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Abstract 

The goal of this paper is to develop a research method for analyzing the braking dynamics of mechanical systems with 

elastic links. Utilizing modern theoretical research methods, a system model based on the theory of dynamics for mechanical 

systems with elastic links is presented. Furthermore, a method for studying the braking dynamics of mechanical systems has 

been developed, enabling the assessment of dynamic loads induced by braking. A case study in knitting technology is 

employed to verify the proposed method. The findings of this study reveal that the braking of a mechanical system induces 

dynamic loads in its mechanisms that significantly exceed the loads experienced during start-up. This crucial observation 

must be taken into account during the design of such machines. Based on these theoretical investigations, an algorithm and an 

engineering method for determining the maximum dynamic loads that arise in a mechanical system during braking have been 

developed. 
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1. Introduction 

Dynamic load during braking is a vital factor in 

machine design, necessitating the development of system 

models that describe this operation and control its 

variables. The presence of elastic links and multiple 

masses within the system introduces further complexities. 

This study employs a knitting machine as a relevant case 

study, given its braking system incorporating elastic links. 

Knitting, a globally popular technique for fabric and 

garment formation accounting for approximately 25% of 

fabric production, has experienced rapid advancements 

due to electronic sensors and computers, propelling 

knitting technology into the era of Industry 4.0 worldwide 

[1-4 and various digital web sources]. 

Extensive research has been conducted on the 

dynamics of knitting technology, as documented in the 

literature [e.g., 5-21]. These studies have examined various 

machine components and proposed methods for reducing 

dynamic loads. However, a notable shortcoming of 

existing studies on the dynamics of mechanical systems is 

their frequent omission of elastic links and multi-mass 

systems. Furthermore, there is a limited number of studies 

specifically addressing the braking process, which can 

impact the overall efficiency of these systems. 

The dynamic design of the machine frame is crucial for 

ensuring operational reliability and product quality. The 

frame must possess sufficient rigidity to withstand the 

braking forces encountered during the machine's run-down 

stage [5]. 

Enhancing machine efficiency can be achieved by 

mitigating dynamic loads resulting from braking through 

improved methods for studying braking dynamics and the 

development of novel, more reliable braking systems [6]. 

It is well-established that the magnitude of dynamic loads 

generated during braking significantly exceeds those 

experienced during start-up. While numerous dynamics 

studies exist in the open literature, a few examples warrant 

mention. The influence of needle design on operational 

durability has been investigated, leading to the proposal of 

a new needle design [7 and 8]. Other approaches to 

improve efficiency and reduce dynamic load include the 

utilization of twin springs [9] and torsion springs [10]. An 

analysis of stopping reasons identified causes such as yarn 

breakages, set-off, machine cleaning and fabric roll 

cutting, yarn joining, needle breakages, and oil-related 

issues [11]. Notably, none of the aforementioned dynamics 

studies provide a comprehensive analysis of the entire 

system during braking. Therefore, the aim of this research 

is to present this comprehensive picture. 

2. System model 

Figure (1) shows the suggested model in this study that 

represents a KO type circular knitting machine [12] and 

this will be the starting point for the system model. In 

order to establish the model, some old references have 
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been used as they contained the basics of the art [13-21]. 

Some modern management methods are used worldwide. 

The enclosure of the designs of several machines, 

especially light industry machines has been treated as in 

references[187 and18]. It has been concluded that it is 

desirable to use a four-mass model with a branching of 

driven masses as a dynamic braking model. To do this, a 

dynamic model of a circular machine is taken as an 

example, the design of which corresponds to these 

parameters. 

As known, the maximum dynamic loads in elastic links 

and, accordingly, in mechanisms occur at the initial 

moment of braking of the machine [17], that is, at the first 

stage of braking. Therefore, further studies of the 

dynamics of braking of the circular knitting machine will 

be considered for this stage. 

Figure (2) shows an example of a dynamic model 

representing a circular knitting machine of the type of KO. 

