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Abstract 

Statistical Process Control (SPC) is a collection of useful and effective methods for problem-solving that aim to stabilize 

processes, increase their capacity, and ensure quality assurance, which is a key factor in how customers choose products and 

services. This research focuses on the application of SPC techniques in the maintenance of oil-free air compressor in Alyoum 

for Food Industry manufacturing plant. The aim of this study is to develop control charts for pressure, temperature, and time 

between failures (TBF) of the compressor, using both Shewhart and cumulative sum (CUSUM) methods and to investigate 

whether CUSUM control charts can be an effective tool for monitoring the pressure and temperature levels compared with 

Shewhart control charts, and predicting potential equipment failures before they occur by monitoring a particular 

performance indicator. The study uses data collected over 100 days to construct the control charts and evaluate their 

effectiveness in detecting changes in the process. The results show that the CUSUM method is more effective in detecting 

small shifts in the process mean compared to the Shewhart method. The average run length (ARL) is used as a performance 

measure for the CUSUM method, and it is found that increasing the value of the decision interval (h) increases the ARL. The 

study concludes that the CUSUM method is more suitable for monitoring the compressor process due to its ability to detect 

small shifts in the process mean. The study recommends further research on the application of modified CUSUM charts and 

other SPC techniques for monitoring the compressor process. 
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1. Introduction 

Quality is a key driver of customer satisfaction in 

today's competitive business environment. Perfect goods 

and services with few variations are needed to reach the 

target level of quality. For the efficient continuous 

monitoring of quality characteristics, statistical process 

control quality control approaches like control charts, have 

assumed a greater significance. Statistical Process Control 

(SPC) serves as a set of effective and practical techniques 

to address issues by achieving stability and improving the 

process capacity via reducing variability to accomplish 

quality assurance, a critical component in the customer 

decision-making process about products and services [1]. 

Statistical control charts are commonly employed to get 

stability in SPC. It also ensures products and process 

quality control [2]. The control chart, which demonstrates 

when a process varies and calls for corrective action 

depending on a consecutive sample, is the most well-

known and significant statistical tool for SPC. A control 

chart often depicts quality traits examined in numerous 

samples [3]. By using a control chart, it is possible to 

systematically reduce the variability in a quality attribute 

of a good or service, which is represented by the 

monitoring variable. To bring the process under statistical 

control, it is used to identify and eliminate variances from 

special reasons. According to their design structure, 

control charts can be divided into two groups: memoryless 

and with memory, or time weighted. Once their control 

structure, which consists of the statistical plot and other 

decision rules, is dependent just on the latest observation, 

standard Shewhart charts are the memoryless variety. The 

most widely used memory-type control charts, such 

cumulative sum (CUSUM) and exponential weighted 

moving average (EWMA), are made so that its statistical 

plot uses both past and present observations, making them 

more sensitive to tiny and moderate changes in the process 

parameters of interest than Shewhart control charts. 

A crucial instrument for preventing products and 

processes from deviating from the required level is SPC. A 

production system’s effectiveness depends heavily on 

uninterrupted equipment and process operation, as reduced 

equipment performance can negatively impact the final 

product’s quality. To improve quality level and decrease 

breakdowns and process variances, a thorough 

maintenance policy is important. This context makes it 

clear that quality and maintenance are tied to one another. 

The researchers have created integrated economic models 

employing the SPC and maintenance concepts to lower the 

overall cost of quality and maintenance because of the 

relationship between quality and maintenance. The two 
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most important instruments for managing production 

processes are maintenance management and statistical 

process control. There has been substantial research on the 

traditional methods of establishing the best maintenance 

and quality control plans [4]. 

Much research and the experience of practitioners agree 

that machines can deteriorate to a less desirable working 

state before completely breaking down. This machine's 

subpar functionality could result in greater rejection and 

operating costs, higher failure rates, and ultimately higher 

repair/replacement costs. Industry practices suggest that 

the quality control and maintenance strategies are 

optimized independently of one another, despite the 

apparent inter - dependence between quality control and 

maintenance strategy. However, in recent years the 

academic community has demonstrated a greater interest 

in researching the connection between maintenance and 

process quality [5-8]. Ben-Daya and Duffuaa emphasized 

how crucial it is to include process quality control in PM. 

[9] used PM time and an X control chart to track how a 

system's failure rate rose as more units were produced in 

order to find the best design parameters. By combining a 

PM action with an X control chart, [10-12] sought to 

reduce the rising hazard rate caused by the deterioration of 

the process during the in-control period. 

In order to monitor the production process and aid in 

the identification and elimination of assignable causes, 

practitioners frequently utilize control charts, an effective 

tool for statistical process control. Since [13] first 

suggested using control charts with an economic design 

strategy to maintain process control, this topic has become 

crucial in the field of quality assurance. A hot topic in the 

dependability field is also optimizing maintenance 

strategy. Although it is necessary and reasonable to study 

the two issues separately, they typically have relevance 

and influence on one another. To lower the machine failure 

rate and lower product variation, planned/preventive 

maintenance must be performed as part of statistical 

process control. Similar to preventative maintenance, 

corrective maintenance must be carried out to return an 

out-of-control condition to an in-control state. Doing so 

will affect the machine's failure mode, which will 

ultimately result in a decrease in quality [14] and change 

the need for process control. Numerous researchers have 

concentrated on the integrated control chart and 

maintenance model, which is more practical in practice, as 

a result of the close relationship between quality and 

maintenance. 

To assess the evolution of a quality control factor with 

product characteristic deviation, PM processes are put into 

place. As a result, by lowering the deviation from a target 

value, PM methods can enhance the quality of the final 

product. The goal of this research is to create a common 

model that would concurrently incorporate quality 

assurance, maintenance plan, and common optimization. 

