∩ {𝑘} ≠ ∅. ((𝑖

≥ 𝑖′) ∧ (𝑓 ≠ 𝑔)) ∨ ((𝑖 > 𝑖′) ∧ (𝑓 = 𝑔)) . ∀ℎ. ℎ′ ∈ ⋃ ℋ𝑖

𝒫

𝑖=1

 

 

 

The presented model defines the objective function in 

equation (1) which includes production and energy costs. 

The production cost is broken down into production, 

sequence-dependent setup, inventory, and remanufacturing 

costs as shown in constraint (2). In addition, constraint (3) 

represents the energy cost. The calculation of idle times of 

machines is expressed in constraint (4), that is defined as the 

difference between available time and completion time at 

each time period. The constraints (5) and (6) establish the 

formulas governing the changes in returned and available-

to-deliver inventories. Note that back-ordered inventory is 

not allowed for returned products. However, equation (6) 

handles back-order in available-to-deliver inventory. 

Finally, the constraint (7) states that𝐵𝑖𝑡

𝑓
= 1if𝑋𝑖𝑡

𝑓
> 0. 

Constraint (8) ensures that required production tasks 

only can occur within the same time period (𝐵𝑖𝑡

𝑓
= 1). The 

constraint (9) stipulates that each task can only be assigned 

to one machine within a given time period. The constraints 

(10) and (11) guarantee that both the start time and duration 

of the task 𝑦
𝑖ℎ𝑘𝑡

𝑓
 do not exceed the maximum time allocated 

for the underlying period. Constraint (12) calculates a 

compressed processing time on a specific machine k, 

whereas constraint (13)addresses the maximum allowable 

compression time (which is greater than 0 only if some tasks 

are assigned to that machine). The constraints(14) and (15) 

mandates all machines to complete their tasks within the 

time provided. The constraint(16) ensures that the 

precedence relation between to subsequent tasks is satisfied. 

Lastly, constraints(17) and (18) are used to assign the 

sequence variables 𝛿
𝑖ℎ𝑖′ℎ′

𝑘𝑡𝑓𝑔
.A big bucket model is used to 

handle sequence decisions with variables 𝛿
𝑖ℎ𝑖′ℎ′

𝑘𝑡𝑓𝑔
. According 

to the constraints (17) and (18), the variables 𝛿
𝑖ℎ𝑖′ℎ′

𝑘𝑡𝑓𝑔
 can take 

value of 1 if and only if the tasks 𝑖′ℎ′
 and 𝑖ℎ are immediately 

implemented in same mode and on same machine. 

3.5. Metaheuristic Approaches 

3.5.1. Genetic Algorithm 

The GA, conceptualized by Holland (1992), is a search 

strategy based on evolutionary concepts to find the best 

solutions to problems. It works with a group of potential 

solutions, symbolized as chromosomes, and assesses each 



 © 2025 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 19, Number 3  (ISSN 1995-6665) 675 

one using a fitness function to determine its effectiveness 

(Katoch et al., 2021). 
The GA first generates 𝑁 individuals, each represented 

by a chromosome. The chromosomes are composed of 

genes, which are usually represented as binary strings, but 

can also be represented in other ways depending on the 

problem being optimized. The algorithm then evolves the 

population over several generations, each consisting of the 

following steps: 
Selection: selecting a subset of individuals to be used as 

parents based on the fitness of each individual.  
Crossover: The selected parents are recombined to 

produce offspring for the next generation. This is done by 

randomly selecting crossover points along the length of the 

chromosomes and exchanging the corresponding segments 

between the parents. This process creates new individuals 

that inherit traits from both parents. 
Mutation: A small random mutation is introduced to the 

offspring chromosomes. This is done by randomly flipping 

some of the bits in the chromosome with a low probability. 

Evaluation: This is done using the fitness function. 

Replacement: Adding new individuals to the population, 

and least fit individuals are deleted from the generation. 