This figure shows the four stages of braking. TB is braking 

torque applied to the rotor of the motor, T3is the moment 

of the resistance forces of knitting mechanism and T4is the 

moment of the forces of resistance of the fabric take-up 

mechanism. J1is the total moment of inertia of the rotor of 

the motor and the drive pulley of the belt transmission, J2is 

the total moment of inertia of the driven pulley of the belt 

transmission (train),J3is the moment of inertia of the 

rotating masses of knitting mechanism, and J4is the 

moment of inertia of the rotating masses of the fabric take-

up mechanism. C in the figure represents the stiffness 

where C12is the stiffness of the belt transmission of the 

drive mechanism,C23is the stiffness of the vertical portion 

of the drive shaft that transmits the movement to 

mechanism of knitting, and C24is the stiffness of the 

vertical portion of the drive shaft that transmits the 

movement to fabric take-up mechanism. 

The initial conditions of the first braking stage are as 

follows: [17 and18]:  

When  𝑡 = 0 

𝑇(12)0 = 𝑇3 + 𝑇4; 𝑇̇(12)0 = 0; 𝑇(23)0 = 𝑇3; 𝑇̇(23)0 =

0; 𝑇(24)0 = 𝑇4;  𝑇̇(24)0 = 0 

The equations of motion of rotating masses of the 

machine at the first braking stage (Fig. 2. a) are in the 

form: 
𝐽1𝜑̈1 = 𝑇𝐵 + 𝑇12; 𝐽2𝜑̈2 = −𝑇12 + 𝑇23 + 𝑇24; 𝐽3𝜑̈3 

          = −𝑇23 + 𝑇3; 𝐽4𝜑̈4 = −𝑇24 + 𝑇4                       (1) 

where   𝑇12, 𝑇23, 𝑇24 , - the moments that arise when 

braking with respect to elastic links  𝐶12, 𝐶23, 𝐶24; 

𝑇12 = 𝐶12(𝜑1 − 𝜑2); 𝑇23 = 𝐶23(𝜑2 − 𝜑3); 𝑇24 =
𝐶24(𝜑2 − 𝜑4)                                                                   (2) 

𝜑1, 𝜑2, 𝜑3, 𝜑4 −  rotation angles of the respective 

masses. 

Substituting the parameters 𝜑̈1, 𝜑̈2, 𝜑̈3, 𝜑̈4, derived 

from equations (1), in the expressions 𝑇̈12 = 𝐶12(𝜑̈1 −
𝜑̈2), 𝑇̈23 = 𝐶23(𝜑̈2 − 𝜑̈3), 𝑇̈24 = 𝐶24(𝜑̈2 − 𝜑̈4), we find: 

𝑇̈12 =
𝐶12
𝐽1𝐽2

[(𝐽1+𝐽2)𝑇12 − 𝐽1𝑇23 − 𝐽1𝑇24 + 𝐽2𝑇𝐵] 

𝑇̈23 =
𝐶23

𝐽2𝐽3
[−𝐽3𝑇12 + (𝐽2+𝐽3)𝑇23 + 𝐽3𝑇24 − 𝐽2𝑇3]      (3) 

𝑇̈24 =
𝐶24
𝐽2𝐽4

[−𝐽4𝑇12 + 𝐽4𝑇23 + (𝐽2+𝐽4)𝑇24 − 𝐽2𝑇4] 

 

 

Figure 1. KO type circular knitting machine[Where: 1 

Adjustment Motor, 2 Gearbox, 3 Main Electric Motor, 4 Gear, 5 

Impeller, 6 Electric Motor, 7 Driven Pulley, 8 Pulley, 9 Gear, 10 

Roller, 11, 12 (pulleys) V-belt transmission, 13 Shaft, 14, 15 

Bevel Gears, 16, 17 Gears, 18 Handle, 19 Ratchet Gear, 20 Gear]. 

 

Figure 2. Dynamic model of circular knitting machines of the 

type of KO [where (a), (b), (c) and (d) are first, second, third and 

fourth stages of braking respectively]. 