This paper primarily offers a generalized model for 

enhancing process control tactics, maintenance practices, 

and ways for identifying equipment and process defects. 

The control chart is further employed in the control and 

assessment process to ascertain the real operational state. 

When a part of the machine fault with decreased quality is 

discovered, a corrective maintenance (CM) action is then 

carried out to restore the control condition. Thus, the 

suggested approach should have two key benefits: I) the 

removal of quality costs associated with an uncontrolled 

operation brought on by either machine wear or outside 

factors, II) Enhanced process control, and III) increased 

machine reliability by shielding it from failures. 

In manufacturing plants, equipment downtime due to 

unexpected failures can result in significant production 

losses and maintenance costs. Therefore, it is important to 

have a proactive approach to equipment maintenance that 

can detect potential equipment failures before they occur. 

The pressure and temperature levels of rotating machinery 

can be used as an indicator of potential equipment failures. 

However, the traditional control charts like Shewhart 

control charts used to monitor these levels are often not 

effective in detecting small changes in these parameters’ 

levels, which can lead to missed opportunities for 

maintenance. Therefore, the research problem is to 

investigate whether CUSUM control charts can be an 

effective tool for monitoring the pressure, temperature, and 

Time Between Failures (TBF) levels of oil-free air 

compressor in Alyoum for Food Industry when it deviates 

from the target value and predicting potential equipment 

failures before they occur. Therefore, this paper aims to 

compare the performance of CUSUM control charts and 

Shewhart control charts in detecting small shifts in the 

pressure, temperature, and TBF levels of oil-free air 

compressor in Alyoum for Food Industry when it deviates 

from the target value to take a corrective action and  to 

compute average run length (ARL) in a CUSUM control 

chart and Shewhart control charts to provide additional 

evidence to support the contribution of using CUSUM 

control charts and select the actual shift in levels in 

practical situations.  

Recent studies have demonstrated the importance of 

integrating advanced materials and modeling techniques in 

industrial applications to enhance performance and 

sustainability. For instance, Jawarneh et al. investigated 

the transient behavior of non-toxic natural and hybrid 

desiccant composite materials for efficient water extraction 

from atmospheric air, highlighting the potential of 

environmentally friendly designs in industrial systems 

[15]. Similarly, Akash et al. explored solar-assisted 

evaporator heat pump systems, showing how localized 

climate conditions influence thermal performance [16]. 

Complementary to such engineering advancements, 

guidelines for structured technical writing and electronic 

article preparation remain crucial, as emphasized by 

Strunk and White [17] and by Mettam and Adams in their 

comprehensive work on electronic publishing standards 

[18]. 

2. Literature Review 

Variations are possible in the production procedures. 

The two primary categories of these variances include 

general cause variation and special cause variation. 

Common cause variation always exists, regardless of how 

well the process is planned and how diligently it is 

maintained. This variance is comparatively modest in size, 

uncontrollable, and caused by numerous little, inescapable 

factors. If there is just common cause variation, a process 

is under statistical control. This variance is a natural 

byproduct of the procedure. The process is referred to as 
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being out of control if there are other sources of variation 

that do not fall under the category of common causes. The 

special (or assignable) causes related to the equipment, 

operators, materials, etc. may be the source of one or more 

of the additional variations. Through the reduction of 

variability, SPC is a group of strong tools that can be used 

to maintain and enhance process performance. Data is 

gathered, organized, analyzed, and interpreted in order to 

sustain the process at its current level or improve it to a 

better level of quality. Histograms, check sheets, Pareto 

charts, cause and effect diagrams, defect concentration 

diagrams, scatter diagrams, and control charts are some of 

the tools used in SPC, an approach that may be used to 

reduce variance in any process. The SPC toolkit is the 

official name for this collection. The most crucial tool for 

determining if a process is under control is the control 

chart. 

2.1. Control Charts 

To maintain the measurement of the quality attributes 

of the product produced between two limits known as the 

upper control limit (UCL) and lower control limit (LCL), 

control charts are frequently employed as a statistical tool 

for online process control. The center line (CL) designates 

the target value of the process location. Shewhart invented 

this tool in the year 1931. Since then, it has been utilized 

all over the world to regulate the process's statistical and 

financial performance. In statistical control charts, the 

overall focus is on maintaining the statistical constants of 

the chart, such as type I error probability (α), the chart's 

power (1-β), and so forth. In contrast, in an economic 

design of control chart, the process is targeted to reduce 

overall loss from the process to maximize profit. There are 

several different forms of control charts in the literature, 

including mean and range (X-bar and R), moving average, 

EWMA, CUSUM, and others. Charts such as the control 

chart for the number of defects (P chart), the control chart 

for the number of defects (C chart), the control chart for 

the proportion of defectives (np chart), etc. are also 

developed for attribute data. There are also several non-

parametric charts, like sign charts and signed rank charts, 

among others. Each of these graphs has unique statistical 

characteristics. A formula for the loss (gain) per unit of 

time or per unit of output is achieved in the economic 

design of control charts, and it is optimized regarding the 

design parameters of sample size (n), sampling interval 

(h), and control limit multiplier (k) in terms of sigma units. 

2.1.1. X-bar Control Charts 

X-bar control charts are used by Duncan [13] to 

regulate the average value of a production process. In the 

meantime, Duncan also put forth the cost model, which 

considers the costs of sampling, inspection, evaluation, and 

charting as well as the costs of looking for an assignable 

reason when an out-of-control state arises [19]. Since then, 

numerous studies for the best economic design of the three 

control chart parameters based on [13] model have been 

carried out (e.g., [20-22]). Various control charts also 

contain some literature on related subjects (e.g., [23-24]). 