The Genetic Algorithm iterates through cycles of 

selection, solution change, and random alterations, stopping 

only when it reaches a set number of generations or satisfies 

specific conditions like reaching a cap on iterations or an 

acceptable level of precision. The decision about which 

solutions are promising is informed by a fitness function, 

which evaluates their efficacy. The essence of this 

algorithm is outlined in a structured, step-wise pseudo-code 

format: 

Initialize the population of chromosomes 

Set maximum_generations 

for generation in range(maximum_generations): 

 Calculate fitness for each chromosome     

 Select parents for reproduction (e.g., using a roulette 

wheel or tournament selection)     

 Create new offspring through crossover and mutation     

 Evaluate the fitness of offspring     

 Select chromosomes for the next generation (e.g., 

using elitism or replacement)     

Return the best chromosome from the final generation 

Pseudo-code1. The pseudo-code of GA 

3.5.2. Whale Optimization Algorithm (WOA) 
The WOA is a nature-inspired metaheuristic, designed 

to mimic the communal hunting patterns of humpback 

whales when they feed. The algorithm was introduced by 

Mirjalili (2016).  
The WOA algorithm starts by initializing potential 

solutions. The algorithm evaluates each solution's fitness 

function, which measures how well a solution satisfies the 

optimization problem's objective. The fitness values are 

then used to determine the best solution (Gbest), and the 

best solution for each individual (Pbest). 

The phases of the WOA (exploration and exploitation) 

are based on the distance between the current solution and 

the Gbest. When the distance is small, the algorithm focuses 

on exploitation by updating the solutions towards the Gbest. 

When the distance is large, the algorithm focuses on 

exploration by randomly generating new solutions. The 

exploration and exploitation phases are controlled by a 

parameter called 𝑎.The updated equations for the WOA 

algorithm are as follows: 

1. Update the position of the search agents: 

𝐷 =  𝐶 ∗  𝐺𝑏𝑒𝑠𝑡𝑝𝑜𝑠 −  𝑤ℎ𝑎𝑙𝑒𝑝𝑜𝑠 

𝑛𝑒𝑤_𝑤ℎ𝑎𝑙𝑒𝑝𝑜𝑠𝑒 =  𝐺𝑏𝑒𝑠𝑡𝑝𝑜𝑠 −  𝐴 ∗  𝐷 

where whalepos is the current position of the search 

agent, Gbestpos is the global best position, C is a random 

vector between -1 and 1, and A is the search agent's search 

range. 

2. Boundary checking: 

If any decision variable of a new solution goes beyond 

the search space's boundaries, it is reset to the boundary 

value. 

3. Update the search range: 

A = 2 - iter * ((2) / max_iter) 

Where iter and max_iter arethe current iteration and is 

maximum number of iterations, respectively. 

4. Update the Gbest and Pbest: 

If a recently generated solution surpassesGbest, the 

Gbest is substituted with that solution. Likewise, if it 

improves upon Pbest, the Pbest is replaced with it. The 

framework of the WOA is captured in the following pseudo-

code format: 

Initialize whale population 
Initialize best_solution 

Set maximum_iterations 
for iteration in range(maximum_iterations): 

for each whale in the population: 

Calculate fitness for the current whale         
if fitness is better than fitness of best_solution: 

Update best_solution         

        a = 2 - 2 * iteration / maximum_iterations  # Linearly 
             decreasing a 

        A = 2 * a * random() - a 

        C = 2 * random()         
for each dimension in the solution: 

            D = abs(C * best_solution[dimension] - whale[dimension]) 

            new_solution[dimension] = best_solution[dimension] - A *  
            D             

Apply bounds to new_solution         

if random() < 0.5: 
            Update whale using new_solution 

else: 

            Randomly update the whale's position         
Update a     

Return best_solution 

Pseudo-code 2. The pseudo-code of WOA 

3.5.3. Particle Swarm Optimization (PSO) 
The PSO algorithm(Eberhart and Kennedy, 1995), is an 

optimization method informed by the collective movement 

patterns of birds or fish. It utilizes a group of ‘particles’, 

each signifying a potential solution, which navigates the 

solution population, guided by both their knowledge and the 

collective insights of the entire group, in pursuit of the 

optimal solution. PSO is widely used for different 

problems;Rahimi and Fazlollahtabar  successfully 

implemented hybrid particle swarm and genetic algorithms 

for closed-loop green supply chains(Rahimi et al., 2018). 
The PSO algorithm initializes𝑁 particles in a random 

way. The particle 𝑖is displayed by a vector 𝑥𝑖 =
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 (𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑑) and a velocity vector  𝑣𝑖 =

 (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑), (𝑑: dimension of the solution vector). 

The algorithm aims to find the optimal values of 𝑥𝑖with the 

objective function 𝑓(𝑥). 