The solutions of equations (3) 𝑇𝑖𝑗 can be represented by 

the sum of the general solution of homogeneous equations 

𝑌𝑖𝑗 and a solution of inhomogeneous equations 𝑎𝑖𝑗: 

𝑇𝑖𝑗 = 𝑌𝑖𝑗 + 𝑎𝑖𝑗                                                             (4) 

(𝐽1 + 𝐽2)𝑎12 − 𝐽1𝑎23 − 𝐽1𝑎24 − 𝐽2𝑇𝐵 − 𝐽3𝑎12 +
(𝐽2 + 𝐽3)𝑎23 + 𝐽3𝑎24 = 𝐽2𝑇3 − 𝐽4𝑎12 + 𝐽4𝑎23 +
(𝐽2 + 𝐽4)𝑎24 = 𝐽2𝑇4                                                          (5) 

Then [14 and 15]: 

𝑎12 =
∆𝑎12

∆𝑎
;    𝑎23 =

∆𝑎23

∆𝑎
;   𝑎24 =

∆𝑎24

∆𝑎
                        (6) 

Where: 

∆𝑎 = |

(𝐽1 + 𝐽2) −𝐽1 −𝐽1
−𝐽3 (𝐽2 + 𝐽3) 𝐽3
−𝐽4 𝐽4 (𝐽2 + 𝐽4)

|                     (7) 

∆𝑎12 = |

−𝐽2𝑇𝐵 −𝐽1 −𝐽1
𝐽2𝑇3 (𝐽1 + 𝐽2) 𝐽3
𝐽2𝑇4 𝐽4 (𝐽2 + 𝐽4)

|                      (8) 
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∆𝑎23 = |

(𝐽1 + 𝐽2) −𝐽2𝑇𝐵 −𝐽1
−𝐽3 𝐽2𝑇3 𝐽3
−𝐽4 𝐽2𝑇4 (𝐽2 + 𝐽4)

|                      (9) 

∆𝑎24 = |

(𝐽1 + 𝐽2) −𝐽1 −𝐽2𝑇𝐵
−𝐽3 (𝐽2 + 𝐽3) 𝐽2𝑇3
−𝐽4 𝐽4 𝐽2𝑇4

|                   (10) 

Frequency equation describing the free vibrations of 

the masses of the system is given by [17]: 

𝛽6 − (𝐶12
𝐽1+𝐽2

𝐽1𝐽2
+ 𝐶23

𝐽2+𝐽3

𝐽2𝐽3
+ 𝐶24

𝐽2+𝐽4

𝐽2𝐽4
)𝛽4 +

(𝐶12𝐶24
𝐽1+𝐽2+𝐽4

𝐽1𝐽2𝐽4
+ 𝐶12𝐶23

𝐽1+𝐽2+𝐽3

𝐽1𝐽2𝐽3
+ 𝐶23𝐶24

𝐽2+𝐽3+𝐽4

𝐽2𝐽3𝐽4
)𝛽4 −

(𝐶12𝐶23𝐶24
𝐽1+𝐽2+𝐽3+𝐽4

𝐽1𝐽2𝐽3 𝐽4
) = 0                                          (11) 

Solving equation (11) using the Cardan method [18], 

we find the frequencies of the vibrations of the masses of 

the mechanical system 𝛽1, 𝛽2 and𝛽3. 

Then the solution of equation (3) can be written as: 

𝑇12 = 𝐴(12)1cos𝛽1𝑡 + 𝐴(12)2cos𝛽2𝑡 + 𝐴(12)3cos𝛽3𝑡 +

𝐵(12)1 sin 𝛽1𝑡 + 𝐵(12)2 sin 𝛽2𝑡 + 𝐵(12)3 sin 𝛽3𝑡 + 𝑎12,   

𝑇23 = 𝐴(23)1cos𝛽1𝑡 + 𝐴(23)2cos𝛽2𝑡 + 𝐴(23)3cos𝛽3𝑡 +

𝐵(23)1 sin 𝛽1𝑡 + 𝐵(23)2 sin 𝛽2𝑡 + 𝐵(23)3 sin 𝛽3𝑡 + 𝑎23,  (12) 

𝑇24 = 𝐴(24)1cos𝛽1𝑡 + 𝐴(24)2cos𝛽2𝑡 + 𝐴(24)3cos𝛽3𝑡
+ 𝐵(24)1 sin 𝛽1𝑡
+ 𝐵(24)2 sin 𝛽2𝑡 + 𝐵(24)3 sin 𝛽3𝑡 + 𝑎24 

The constant integrations A and B were found using the 

well-known method [14]. 