The main drawback of this approach is that it ignores the 

statistical performance of control charts, which could lead 

to an excessive number of nonconforming products and 

false alarms when used to design control charts to monitor 

the manufacturing process [25]. 

Saniga in 1989 first considered an economic design of 

control charts with statistical limits and then suggested the 

economic statistical design of the joint x-bar and R control 

charts for normal data because the results of an economic 

design of control charts may result in poor statistical 

properties (e.g., low power; high Type I error). Economic 

statistical designs seek to reduce the anticipated total cost 

per unit of time as well as Type I error and power, which 

are dependent on the requirements of the designer. 

Economic statistical designs typically cost more than 

economic designs because they include additional 

statistical constraints (such as minimum power and 

maximum Type I error values) [26]. 

2.1.2. CUSUM Control Charts 

A popular monitoring tool for enhancing the quality of 

industrial and medical operations is the CUSUM control 

chart [27]. This scheme was first presented by Page (1963) 

as an alternative to the standard Shewhart control chart. 

Comparatively speaking to the standard Shewhart control 

chart, the CUSUM chart statistic aggregates past and 

present data of the process, which increases sensitivity to 

identify minor and moderate adjustments. Setting up the 

control limit is necessary for designing a CUSUM control 

chart, and it is frequently believed that the known in-

control parameters will be used. However, since this 

presumption is unfounded, the CUSUM chart is applied in 

two stages. Phase I involves estimating the unknown 

parameters using random observations gathered from a 

steady process. To track and identify process changes in 

Phase II, the CUSUM chart is built using the estimations 

from the prior data. Small shifts can be addressed by the 

CUSUM charts quite effectively. This research suggests 

three additional CUSUM chart approaches to further 

strengthen this capability by minimizing the ARL1 for 

fixed ARL0. 

2.2. Quality Control and Maintenance 

Control charts have been routinely used in businesses 

to track process and product deviations for many years. 

Because a well-constructed quality control chart may aid 

in spotting any unusual behavior in the process and aid in 

the beginning of a restoration effort. Like this, several 

maintenance procedures are employed to maintain the 

functionality of machinery and equipment. Because a 

proper preventive maintenance (PM) strategy increases 

machine performance in terms of lower production costs 

and improved product quality, it also lowers the likelihood 

of machine failure. Considering this, quality control and 

maintenance management are important tools in industrial 

practice every day. However, studies have revealed a 

connection between process quality and equipment 

maintenance, and concomitant consideration of these two 

policies can be more effective and lucrative [8]. 

Although these integrated models are becoming more 

and more common among scholars today, Tagaras'  

development of an integrating cost model for the joint 

optimization of process control and maintenance is where 

it all began [28]. Rahim [9], who came after him, jointly 

identified the best settings for an X-bar control chart and 



 © 2025 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 19, Number 3  (ISSN 1995-6665) 560 

the amount of time for preventive maintenance for a 

manufacturing system with a growing failure rate. Starting 

with the studies of Banerjee and Rahim [29], they 

generalized Duncan's (Duncan, 1956) approach for the 

economic design of X-bar control charts.  

The Markovian group has examined routine 

maintenance of mechanical equipment as well as product 

quality control at various times, with restricted vision, and 

with impaired production systems. To establish how to 

coordinate SPC and planned maintenance operations to 

lower overall costs, Lindermand [7] provided a generic 

analysis model. Panagiotidou and Tagaras [30-31] 

developed an economic model to maximize ideal and 

incomplete maintenance procedures, for example, two 

operating conditions of equipment such as in-control and 

out-of-control states and in SPC. These two quality-related 

economic models were then introduced to make the best 

use of PM procedures. A technique for creating an ideal 

PM control chart was put forth by Chiu and Huang [32] 

and uses a set sample interval and risk increase rate. In 

addition, they believe that after PM, the production system 

will become a good new state. 

3. Proposed Methodology 

The primary objective of this study is to investigate 

whether CUSUM control charts can be an effective tool 

for monitoring the pressure and temperature levels of oil-

free air compressor in Alyoum for Food Industry. Alyoum 

for Food Industry is a dairy plant located in Jordan-Zarqa 

that produces yogurt and beverages. The plant's success is 

attributed to its efficient production processes and the use 

of high-quality equipment. One of the most critical pieces 

of equipment in the plant is the oil-free air compressor. 

This equipment plays a critical role in several key 

operations, including the operation of valves in boilers and 

reverse osmosis (RO) systems and the pasteurization 

process. 

Figure 1 depicts the diagram of the methods used to 

conduct the current research. This study aims to evaluate 

the effectiveness of CUSUM control charts in monitoring 

the pressure and temperature of the oil-free air compressor 

at Alyoum for Food Industry. Alyoum for Food Industry is 

a dairy plant located in Jordan-Zarqa that produces yogurt 

and beverages. To conduct reliability analysis, Shewhart 

and CUSUM control charts information on the pressure, 

temperature, and TBF of oil-free air compressor was 

gathered over 100 days period. To determine whether 

pressure, temperature, and TBF data are independently and 

identically distributed (iid), trend tests and serial 

correlation tests were run. Then, we utilize Arena (input 

analyzer) tool to identify the parameters and pressure, 

temperature, and TBF data that best suit the distribution. 

Then the reliability of oil-free air compressor was 

calculated, and finally optimum CUSUM control charts 

were developed by investigate whether CUSUM control 

charts can be an effective tool for monitoring the process 

in different shifts and limits to select best parameters based 

on the ARL. 