The PSO uses the following equations: 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1)𝑥𝑖𝑗(𝑡 + 1)

= 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) 

𝑣𝑖𝑗(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖𝑗(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(0,1)

∗ (𝑝
𝑖𝑗
(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2

∗ 𝑟𝑎𝑛𝑑(0,1)

∗ (𝑝
𝑔𝑗

(𝑡) − 𝑥𝑖𝑗(𝑡)) ∗ 𝑣𝑖𝑗(𝑡 + 1)

= 𝑤 ∗ 𝑣𝑖𝑗(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(0,1)

∗ (𝑝
𝑖𝑗
(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2

∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑝
𝑔𝑗

(𝑡) − 𝑥𝑖𝑗(𝑡)) 

The notation 𝑥𝑖𝑗(𝑡) refers to the specific element of the 

𝑖𝑡ℎ
 particle’s position in the 𝑗𝑡ℎ

 dimension during the 𝑡𝑡ℎ
 

iteration. Similarly, 𝑣𝑖𝑗(𝑡) specifies the velocity for the 

same particle and dimension at that iteration. The term 𝑤 

denotes the inertia weight, influencing the momentum of 

particles. Cognitive and social behaviors are parameterized 

by 𝑐1 and 𝑐2, respectively, guiding particles towards their 

personal best (𝑝
𝑖𝑗
(𝑡)) and the swarm’s global best (𝑝

𝑔𝑗
(𝑡)) 

positions. Random factors in the movement are introduced 

by (0,1), a uniform random number. 

Position updates are calculated by adding the velocity 

component, which in turn is updated based on past velocity, 

and individual and collective experiences, moderated by 

cognitive and social parameters. The inertia weight 𝑤 plays 

a pivotal role in dictating strategic behavior: high values 

lead to extensive exploration across the potential solution 

landscape, while low values prompt a quicker, more focused 

convergence on the best-known solution. 

The PSO algorithm terminates when a stopping criterion 

is met, such as a maximum number of iterations or a 

minimum error threshold.The pseudo-code of PSO is as 

follows: 
Initialize particle positions and velocities 

Initialize best_particle_position and global_best_position 

Set maximum_iterations 
for iteration in range(maximum_iterations): 

for each particle: 

Calculate fitness for the current particle         
If fitness is better than fitness of best_particle_position: 

            Update best_particle_position      

If fitness is better than the fitness of global_best_position: 
            Update global_best_position         

Update particle velocity          

For each dimension in velocity: 

            Apply constraints to velocity components         

Update particle position         

Return global_best_position 

Pseudo-code 3. The pseudo-code of PSO 

4. Experimental Results 

4.1. Numerical results 

In this section, a comprehensive numerical example is 

presented to illustrate the problem framework and evaluate 

the performance of the proposed optimization model across 

various problem sizes. The model was implemented in 

GAMS using the BARON solver, with the objective of 

minimizing total operational costs, including both energy 

consumption and production expenses. 
The illustrative case utilized sample input data provided 

in Tables 1 through 6. Upon processing these inputs, the 

model yielded an optimal solution, the results of which are 

detailed in Tables 7 to 9 and Figures 3 to 6. The obtained 

minimum total cost was 1424. 

To evaluate the effectiveness of the proposed model, its 

results were compared with those of conventional batch-

sizing approaches that consider only production costs. 

When energy costs were excluded from the objective 

function, the model achieved a lower objective value of 406, 

as illustrated by the Gantt charts in Figures 5 and 6. 

A detailed comparison of both models is provided in 

Table 9. Notably, incorporating energy costs resulted in an 

overall cost reduction of 914 units and a substantial decrease 

in machine idle time, from 938 to 92 time units. These 

findings demonstrate that the integrated cost model is more 

efficient and economically advantageous than the 

traditional approach. 

In conclusion, this example underscores the 

effectiveness of the proposed model in minimizing total 

costs through the inclusion of energy consumption, a critical 

factor often neglected in conventional production planning 

models. By explicitly incorporating energy-related 

expenses into the objective function, the model facilitates 

significant cost savings and enhances overall production 

efficiency. 