Determining the constant A at a cyclic frequency 𝛽1 

based on equations (3) consists of the following system of 

equations: 

−(𝛽12
2 + 𝛽1

2)𝐴(12)1 +
𝐶12

𝐽2
𝐴(23)1 +

𝐶12

𝐽2
𝐴(24)1 =

𝐶12

𝐽1
𝑇𝐵 −

𝐶23

𝐽2
𝐴(12)1 + (𝛽23

2 + 𝛽1
2)𝐴(23)1 +

𝐶23

𝐽2
𝐴(24)1 =

𝐶23

𝐽3
𝑇3 −

𝐶24

𝐽2
𝐴(12)1 +

𝐶24

𝐽2
𝐴(23)1 + (𝛽24

2 + 𝛽1
2)𝐴(24)1 =

𝐶24

𝐽4
𝑇4      (13) 

Where: 

𝛽12
2 =

𝐶12(𝐽1+𝐽2)

𝐽1𝐽2
;  𝛽23

2 =
𝐶23(𝐽2+𝐽3)

𝐽2𝐽3
;  𝛽24

2 =
𝐶24(𝐽2+𝐽4)

𝐽2𝐽4
 (14) 

The solution of the system of equations (13) is written 

as: 

𝐴(12)1 =
∆𝐴(12)1

∆𝐴1
;   𝐴(23)1 =

∆𝐴(23)1

∆𝐴1
;   𝐴(24)1 =

∆𝐴(24)1

∆𝐴1
(15) 

Where: 

∆𝐴1 = |
|

−(𝛽12
2 + 𝛽1

2)
𝐶12

𝐽2

𝐶12

𝐽2

−
𝐶23

𝐽2
(𝛽23

2 + 𝛽1
2)

𝐶23

𝐽2

−
𝐶24

𝐽2

𝐶24

𝐽2
(𝛽24

2 + 𝛽1
2)

|
|
  (16) 

∆𝐴(12)1 = |
|

𝐶12

𝐽1
𝑇𝐵

𝐶12

𝐽2

𝐶12

𝐽2
𝐶23

𝐽3
𝑇3 (𝛽23

2 + 𝛽1
2)

𝐶23

𝐽2
𝐶24

𝐽4
𝑇4

𝐶24

𝐽2
(𝛽24

2 + 𝛽1
2)

|
|
        (17) 

∆𝐴(23)1 = |
|

−(𝛽12
2 + 𝛽1

2)
𝐶12

𝐽1
𝑇𝐵

𝐶12

𝐽2

−
𝐶23

𝐽2

𝐶23

𝐽3
𝑇3

𝐶23

𝐽2

−
𝐶24

𝐽2

𝐶24

𝐽4
𝑇4 (𝛽24

2 + 𝛽1
2)

|
|
      (18) 

∆𝐴(24)1 = |
|

−(𝛽12
2 + 𝛽1

2)
𝐶12

𝐽2

𝐶12

𝐽1
𝑇𝐵

−
𝐶23

𝐽2
(𝛽23

2 + 𝛽1
2)

𝐶23

𝐽3
𝑇3

−
𝐶24

𝐽2

𝐶24

𝐽4

𝐶24

𝐽4
𝑇4

|
|
   (19) 

The system of equations to determine the constants B at 

frequency 𝛽1 is [14]: 

−(𝛽12
2 + 𝛽1

2)𝛽1𝐵(12)1 +
𝐶12

𝐽2
𝛽1𝐵(23)1 +

𝐶12

𝐽2
𝛽1𝐵(24)1 =

𝐶12

𝐽1
𝑇̇(12)0,   

−
𝐶23

𝐽2
𝛽1𝐵(12)1 + (𝛽23

2 + 𝛽1
2)𝛽1𝐵(23)1 +

𝐶23

𝐽2
𝛽1𝐵(24)1 =

𝐶23

𝐽3
𝑇̇(23)0,                                                                        (20) 

−
𝐶24
𝐽2
𝛽1𝐵(12)1 +

𝐶24
𝐽2
𝛽1𝐵(23)1 + (𝛽24

2 + 𝛽1
2)𝛽1𝐵(24)1

=
𝐶24
𝐽4
𝑇̇(24)0 

By replacing 𝛽1
2 in equations (13), (20) on 𝛽2

2 and 𝛽3
2 

can derive the system of equations to determine the 

constants A and B at cyclic frequencies 𝛽2 and 𝛽3, 

respectively. 