 

Figure 1. Overview of the Research Process for Applying CUSUM Charts in Maintenance of Oil-Free Compressors. 
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3.1. Data Collection Instrument 

This Study combines primary and secondary data for 

our investigation. Interviews, production process 

observation, and equipment monitoring were used to 

gather primary data. Direct questions were directed at the 

relevant company stakeholders during the interview 

process. Interruptions in the operation of the oil-free air 

compressor were observed during the production 

process.In a study on the use of CUSUM control charts in 

monitoring the variables levels of rotating machinery, the 

primary data would be the pressure, temperature, and TBF 

measurements collected from the selected machinery using 

appropriate sensors and data collection methods. The 

secondary data in this research could include previous 

studies and literature on the topic, such as review articles, 

research papers, and industry reports, which provide 

insights into the use of CUSUM control charts and other 

control chart methods in machine condition monitoring. 

Secondary data can also include historical data on the 

maintenance practices and downtime of the selected 

machinery, which can help to contextualize the study 

findings and provide insights into the impact of 

maintenance practices on machinery performance. 

3.2. Overview of X-bar and CUSUM charting 

The Shewhart-type chart, which only takes into account 

data from the last point displayed on the chart [33-34] is 

the most popular statistical control chart and is frequently 

used in monitoring processes. Other control chart types 

may occasionally be used in place of or in addition to 

Shewhart type control charts and offer benefits. The 

traditional CUSUM and the EWMA memory-type control 

charts mentioned in this study fall into this category. These 

charts, in contrast to Shewhart-type charts, blend the most 

recent data with earlier data to detect tiny and moderate 

changes in process parameters with a significantly lower. 

3.2.1. Traditional Shewhart chart (x- bar chart) 

The control chart for individual measures, Xi, those 

data are in the individual observations, is the most basic 

Shewhart-type control chart. It is impracticable to attempt 

to combine these data in any way with the intention of 

producing charts of the rational subgroups in this case. In 

two different scenarios the Xi chart based on known 

parameter values and the Xi chart based on assumed or 

unknown parameter values this chart might be helpful for 

tracking the position of a process. Assuming the mean (μ) 

and standard deviation (σ) of the process are known, the 

control limits are set to 3± σ x for n=1 and 3±σ X for n>1 

where n X =, provided the observations of the quality 

characteristic are reasonable and assumed to follow a 

normal distribution as an appropriate model with no 

correlation. 

The conditions should be examined, just like with 

statistical methods in general, with the assumption of 

normality for an Xi chart being crucial. The respective 

estimators can, however, be easily produced based on the 

samples taken from a process that appears to be in control 

if the process parameters for the mean and standard 

deviation are unknown. A set of recent historical data for 

the process would be used to determine 𝑥 ̅, which is the 

typical estimator for μ. Although the estimator μ has no 

clear option, this is not the case when choosing how to 

estimate σ. It is preferable to employ two assessors, one to 

analyze the historical data set and the other to keep track 

of Phase I and Phase II of the procedure. This 

recommendation is being made because one estimator 

works better for Phase I and the other for Phase II. 

ARL, which represents the run length distribution's 

mean, is a measure frequently used to assess the 

effectiveness of a control chart. 𝐴𝑅𝐿0 is described for the 

in-control process as:  

𝐴𝑅𝐿0 = 
1

𝛼
                                                                   (1) 

where α is the probability of type-I error. For the out-

of-control process, the mean shift is detected by using the 

formula:  

𝐴𝑅𝐿1 = 
1

(1−𝛽)
                                                             (2) 

where β is the probability of type-II error.  

The probability of in-control 𝑃𝑖𝑛 for the existing 

control chart for the case of known process mean m is 

calculated as follows:  

𝑃𝑖𝑛 = 𝑃(𝐿𝐶𝐿2 ≤  𝑥  ≤  𝑈𝐶𝐿2)                                  (3) 

𝑃𝑖𝑛 =  𝜙(𝐴22𝑑2√𝑛) −  𝜙(−𝐴22𝑑2√𝑛)                     (4) 

where ϕ(.) is the cumulative standard normal 

distribution function.  

The probability of out-of-control 𝑃𝑜𝑢𝑡 for the existing 

control chart is calculated as follows: 

𝑃𝑜𝑢𝑡 = 𝑃(x̅ ≥  UCL1) + 𝑃( x  ≤  LCL1)                    (5) 

𝑃𝑜𝑢𝑡 = 1 − 𝜙(𝐴21𝑑2√𝑛) −  𝜙(−𝐴21𝑑2√𝑛)             (6) 

3.2.2. CUSUM 

As an alternative to the Shewhart-type chart for the 

quick identification of tiny and moderate changes in 

location and/or dispersion of a process using independent 

and normally distributed observations, Page (1963) 

suggested the classical CUSUM control chart. CUSUM 

control charts come in a variety of formats, although the 

tabular version is typically the most popular. In this 

method, deviations from each observation's nominal value 

𝜇0 that are higher than the nominal value with the statistic 

𝐶𝑖+ and deviations from 𝜇0 that are lower than the 

nominal value with the statistic 𝐶𝑖− are both accumulated. 