Table 1. Illustrative example  

I T M 𝐻1 𝐻2 

2 2 3 4 5 

Table 2. Allowable machines for different activities 

i Activity Machine 

k=1 k=2 k=3 

i=1 h=1 1 0 1 

i=1 h=2 1 1 0 

i=1 h=3 1 0 1 

i=1 h=4 1 1 1 

i=2 h=1 0 1 1 

i=2 h=2 0 1 0 

i=2 h=3 1 0 1 

i=2 h=4 1 1 0 

i=2 h=5 0 0 1 

Table 3. Returned products  

time interval 

 

Product 

t=1 t=2 

i=1 10 14 

i=2 8 10 

Table 4. Demand values 

time interval 

Product 

t=1 t=2 

i=1 15 16 

i=2 12 18 
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Table 5. Per-product cost of production 

i t Production method 

M R 

i=1 t=1 4 2 

i=1 t=2 6 4 

i=2 t=1 5 3 

i=2 t=2 8 5 

Table 6. Capacity of time intervals 

Interval t=1 t=2 

Capacity 250 300 

Precedence networks for both the product classes are 

presented in the figure 2: 

 
Figure 2. Precedence networks for both the product classes 

4.1.1. Problem with energy efficiency considerations 
Table 7 details the levels of production over various time 

intervals with an emphasis on energy efficiency. An 

analysis of the information within this table reveals that 

during the second time interval, manufacturing activity was 

absent for products belonging to class 2. This observation 

might be indicative of strategic scheduling that factors in 

energy efficiency or other operational constraints impacting 

the production timeline for these specific items. 

Table 7. Production with Energy Efficiency Consideration 

i t F 
M R 

i =1 t=1 5 10 

i =1 t=2 2 14 

i =2 t=1 22 8 

The Gantt charts presented in Figures 3 and 4 provide a 

comprehensive overview of the schedule of activities for 

each time interval. The Gantt charts are presented with great 

attention to detail, allowing for a clear understanding of the 

manufacturing and remanufacturing operations conducted 

in the system. 
To facilitate the visual interpretation of the charts, the 

manufacturing operations are displayed as grey bars, while 

the remanufacturing operations are represented as green 

bars. By incorporating this color-coded system, the charts 

become highly readable and aid in the analysis of the 

system's overall performance. 

Moreover, to identify activities, the numbers displayed 

on each bar are presented as ordered tuples (i.h.k.t.f), where 

each component of the tuple corresponds to a specific 

dimension of the activity. This approach ensures that every 

activity is uniquely identifiable and allows for a more 

detailed examination of the system's operations. 

4.1.2. Problem with no energy efficiency consideration 
Table 8 presents production volume across each time 

slot without the integration of energy efficiency 

considerations. The corresponding production timeline is 

visually mapped out through Gantt charts in Figures 5 and 

6, which serve to chronologically demonstrate the 

scheduled operations within designated periods. 

For clearer comprehension and distinction in the Gantt 

charts, a color-coding system is employed: manufacturing 

processes are marked with grey bars, and remanufacturing 

ones with green bars. This color distinction aids readers in 

quickly discerning the type of operation at a glance without 

confusion. 

Moreover, to further facilitate the identification of each 

specific activity, a numerical coding system is incorporated 

into the charts. Each activity is labeled with a tuple—

denoted as (i,h,k,t,f)—positioned directly on the activity 

within the charts. This tuple not only uniquely identifies the 

activity but also simplifies the task of tracking each 

operation through its sequential order and corresponding 

features. 

Table 8. Production volume with no energy efficiency 

consideration 

 i t 
F 

M R 

i=1 t=1 5 10 

i=1 t=2 2 14 

i=2 t=1 4 8 

i=2 t=2 8 10 

 

 

 
Figure 3. Scheduling with energy efficiency (t=1) 
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Figure 4. Scheduling with energy efficiency (t=2) 

 

Figure 5. Scheduling activities in t=1 

 
Figure 6. Scheduling of activities in t=2 

Table 9. Comparison based on energy efficiency 

 
CPHS+CE CE CPHS Time of 

idleness 

With energy 

efficiency 
1424 1018 406 92 

Without 
energy 

efficiency 

2338 2029 309 938 

The table 10 provides the results of different 

optimization problems related to the scheduling of 

manufacturing and remanufacturing operations. The 

problems are distinguished by the values of the input 

parameters, such as the number of machines (K), time 

horizon (T), and number of activities of product types 1 and 
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2 (H1 and H2). The objective of each problem is to 

minimize the total cost. 
The table shows the solution time, relative gap, and 

objective value obtained by solving each problem using the 

GAMS software. The relative gap represents the percentage 

difference between the obtained objective value and the 

best-known value for each problem. 