Using the solutions to the system of equations (20) 

Cramer's rule [19], we obtain: 

𝐵(12)1 =
∆𝐵(12)1

∆𝐵1
;   𝐵(23)1 =

∆𝐵(23)1

∆𝐵1
;  𝐵(24)1 =

∆𝐵(24)1

∆𝐵1
      (21) 

Following the same steps above for finding the solution 

of equation (13), we obtain: 

∆𝐵1 = |
|

−(𝛽12
2 + 𝛽1

2)𝛽1
𝐶12

𝐽2
𝛽1

𝐶12

𝐽2
𝛽1

−
𝐶23

𝐽2
𝛽1 (𝛽23

2 + 𝛽1
2)𝛽1

𝐶23

𝐽2
𝛽1

−
𝐶24

𝐽2
𝛽1

𝐶24

𝐽2
𝛽1 (𝛽24

2 + 𝛽1
2)𝛽1

|
|
  (22) 

∆𝐵(12)1 = |
|

𝐶12

𝐽1
𝑇̇(12)0

𝐶12

𝐽2
𝛽1

𝐶12

𝐽2
𝛽1

𝐶23

𝐽3
𝑇̇(23)0 (𝛽23

2 + 𝛽1
2)𝛽1

𝐶23

𝐽2
𝛽1

𝐶24

𝐽4
𝑇̇(24)0

𝐶24

𝐽2
𝛽1 (𝛽24

2 + 𝛽1
2)𝛽1

|
|
 (23) 

∆𝐵(23)1 = |
|

−(𝛽12
2 + 𝛽1

2)𝛽1
𝐶12

𝐽1
𝑇̇(12)0

𝐶12

𝐽2
𝛽1

−
𝐶23

𝐽2
𝛽1

𝐶23

𝐽3
𝑇̇(23)0

𝐶23

𝐽2
𝛽1

−
𝐶24

𝐽2
𝛽1

𝐶24

𝐽4
𝑇̇(24)0 (𝛽24

2 + 𝛽1
2)𝛽1

|
|
   (24) 

∆𝐵(24)1 = |
|

−(𝛽12
2 + 𝛽1

2)𝛽1
𝐶12

𝐽2
𝛽1

𝐶12

𝐽1
𝑇̇(12)0

−
𝐶23

𝐽2
𝛽1 (𝛽23

2 + 𝛽1
2)𝛽1

𝐶23

𝐽3
𝑇̇(23)0

−
𝐶24

𝐽2
𝛽1

𝐶24

𝐽4
𝛽1

𝐶24

𝐽4
𝑇̇(24)0

|
|
   (25) 

Dynamic overloads arising in the elastic links of the 

mechanical system during braking are determined in 

accordance with the equations: 

𝐾12 =
𝑇12 𝑚𝑎𝑥

𝑇3+𝑇4
, 𝐾23 =

𝑇23 𝑚𝑎𝑥

𝑇3
, 𝐾24 =

𝑇24 𝑚𝑎𝑥

𝑇4
             (26) 

where 𝐾12, 𝐾23, 𝐾24 coefficients of dynamic overloads 

of elastic links 𝐶12, 𝐶23, 𝐶24 of the drive and 

corresponding mechanisms, 𝑇12 𝑚𝑎𝑥, 𝑇23 𝑚𝑎𝑥, 𝑇24 𝑚𝑎𝑥 

maximum torques arising in the elastic links of the 

machine mechanisms in Fig. 2. during braking. 

Dynamic overloads arising in the elastic links of the 

mechanical system during braking are determined from the 

equations: 
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𝐾12 =
𝑇12 𝑚𝑎𝑥
𝑇3 + 𝑇4

;   𝐾23 =
𝑇23 𝑚𝑎𝑥
𝑇3

;   𝐾24 =
𝑇24 𝑚𝑎𝑥
𝑇4

 

where 𝐾12, 𝐾23, 𝐾24are the coefficients of dynamic 

overloads of elastic links 𝐶12, 𝐶23, 𝐶24 of the drive and 

corresponding mechanisms. 