 For monitoring a process' mean, initially defined as 

𝐶𝑖+ = 𝐶𝑖− = 0, the statistics 𝐶𝑖+ and 𝐶𝑖−, also known as 

upper and lower one-sided CUSUM, are calculated as 

follows [35]:  

𝐶𝑖+ = max (0, 𝐶𝑖−1
+ + 𝑋𝑖 − 𝜇0 − 𝐾)                          (7) 

𝐶𝑖− = max (0, (𝜇0 − 𝐾) − 𝑋𝑖 + 𝐶𝑖−1
− )                      (8) 

where Xi (i=1, 2,...) is a set of independent 

observations with normal distribution, Xi ~ N(μ,𝜎2 ), and 

𝜇0the nominal value and σ is standard deviation. If one 

wants the statistics 𝐶𝑖+ and 𝐶𝑖− for the sample means, 𝑥 , 
should be used in place of Xi in Equations above, and 

𝜎𝑥 =
𝜎

√𝑛
 , should be used in place of in the following 

equations. The process is deemed out of control if the 

value of 𝐶𝑖+ or 𝐶𝑖− exceeds the decision interval H = h*σ. 

Five times the process' standard deviation, or H=5σ, is a 

reasonable value for H. In above equations, the reference 

value K is often set at half the change's magnitude 

(measured in standard deviation units), or K = k*σ = (𝛿/2) 

*σ = |𝜇1 − 𝜇0| / 2. The CUSUM chart's parameters are the 
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numbers k (reference value) and h (standardized decision 

interval). The (k, h) pair's selection is crucial because it 

significantly affects the ARL performance of this chart.  

ARL, or typical number of samples needed to detect an 

out-of-control instance or generate a false alarm, can be 

used to evaluate the performance of a control chart. The 

in-control ARL (ARL0) is utilized for the false alarm rate, 

but the out-of-control ARL (ARL1) is frequently 

employed as an indicator of the power (or effectiveness) of 

the control scheme. The evaluation of typical run lengths is 

one of the main challenges in the economic design of 

CUSUM charts. The current situation is as follows. An N 

(μ,𝜎2) standard distribution with samples of size n is used 

to operate a CUSUM chart with reference value (K) and 

decision interval (h). 

 The CUSUM chart's ARL is calculated by [36]. This 

approximation has been beneficial [35] have explained its 

numerical solution, and Alwan has further modified and 

applied it [37]. The value for Siegmund's approximation of 

the ARL is given as: 

𝐴𝑅𝐿 =  
exp(−2∆𝑏)+2∆𝑏−1

2∆2
                                          (9)                                                                    

For ∆≠ 0, where ∆ = 𝛿 − 𝑘 for the upper one-sided 

CUSUM 𝐶𝑖+, ∆ = −𝛿 − 𝑘 for the upper one-sided CUSUM 

𝐶𝑖−, and 𝑏 = ℎ + 1.166. For ∆ = 0, can use ARL = 𝑏2. 

The quantity 𝛿 represents the magnitude of quality 

shift, for which the ARL is to be calculated. Therefore, if 𝛿 

= 0, we would calculate 𝐴𝑅𝐿0
+, 𝐴𝑅𝐿0

− as following:  

𝐴𝑅𝐿0
+ =  𝐴𝑅𝐿0

− = 
exp(2𝑘𝑏)−2𝑘𝑏−1

2𝑘2
                            (10)                                        

Whereas if 𝛿 ≠ 0, we would calculate 𝐴𝑅𝐿1
+, 𝐴𝑅𝐿1

−  as 

following:  

𝐴𝑅𝐿1
+ =  

exp(2(𝛿−𝑘)𝑏)+2(𝛿−𝑘)𝑏−1

2(𝛿−𝑘)2
                               (11) 

𝐴𝑅𝐿1
− =  

exp(2(−𝛿−𝑘)𝑏)+2(−𝛿−𝑘)𝑏−1

2(−𝛿−𝑘)2
                          (12) 

To calculate the ARL of the two-sided CUSUM from 

the ARLs of the two-sided statistics, 𝐴𝑅𝐿1
+, 𝐴𝑅𝐿1

−, we use: 

1

𝐴𝑅𝐿
= 

1

𝐴𝑅𝐿1
+ + 

1

𝐴𝑅𝐿1
−                                                   (13) 

3.3. Construct Data Set of Pressure, Temperature, and 

TBF 

To construct a data set of pressure, temperature, and 

TBF of a compressor over a period of 100 days, we need 

to follow a systematic process that involves several steps. 

The first step is to gather the data on the set values of 

pressure and temperature for the compressor. This data 

should be collected at regular intervals over the 100-day 

period and should be recorded in a spreadsheet or other 

suitable format that facilitates analysis and visualization. 

The next step is to calculate the TBF for the compressor. 

The TBF is the amount of time that elapses between each 

failure of the compressor. To calculate the TBF, we need 

to record the date and time of each failure of the 

compressor during the 100-day period. We can then 

calculate the time between each failure by subtracting the 

date and time of the previous failure from the date and 

time of the current failure. 

Once we have gathered the data on pressure, 

temperature, and TBF, we can organize it in a spreadsheet 

or other suitable format that facilitates analysis and 

visualization. We can then use this data to construct 

control charts to monitor the performance of the 

compressor over time. By monitoring the control charts 

over the 100-day period. So, detecting any trends or 

patterns in the data that may indicate changes in the 

performance of the compressor. If any points fall outside 

of the control limits, further investigation may be needed 

to identify the cause of the deviation and take appropriate 

corrective action. 

3.3.1. Construct X-bar and CUSUM Control Charts of 

Pressure, Temperature, and TBF 

Constructing X-bar control charts for a set of data on 

pressure, temperature, and TBF for a compressor can help 

us monitor the performance of the compressor over time 

and identify any issues that may require attention. By 

using the X-bar chart to detect and respond to process 

variation, we can improve the reliability and efficiency of 

the compressor and reduce the likelihood of downtime or 

failure. 