By analyzing the table, we can observe that increasing 

the values of K, T, and H generally leads to an increase in 

the solution time and relative gap. This can be explained by 

the fact that the problem complexity increases with these 

parameters, which makes it harder to find the optimal 

solution. 

In particular, problems 15, 16, and 17 having 4 

machines, 4timeintervals, and varying numbers of activities 

have high relative gaps of 0.675, 0.57, and 0.58, 

respectively, indicating that the obtained solutions are far 

from the optimal ones. On the other hand, problems 1, 3, 

and 5 with lower values of K, T, and H have lower relative 

gaps of around 0.05, indicating that the solutions are 

relatively closer to the optimal ones. 

Overall, the table provides insights into the trade-off 

between the problem complexity and the quality of the 

obtained solution, as well as the impact of the input 

parameters on the optimization results. Hence, this 

motivated the authors to develop meta-heuristic algorithms 

to cope with this problem. 

Table 10. The results of solving problems in different sizes 

Problem |K| |T| 

|H| Solution 

Time 

(GAMS) 

Relative 

Gap 

(GAMS) 

Objective 

Value 

(GAMS) 
H1 H2 

1 2 1 3 4 5 0.0476 492 

2 2 2 3 4 13 0.05 1173 

3 2 1 4 5 16 0.0476 579 

4 2 2 4 4 20 0.046 1256 

5 2 3 3 3 20 0.047 1454 

6 2 2 4 3 24 0.049 1138 

7 3 2 4 3 70 0.048 1105 

8 3 1 4 5 100 0.1173 581 

9 3 2 3 4 100 0.047 1133 

10 3 2 4 5 100 0.277 1424 

11 3 2 5 5 100 0.49 2051 

12 2 3 4 4 100 0.37 2654 

13 2 4 4 3 200 0.39 3133 

14 3 2 4 4 200 0.35 1492 

15 4 2 4 4 200 0.675 1461 

16 4 3 4 4 200 0.57 1954 

17 4 4 4 4 300 0.58 2382 

18 4 2 5 5 300 0.15 2300 

19 4 4 4 3 300 0.61 2616 

20 3 5 3 4 300 0.5 3334 

21 5 4 3 4 300 0.61 2893 

22 4 3 3 3 400 0.27 1429 

23 3 4 3 4 400 0.5 2890 

4.2. Metaheuristic Solutions 

In this research, we evaluated the effectiveness of three 

well-known metaheuristic optimization algorithms—

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), and Whale Optimization Algorithm (WOA)—in 

solving a specific and complex optimization problem. These 

algorithms were selected because they have been widely 

used in many optimization problems across different fields 

and have demonstrated strong and consistent performance. 

GA, PSO, and WOA were selected due to their proven 

effectiveness, diverse search strategies, and ease of 

hybridization with problem-specific heuristics. Although 

other algorithms could be used, the chosen ones offer a good 

balance of performance and implementation simplicity. 

Convergence was supported by multiple runs, heuristic 

enhancement, and comparison with deterministic solver 

results, ensuring robust and reliable solutions despite the 

stochastic nature of the methods. 

 Our primary aim was to assess and compare how well 

these algorithms perform in terms of both the quality of the 

solutions they generate and the amount of time they require 

to find these solutions. 

To carry out this evaluation, we designed a set of test 

problems, each representing a realistic and challenging 

scenario. The data used for these tests are summarized in 

Table 11. This table provides detailed information for each 

test case, including the number of machines used, the time 

horizon considered for planning, and the number of tasks or 

activities that need to be scheduled for each product type. 

Additionally, the table reports the time each algorithm 

needed to find a solution, the relative gap between the 

algorithm’s solution and the best-known solution 

(indicating how close the result is to the ideal), and the 

objective function values computed using GAMS software. 

This section of the study includes a step-by-step 

description of how the experiments were structured. We 

explain how each algorithm was implemented, how the data 

was processed, and how the performance was measured. 

Following that, we present and discuss the results obtained 

from the experiments, allowing for a thorough comparison 

among the algorithms. 

Importantly, each of the three algorithms was enhanced 

through a hybrid strategy. Rather than using the 

metaheuristic method alone, we combined it with a heuristic 

procedure. This hybrid approach was used both to create the 

initial set of possible solutions and to guide the generation 

of new solutions during the optimization process. This 

combination aims to improve both convergence speed and 

solution quality by leveraging the strengths of both heuristic 

and metaheuristic techniques. 