𝑇12 𝑚𝑎𝑥, 𝑇23 𝑚𝑎𝑥, 𝑇24 𝑚𝑎𝑥 −are the maximum torques 

arising in the elastic links of the machine mechanisms Fig. 

1. during braking. 

Using Cardan's method, we find the frequency of 

vibrations of the system mass [20]. For this purpose, the 

frequency equation (11) reduces to: 

𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0                                            (27) 

Where:        

𝑥 = 𝛽2, 

𝑏 = −𝐶12
𝐽1+𝐽2

𝐽1𝐽2
+ 𝐶23

𝐽2+𝐽3

𝐽2𝐽3
+ 𝐶24

𝐽2+𝐽4

𝐽2𝐽4
,

𝑐 = 𝐶12𝐶24
𝐽1+𝐽2+𝐽4

𝐽1𝐽2𝐽4
+ 𝐶12𝐶23

𝐽1+𝐽2+𝐽3

𝐽1𝐽2𝐽3
+

𝐶23𝐶24
𝐽2+𝐽3+𝐽4

𝐽2𝐽3𝐽4

𝑑 = −𝐶12𝐶23𝐶24
𝐽1+𝐽2+𝐽3+𝐽4

𝐽1𝐽2𝐽3 𝐽4
.

,

}
  
 

  
 

                   (28) 

By substitution of the unknown in equation (27) 

𝑧 = 𝑥 +
𝑏

3
                                                                  (29)    

we obtain the above equation: 

𝑧3 + 𝑝𝑧 + 𝑞 = 0                                                       (30) 

where:     

𝑝 =
3𝑐−𝑏2

3
;    𝑞 =

2𝑏3

27
−
𝑏𝑐

3
+ 𝑑                                 (31) 

The roots of the equation (30) are in the form: 

𝑧1 = 𝑛 + 𝛾;  𝑧2 = 𝜀1𝑛 + 𝜀2𝛾;  𝑧3 = 𝜀1𝑛 − 𝜀2𝛾      (32) 

where: 

𝑛 = √−
𝑞

2
+ √𝐷

3
, 𝑛 = √−

𝑞

2
− √𝐷

3
, 𝐷 = (

𝑝

3
)
3
+

(
𝑞

2
)
2
, 𝜀1 − 𝜀2 =

(−1±𝑖 √3)

2
                                               (33) 

If D<0, the solution of equation (30) can be represented 

in the form: 

𝑧1 = −2𝑅 cos
𝜑

3
;   𝑧2 = −2𝑅 cos (

𝜑

3
+
2𝜋

3
) ;  𝑧2 =

−2𝑅 cos (
𝜑

3
+
4𝜋

3
)                                                          (34) 

where: 

cos 𝜑 =
𝑞

2𝑅3
;   𝑅 = (sign𝑞)√

|𝑝|

3
                              (35) 

Using (28), we find the coefficients of the equation 

(27): 

𝑏 = −2173136.8;    𝑐 = 6.1517672 ∙ (10)11;   𝑑 =
−4.1038294 ∙ (10)16. 

We find the coefficients of equation (31) as: 

𝑝 = −9.589978 ∙ (10)11;    𝑞 = −3.5561648 ∙ (10)17. 
Then, in accordance with (33): 

𝐷 = −1.0497116 ∙ (10)33 

The " – " sign indicates that a cubic equation has three 

real roots. To determine them, we use the dependence (34), 

predefined the parameters 𝑅 : 𝜑 from (35): 

𝑅 = −565390.07;   𝜑 = 10.323378° 
Substituting the values of R and φ in equation (34), we 

have: 

𝑧1 = 1128741.3;  𝑧2 = −623150.14;  𝑧3
= −505591.21 

The roots of equation (27), according to (29): 

𝑥1 = 1853120.2;  𝑥2 = 218787.72;  𝑥3 = 101228.79 
We find the frequencies of vibrations of the system 

masses: 

𝛽1 = √𝑥1 = 1361.2936;  𝛽2 = √𝑥2 = 467.7475;  𝛽3

= √𝑥3 = 318.1647  

Define the constant integrations A performing the pre-

calculations (14): 

𝛽12
2 = 213681.16;  𝛽23

2 = 349942.86;  𝛽24
2

= 1609512.8   
Substituting the results of calculations and input data 

according to (16) - (19) after transformations we find: 