If the X-bar control charts for pressure and temperature 

data are both in control, but the X-bar control chart for the 

TBF data has one point out of control, it could indicate a 

potential issue with the reliability of the compressor. It is 

important to investigate the out-of-control point and 

determine if it is a legitimate signal of process variation or 

simply a random fluctuation. 

The first step is to identify the point on the TBF chart 

that is out of control which determines if there are any 

special causes of variation that may have affected the 

performance of the compressor. This could include 

changes in operating conditions, maintenance activities, or 

other factors that may have impacted on the TBF data. If 

we identify a special cause of variation, we can take 

corrective action to address the issue and prevent it from 

occurring in the future. This may involve adjusting the 

operating conditions, conducting maintenance or repairs, 

or implementing other changes to the process or 

equipment. 

To construct CUSUM control charts for pressure, 

temperature, and TBF, we need to follow certain steps. 

First, calculate the target value for each parameter based 

on historical data. Then, choose the value of h (the 

CUSUM increment) and k (the CUSUM threshold) based 

on the desired level of sensitivity and the false alarm rate. 

Once the target values and the values of h and k were 

determined, we can begin to calculate the CUSUM values 

for each parameter. The CUSUM value for each 

observation is calculated as the difference between the 

observed value and the target value, minus h. If the result 

is negative, it is set to zero. Then sum the CUSUM values 

for each observation to get the cumulative sum. 

Next, plot the cumulative sums for each parameter on a 

CUSUM control chart, with the horizontal axis 

representing the observation number and the vertical axis 

representing the cumulative sum. We also plot the upper 

and lower CUSUM control limits, which are determined 

by the values of h and k. To interpret the CUSUM chart, 

we look for any shifts or trends in the cumulative sums. If 

the cumulative sum exceeds the upper control limit or falls 

below the lower control limit, it indicates that a shift or 

trend has occurred, and that action may be needed to 

investigate and correct the issue. 

The values of h and k in CUSUM control charts depend 

on the specific application and the desired level of 

sensitivity for detecting shifts in the process mean. 
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Generally, a larger h value results in a slower detection of 

small shifts, but a reduced likelihood of false alarms. 

Conversely, a smaller h value allows for more rapid 

detection of small shifts but may result in more false 

alarms. The k value is used to set the reference value for 

the CUSUM chart and should be chosen based on 

historical data or process specifications. Typically, the k 

value is set to half of the specification limits, or the target 

value of the process mean. 

 

Figure 2. Xbar-R Control Chart of pressure, temp, and TBF 

 
Figure 3. CUSUM Control Chart of pressure, temp, and TBF 
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3.4. Construct CUSUM Control Charts of Pressure with 

0.1,0.2,0.3,0.5, and 1σ shift in Mean. 

If there is a shift of 0.1 in the mean of the process, it 

may indicate a change in the underlying process 

conditions. To monitor this change, CUSUM control 

charts can be used. To construct the CUSUM chart, first 

the values of h and k must be determined based on the 

desired detection sensitivity and the estimated standard 

deviation of the process. Once the values of h and k are 

determined, the CUSUM chart can be constructed by 

calculating the cumulative sum of deviations from the 

target mean for each sample. If the cumulative sum 

exceeds the control limits, it indicates that a significant 

shift has occurred in the mean of the process. 

In this case, if there is a shift of 0.1 in the mean of the 

process, it may be detected by the CUSUM control chart. 

The chart will show an upward trend in the cumulative 

sum of deviations from the target mean for each sample, 

indicating that the process has shifted from its previous 

level. The CUSUM chart can be used in conjunction with 

other control charts, such as X-bar charts, to provide a 

comprehensive monitoring system for the process. By 

using the CUSUM chart to detect shifts in the mean of the 

process, timely corrective action can be taken to prevent 

the occurrence of defects and ensure that the process is 

operating at its desired level of performance. 

To plot a CUSUM control chart for pressure, 

temperature, and TBF with a shift in the mean of 0.1, you 

will need to follow these steps: 

1. Calculate the mean and standard deviation for each 

variable based on the historical data that shifted 0.1 in 

mean and using excel sheet construct the formula and 

the parameters of CUSUM chart and 10 runs were 

made of shifted data to get accurate ARL. 

2. Determine the desired level of sensitivity (h) and the 

target shift size (k) for the chart. 

3. Calculate the CUSUM values for each data point using 

the following formula: 

𝐶𝑖+ = max (0, 𝐶𝑖−1
+ + 𝑋𝑖 − 𝜇0 − 𝐾)                        (14) 

𝐶𝑖− = max (0, (𝜇0 − 𝐾) − 𝑋𝑖 + 𝐶𝑖−1
− )                    (15) 

Where Ci is the CUSUM value at time i, Xi is the 

observation at time i,  𝜇0 is the mean value of the historical 

data, and k is the target shift size. 

4. Plot the CUSUM values on a control chart with the 

time on the x-axis and the CUSUM values on the y-

axis. 

5. Add horizontal lines at h and -h to indicate the control 

limits, for pressure and temp h=7 and for TBF h=5. 

6. Monitor the chart for any points that exceed the control 

limits, which would indicate a significant shift in the 

process mean. 

Note that the specific values of h and k will depend on 

the desired level of sensitivity and the characteristics of the 

process being monitored. You may need to adjust these 

values and monitor the chart over time to ensure that it is 

providing effective control. 

ARL is an important metric used to evaluate the 

performance of a CUSUM control chart. It represents the 

average number of observations that will be collected 

before the chart signals an out-of-control condition. In the 

case of the pressure CUSUM chart, we can calculate the 

ARL using the following procedure: 

1. Define the in-control state: To calculate the ARL, we 

first need to define the in-control state of the pressure 

CUSUM chart. This can be done by collecting a set of 

in-control data and estimating the mean and standard 

deviation of the pressure measurements. 