The overall procedure followed by all three algorithms 

is illustrated in Figure 7. This figure provides a visual 

overview of the common structure used in the hybrid 

models, helping to clarify how the algorithms progress from 

initialization to solution evaluation and improvement. 

1. Start by calculating the levels of on-hand inventory, 

incoming returned inventory, and any shortages. Use the 

predetermined production amounts (denoted as x) and 

apply Equations 5 and 6 to perform these calculations. 

2. Assign the activities for manufactured products to 

different machines by making random selections for 

each time period. 

3. Determine the duration each activity will take 

(represented as Pt) by consulting Equation 12. 

4. Decide randomly on the order in which the activities will 

occur, taking into account both the activities and their 

calculated timings from the previous step. 

5. Evaluate all of the solutions that have been generated. 

Arrange them in order from least to most based on the 

criteria specified by the objective function in Equation 

1. 

6. Examine whether the end conditions of the algorithm 

have been met, which entails either running out of the 
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allotted time or arriving at a solution more optimal than 

what was produced by the exact methods utilized in 

GAMS. If neither of these conditions is satisfied, the 

process moves onto step 7; else, the algorithm 

terminates. 

7. Adapt the solution generation process for each specific 

algorithm. For the Genetic Algorithm, continue to 

generate the set number of new solutions by pairing two 

existing production sets (labeled 𝑥1𝑎𝑛𝑑 𝑥2
) at random. 

This involves defining random parameters by 

determining values within chosen ranges, deduced 

through experimentation. Subsequently, create a matrix 

r whose size matches that of 𝑥1𝑎𝑛𝑑 𝑥2
 and modify the 

existing solutions with the following (The random 

parameters 𝑎 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝛼, 𝛽) and 𝑏 =
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝜃, 𝛾) are first generated. The values α=-3, 

θ=1, β=1, and γ=2 are selected by trial and error in the 

present algorithm. Where ρ = round(𝑢𝑛𝑖𝑓𝑜𝑟𝑚(a, a +
b)).): 

 𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 1: 𝑥𝑛𝑒𝑤
1 = max(0, 𝑥1 +  𝑟) 

 𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 2: 𝑥𝑛𝑒𝑤
2 = max(0, 𝑥1 −  𝑟) 

For PSO and WOA, modify solutions according to their 

standard protocols described in section 3.5. 

8. Merge the new batch of solutions with the existing pool 

of solutions and return to step 2 for a new iteration. 

start

Initialization of X values

Inventory Level Calculation

Random Assignment to 
Machines

Activity Duration Calculation

Sequencing and Scheduling

Fitness Calculation and Elite 
Selection

Population Composition

Generate New X Values 
Based on Underlying 

Algorithm

Termination 
Condition Realized?

No

Finish

Yes

 

Figure 7. Flowchart of the proposed algorithms 
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In sum, this process is a structured exploration for 

solutions, fusing randomized initialization with informed 

updates based on algorithm-specific rules, and repeated 

cycles of evaluation and improvement until the algorithms 

either meet a predetermined time cap or yield an optimal 

solution. 

4.3. Performance of metaheuristics 

Table 11 presents the results of solving anSDFJP with 

energy efficiency consideration using three different meta-

heuristics including GA, PSO, and WOA, and also GAMS 

software. The problem instances are labeled from 1 to 23, 

and for each instance, the table shows the number of 

machines (K), the time horizon (T), the number of 

operations per job (H), and the GAMS solution time. 

For each problem instance, the table compares the 

solution quality and time for each algorithm against the 

GAMS solution. The relative gap column shows the 

percentage difference between the GAMS objective value 

and the optimal solution's objective value. The lower the 

relative gap, the closer the GAMS solution is to the optimal 

solution. In problems 1-7 and also for problem 9, the 

BARON solver in GAMS can find solutions with a relative 

gap of less than 5%, indicating that GAMS can find high-

quality solutions close to the optimal solution. But for other 

problems, the problems cannot be solved with a relative gap 

of less than 5%. 

The table also shows the objective value and time for 

each algorithm's solution. The termination condition for all 

the algorithms is set to reach the time that GAMS consumed 

to solve problems or achieve a solution better than that of 

GAMS. Note that the metaheuristic algorithms can achieve 

solutions better than GAMS because the relative gaps are 

not zero and thus GAMS solutions are not necessarily global 

optimum.  

In terms of time, we can see that GA is generally faster 

than GAMS for most problems; i.e. it can achieve a solution 

as good as GAMS in less time. However, there are some 

exceptions where GAMS outperforms GA in terms of 

objective value, such as problems 4, 5, 16, 18, and 20. In 

addition, although in problems 1, 3, and 8 WOA has 

achieved the best solutions among the other three methods, 

however, it cannot obtain quality solutions compared to 

GAMS and GA in all other problems. Additionally, PSO 

has even weaker performance than WOA in most of the 

problems.  

A comparison of all solution methods is presented 

visually in terms of objective value and solution time in 

Figures 8 and 9 and reveals that GA is (in most cases) the 

best solution approach. However, the choice between 

GAMS and GA depends on the specific problem and the 

trade-off between time and objective value.  

Table 11. Performance of the proposed algorithms compared with GAMS 
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H1 H2 

1 2 1 3 4 5 0.0476 492 492 2 469.2 3 466.2 4 

2 2 2 3 4 13 0.05 1173 1173 5 1384.4 8 1993.4 13 

3 2 1 4 5 16 0.0476 579 579 9 573.6 12 739.6 16 

4 2 2 4 4 20 0.046 1256 1292 20 1835.8 20 2976.8 20 

5 2 3 3 3 20 0.047 1454 1728 20 2300 20 5189 20 

6 2 2 4 3 24 0.049 1138 1138 11 1385.4 24 2761.4 24 

7 3 2 4 3 70 0.048 1105 1105 7 1839.2 70 2666.2 70 

8 3 1 4 5 100 0.1173 581 581 12 561.5 73 743.5 100 

9 3 2 3 4 100 0.047 1133 1133 11 1217.2 100 2229.2 100 

10 3 2 4 5 100 0.277 1424 1424 5 2780 100 2621 100 

11 3 2 5 5 100 0.49 2051 2051 26 33014.4 100 19626.4 100 

12 2 3 4 4 100 0.37 2654 2654 10 5251.2 100 6773.2 100 

13 2 4 4 3 200 0.39 3133 3133 14 5777.8 200 9254.8 200 

14 3 2 4 4 200 0.35 1492 1492 5 1783.6 200 2872.6 200 

15 4 2 4 4 200 0.675 1461 1461 4 2189.4 200 2536.4 200 

16 4 3 4 4 200 0.57 1954 2142 200 10314.6 200 5160.6 200 

17 4 4 4 4 300 0.58 2382 2382 253 12577.8 300 9904.8 300 

18 4 2 5 5 300 0.15 2300 2632 300 8663.2 300 28736.2 300 

19 4 4 4 3 300 0.61 2616 2616 99 32187 300 52862 300 

20 3 5 3 4 300 0.5 3334 4981 300 44849.6 300 58487.5 300 

21 5 4 3 4 300 0.61 2893 2893 300 27869.9 300 33231.8 300 

22 4 3 3 3 400 0.27 1429 1429 128 1673.5 400 3911.4 400 

23 3 4 3 4 400 0.5 2890 2890 83 24085.4 400 33174.4 400 
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Figure 8 provides a comparative analysis of the optimal 

values yielded by metaheuristic approaches and GAMS 

software in solving optimization problems. The visual data 

indicates that, particularly with larger problem sets, the 

Genetic Algorithm frequently attains superior solutions in 

comparison to GAMS, and does so within a shorter time 

frame (bearing in mind that due to time constraints, the 

GAMS solutions may not be the best possible ones). 

Moreover, it is typically seen that the least favorable 

outcomes are associated with the Particle Swarm 

Optimization algorithm. 
Moreover, Figure 9 compares the solution times of the 

metaheuristic algorithms with those obtained using GAMS 

software. This generally reveals that GA outperforms the 

others in terms of solution speed. Furthermore, the WOA 

and PSO have similar solution times with GAMS as they 

often fail to find solutions better or equivalent to those 

produced by GAMS in terms of the objective values. 