2. Determine the decision interval: The decision interval 

for the pressure CUSUM chart is determined by 

choosing appropriate values for the h and k parameters. 

In this case, let's assume that we have chosen h = 7 and 

k = 0.05. 

3. Calculate the ARL: The ARL is calculated as the 

expected number of observations that must be collected 

before the cumulative sum of deviations exceeds the 

decision interval. In other words, it is the expected time 

until the chart signals an out-of-control condition. The 

ARL can be calculated using simulation methods, such 

as Monte Carlo simulation or by formula below. 

By calculating the ARL of the pressure CUSUM chart, 

we can evaluate its ability to detect out-of-control 

conditions in a timely manner. A lower ARL indicates that 

the chart is more sensitive to shifts in the mean of the 

pressure measurements, while a higher ARL indicates that 

the chart is less sensitive. 

The value for [37] approximation of the ARL is given 

as: 

𝐴𝑅𝐿 =  
exp(−2∆𝑏)+2∆𝑏−1

2∆2
                               (16)                                                                      

For ∆≠ 0, where ∆ = 𝛿 − 𝑘 for the upper one-sided 

CUSUM 𝐶𝑖+, ∆ = −𝛿 − 𝑘 for the upper one-sided CUSUM 

𝐶𝑖−, and 𝑏 = ℎ + 1.166. For ∆ = 0, can use ARL = 𝑏2. 

The quantity 𝛿 represents the magnitude of quality 

shift, for which the ARL is to be calculated. Therefore, if 𝛿 

= 0, we would calculate 𝐴𝑅𝐿0
+, 𝐴𝑅𝐿0

− as following:  

𝐴𝑅𝐿0
+ = 𝐴𝑅𝐿0

− = 
exp(2𝑘𝑏)−2𝑘𝑏−1

2𝑘2
           (17) 

Whereas if 𝛿 ≠ 0, we would calculate 𝐴𝑅𝐿1
+, 𝐴𝑅𝐿1

−  as 

following:  

𝐴𝑅𝐿1
+ = 

exp(2(𝛿−𝑘)𝑏)+2(𝛿−𝑘)𝑏−1

2(𝛿−𝑘)2
              (18)            

𝐴𝑅𝐿1
− = 

exp(2(−𝛿−𝑘)𝑏)+2(−𝛿−𝑘)𝑏−1

2(−𝛿−𝑘)2
         (19) 

To calculate the ARL of the two-sided CUSUM from 

the ARLs of the two-sided statistics, 𝐴𝑅𝐿1
+, 𝐴𝑅𝐿1

−, we use: 
1

𝐴𝑅𝐿
= 

1

𝐴𝑅𝐿1
+ + 

1

𝐴𝑅𝐿1
−                               (20) 
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Figure 4. Construct the formula and the parameters pressure to plot CUSUM by excel. 

 

 

Figure 5. CUSUM charts for pressure with shift 0.1,0.2,0.3,0.5,1.0. 
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Table 1. CUSUM ARL for Different Shifts and h for pressure 

data 

Shift in Mean (Multiple of σ) h = 4 h = 5 h =7 

0 169.04 469.11 3510 

0.1 26.4 28.4 36 

0.2 23.16 24.5 25.7 

0.3 15.8 21.5 23.3 

0.5 13.1 14 15.7 

1 2.8 3.5 4.7 

Table 2. Shewhart ARL for Different shifts for pressure data 

Shift in Mean (Multiple of Sigma) Shewhart ARL 

 (Two-Sided, Zero-State) 

0 370.40 

0.1 306.75 

0.2 136.2 

0.3 64.9 

0.5 18.24 

1 2.37 

3.5. Construct CUSUM Control Charts of for Temp with 0.1,0.2,0.3,0.5, and 1 σ shift in Mean 

 

 

Figure 6. CUSUM charts for Temp with shift 0.1,0.2,0.3,0.5,1.0. 
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Table 3. CUSUM ARL for Different Shifts and h for Temp data 

Shift in Mean (Multiple of σ) h = 4 h = 5 h =7 

0 169.04 469.11 3510 

0.1 25.4 26.3 33.4 

0.2 16.2 23.16 25 

0.3 15.8 21.5 23.5 

0.5 13.1 14.7 16.1 

1 4.92 7.4 8.3 

Table 4.  Shewhart ARL for Different shifts for Temp data 

Shift in Mean (Multiple of Sigma) Shewhart ARL 

 (Two-Sided, Zero-State) 

0 370.40 

0.1 357 

0.2 185 

0.3 101 

0.5 32 

1 4.4 

3.6. Construct CUSUM Control Charts of for TBF with 0.1,0.2,0.3,0.5, and 1 σ shift in Mean. 

 

Figure 7.  CUSUM charts for TBF with shift 0.1,0.2,0.3,0.5,1.0. 
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Table 5. CUSUM ARL for Different Shifts and h for TBF data 

Shift in Mean (Multiple of σ) h = 3 h = 4 h =5 

0 59 169 469 

0.1 20.7 22.4 25.3 

0.2 13.3 14 15.8 

0.3 10.7 11.4 13.1 

0.5 6.5 7.1 8.7 

1 3.5 4.4 5.8 

Table 6. Shewhart ARL for Different shifts for Temp data 

Shift in Mean (Multiple of Sigma) Shewhart ARL 

 (Two-Sided, Zero-State) 

0 370.40 

0.1 357 

0.2 185 

0.3 101 

0.5 32 

1 4.4 

After constructing CUSUM control charts for pressure, 

temperature, and TBF for the compressor, ARL was 

calculated. ARL represents the average number of samples 

needed to detect a shift in the process mean. The ARL 

value depends on the shift in the mean, the sample size, 

and the value of h. In this study, ARL was calculated for 

different values of shift in mean, different values of h. The 

ARL values were calculated using mathematical formulas 

based on the Weibull distribution for the TBF data, and 

normal distribution for pressure and temperature data. 

Minitab software was used to calculate the ARL values. 

The ARL results showed that as the shift in mean 

increased, the ARL value decreased, which means that the 

chart becomes more sensitive to detecting the shift. The 

ARL value also decreased as the value of h decreased, 

which indicates that decreasing the value of h results in a 

more sensitive chart. 

Overall, the ARL results demonstrated that the 

CUSUM control charts were effective in detecting shifts in 

the process mean for pressure, temperature, and TBF data 

in different scenarios of shift and h. The ARL values can 

be used as a guide to select appropriate values of h for 

specific process control applications. 

4. Conclusion 

CUSUM control charts can be used in maintenance 

applications to track an item's performance and notice any 

behavioral changes that might point to a problem or 

require maintenance. The CUSUM control chart can be 

used in a maintenance application to track a specific 

performance indicator, like the frequency of a spinning 

machine's vibrations or the furnace's temperature. The 

maintenance crew may watch the trend of the performance 

indicator and spot any changes in its behavior by using the 

CUSUM chart, which depicts the cumulative sum of the 

deviations from a target value over time. 

When the CUSUM chart detects a significant deviation 

from the target value, it can trigger an alarm or alert the 

maintenance team to investigate the cause of the deviation. 

By taking timely corrective action, the maintenance team 

can prevent equipment failures and avoid costly downtime. 

The use of CUSUM control charts in maintenance 

applications is a proactive approach to equipment 

maintenance, allowing maintenance teams to detect 

potential issues before they cause equipment failure. This 

approach can lead to reduced maintenance costs, improved 

equipment reliability, and increased productivity. This 

research compared the performance of CUSUM control 

charts and Shewhart control charts in monitoring the 

pressure, Temperature, and TBF levels of compressor 

machinery. They found that the CUSUM control chart was 

more effective in detecting small shifts in pressure, 

Temperature, and TBF levels compared to the Shewhart 

control chart. The CUSUM chart was able to detect small 

shifts that the Shewhart chart missed, which allowed 

maintenance teams to take corrective action before 

equipment failures occurred. Therefore, the study suggests 

that CUSUM control charts may be a more effective tool 

for monitoring the vibration levels of rotating machinery in 

a manufacturing plant compared to Shewhart control 

charts. 

Shewhart control charts are effective at detecting large 

shifts in process parameters, but they may not be able to 

detect small shifts that occur over a longer period of time. 

CUSUM control charts, on the other hand, are designed to 

detect small shifts in process parameters over time. 

Shewhart control charts are relatively simple to use and 

interpret, but they may not be as effective in detecting 

small shifts as CUSUM control charts. CUSUM control 

charts can be more complex to use and interpret, but they 

can be more sensitive to small shifts. Shewhart control 

charts require data to be normally distributed, whereas 

CUSUM control charts do not have this requirement. This 

makes CUSUM control charts more flexible and 

applicable to a wider range of data. 

The ARL results obtained for different shifts and h 

values for pressure, temp, and TBF were analyzed to 

evaluate the performance of the CUSUM control charts. 

The shifts considered were 0.1, 0.2, 0.3, 0.5, and 1.0, while 

the h values varied from 4 to 7 for pressure and temp data 

but h values varied for TBF data from 3 to 5. The results 

showed that the ARL decreased as the shift in mean 

increased for all variables. This was expected, as larger 

shifts result in faster detection of out-of-control conditions. 

However, the ARL also decreased as the h value 

decreased, indicating that small h values resulted in more 

sensitive CUSUM charts. 

Overall, the results demonstrate the effectiveness of the 

CUSUM control charts in detecting shifts in the mean for 

pressure, temp, and TBF. The optimal h value depends on 

the sensitivity required and the acceptable ARL. The 

findings provide valuable insights into the selection of 

appropriate h values for different variables and shifts. The 

optimal h value and chart type depend on the specific 

needs and requirements of the process being monitored. 

However, based on the ARL calculations, it is possible to 

determine which h values and chart types are more 

effective at detecting shifts in the mean. For the pressure 

and temperature data, the ARL values for the CUSUM 

charts with h values of 4, 5, and 7 were calculated. The 

results showed that the ARL values decreased as the h 

value decreased, indicating that smaller h values are more 

sensitive in detecting shifts in the mean. However, the 
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ARL values for h=4 were found to be the lowest, 

indicating that this value may be the most effective in 

detecting shifts in the mean for the pressure and 

temperature data and for TBF data the ARL values for the 

CUSUM charts with h values of 3, 4, and 5 were 

calculated. The results showed that the ARL values 

decreased as the h value decreased, indicating that smaller 

h values are more sensitive in detecting shifts in the mean. 

However, the ARL values for h=3 were found to be the 

lowest, indicating that this value may be the most effective 

in detecting shifts in the target value for TBF data. 

In terms of chart type, the CUSUM chart was found to 

be more effective at detecting smaller shifts in the mean 

compared to the Shewhart chart. Therefore, for the 

pressure and temperature data, the CUSUM chart with an h 

value of 4 may be the optimal choice. It is important to 

note that the optimal h value and chart type may vary 

depending on the specific process being monitored and the 

desired level of sensitivity and false alarm rate. It is 

recommended to conduct further analysis and simulations 

to determine the most effective chart type and h value for a 

specific application. 
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