Table 12 displays results from an Analysis of Variance 

(ANOVA) for objective values. The null hypothesis of this 

test is that all the solution methods (including GAMS and 

metaheuristic algorithms) have the same average of 

objective values. Although all the statistics of the ANOVA 

test are presented, we can make inferences just by using the 

P-value, which is the minimum significance level under 

which we can reject the null hypothesis. According to the P-

value of 0.001 for this test, we can say that, under a 0.1 

significance level, we can reject the null hypothesis of the 

ANOVA test (and equivalently, we can say that the solution 

methods have different performances concerning objective 

values). This can be seen graphically in Figure 10 which 

shows that GAMS and GA have lower total costs than WOA 

and PSO algorithms. 

The result of the ANOVA test of the solution times is 

also presented in Table 13. The P-value of 0.058 for this test 

shows that, under a 0.1 significance level, we can again 

reject the null hypothesis of the ANOVA test (and 

equivalently, we can conclude that the solution methods 

have different performances concerningsolution times). 

This can be seen graphically in Figure 11 which shows that 

GA hasa lower average solution time than GAMS, WOA, 

and PSO algorithms. 

Table 12. Analysis of variance for objective values 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 3 2.09E+09 6.97E+08 6.06 0.001 

Error 88 1.01E+10 1.15E+08   

Total 91 1.22E+10    

Table 13. Analysis of variance for solution times 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 3 121631 40544 2.58 0.058 

Error 88 1380905 15692   

Total 91 1502536    

 

 

 

Figure 8. Comparison of the objective function obtained from the genetic algorithm and GAMS software 

 

Figure 9. Percentage of reduction of CPU time using genetic algorithm 
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Figure 10. Average objective values 

 

Figure 11. Average solution times 

5. Conclusion 

Recent research has shown a growing interest in 

SDFJSP. In this investigation, we constructed a 

mathematical framework aimed at both refining scheduling 

and lot-sizing challenges with a focus on energy efficiency. 

The model was framed as a MINLP and tackled through a 

‘big bucket’ strategy, employing the GAMS software for 

solution finding. 

To assess the effectiveness of this newly proposed 

model, we analyzed a case study excluding energy costs 

from the objective function. The findings made it clear that 

incorporating energy efficiency is impactful, resulting in 

considerable reductions in both the total cost and machine 

downtime. For dealing with larger-scale problems, we 

presented three evolutionary algorithm approaches: GA, 

WOA, and PSO. Notably, the genetic algorithms put to use 

differed from standard genetic approaches, utilizing 

alternative methods for generating new solutions in place of 

the usual cross-over and mutation techniques. 

The results show that GAMS is not able to find high-

quality solutions for some large problems. Among the 

metaheuristic algorithms, GAwas generally faster than 

GAMS and could achieve better solutions. However, there 

were some exceptions where GAMS outperformed the 

metaheuristic algorithms in terms of objective value. GA 

was found to be the best solution approach in most cases, 

but the choice between GAMS and GA depended on the 

specific problem and the trade-off between time and 

objective value.  

This paper concentrated on tackling the complications 

arising from sequence dependence and energy efficiency 

within the SDFJSP. The results suggest that energy 

efficiency modeling can result in notable cost savings in this 

context. Specifically, accounting for energy costs in the 

objective function results in decreased energy costs but 

increased production costs, ultimately resulting in a 

reduction in total operational costs. These results highlight 

the importance of explicitly including sequence-dependent 

setup costs and energy costs SDFJSP.  

The managerial insights derived from this research 

highlight the importance of incorporating energy costs into 

production planning decisions to achieve more cost-

efficient and sustainable operations. The results show that 

traditional models focusing solely on production costs can 

significantly underestimate total expenses and lead to 

inefficient resource utilization, such as increased machine 

idle times. By adopting an integrated optimization approach 

that considers both manufacturing and energy consumption, 

managers can reduce overall costs, enhance machine 

utilization, and support environmentally conscious 

decision-making. These findings suggest that investment in 

energy-aware scheduling tools can provide long-term 

operational and financial benefits. 

Finally, potential future research directions may include: 

1. Extending the research to incorporate uncertainty in 

demand or production times, and evaluating the 

performance of metaheuristic algorithms under these 

conditions. 

2. Investigating the applicability of the proposed solution 

approaches to other manufacturing systems, such as flow 

shops. 

3. Comparisonof the different metaheuristic algorithms for 

solving the same problem instances and identifying 

which algorithms perform best under different 

conditions. 

4. Evaluating the real-world effectiveness of the presented 

approach in manufacturing systems, and identifying any 

barriers to implementation in practice. 
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