∆𝐴(23)1 = −140.83468 ∙ (10)
17;   ∆𝐴(24)1

= 57.394406 ∙ (10)17 
Using (15), we find: 

𝐴(12)1 = −2.897 N ∙ m;  𝐴(23)1 = 0.938 N ∙ m; 𝐴(24)1
= −0.356 N ∙ m 

Replacing in (16) - (19) 𝛽1
2 to 𝛽2

2, we find that: 

∆𝐴2 = −2.9012822 ∙ (10)
17;   ∆𝐴(12)2

= 46.47211 ∙ (10)17 

∆𝐴(23)2 = −5.4045926 ∙ (10)
17;   ∆𝐴(24)2

= −24.849211 ∙ (10)17 

We find the constant integration A at the cycle 

frequency 𝛽2: 

𝐴(12)2 = −16.018 N ∙ m;  𝐴(23)2 = 1.863 N ∙ m;  𝐴(24)2
= −8.565 N ∙ m 

Replacing in (16) - (19) 𝛽1
2 to 𝛽3

2, we find that: 

∆𝐴3 = −1.2661792 ∙ (10)
17;   ∆𝐴(12)3

= 31.018269 ∙ (10)17 

∆𝐴(23)3 = −0.9782194 ∙ (10)
17;   ∆𝐴(24)3

= 17.172189 ∙ (10)17 
We find the constant integration A at the cycle 

frequency 𝛽3: 

𝐴(12)3 = −24.497 N ∙ m;  𝐴(23)3 = 0.772 N ∙ m;  𝐴(24)3
= −13.562 N ∙ m 

Finding the constant integration B: 

Since the braking process is performed with the initial 

conditions: 

𝑇̇(12)0 = 0; 𝑇̇(23)0 = 0; 𝑇̇(24)0 = 0, analyzing (21) - 

(25), we conclude that: 

𝐵(12)1 = 0;  𝐵(23)1 = 0;  𝐵(24)1 = 0.  

Similarly: 

𝐵(12)2 = 0;  𝐵(23)2 = 0;  𝐵(24)2 = 0;  𝐵(12)3 = 0;  𝐵(23)3
= 0;  𝐵(24)3 = 0 

Substituting the results in equations (12), we have: 

𝑇12 = −2.897 cos 1361.3𝑡
− 16.018 cos 467.7𝑡
− 24.497 cos 318.1𝑡 − 46.43 

𝑇23 = 0.938 cos 1361.3𝑡
− 1.863 cos 467.7𝑡
+ 0.772 cos 318.1𝑡 − 5.51 

𝑇24 = −0.356 cos 1361.3𝑡
− 8.565 cos 467.7𝑡
− 13.562 cos 318.1𝑡 − 24.34 

An analysis of equations (12) and the resultsshow that 

the maximum value of the dynamic loads arising during 

braking in mechanisms of circular machine KO2 can be 

determined from the conditions: 

𝑇12𝑚𝑎𝑥 = |𝐴(12)1| + |𝐴(12)2| + |𝐴(12)3| + |𝑎12|; 

𝑇23𝑚𝑎𝑥 = |𝐴(23)1| + |𝐴(23)2| + |𝐴(23)3| + |𝑎23|; 

𝑇24𝑚𝑎𝑥 = |𝐴(24)1| + |𝐴(24)2| + |𝐴(24)3| + |𝑎24| 

Then: 

𝑇12𝑚𝑎𝑥 = 89.842 N ∙ m;  𝑇23𝑚𝑎𝑥 = 9.083 N ∙ m;  𝑇24𝑚𝑎𝑥
= 46.823 N ∙ m  

The coefficients of dynamic overloads of the elastic 

links of the circular knitting machine mechanisms, using 

(26), results in: 

𝐾12 = 4.06;  𝐾23 = 0.51;  𝐾24 = 10.64. 
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3. Conclusions and future work 

A system model for the dynamic load during the braking 

of a KO-type circular knitting machine is presented. This 

model incorporates the effects of elastic links. The 

proposed method for studying the braking dynamics of 

mechanical systems with elastic links enables the 

determination of the maximum dynamic loads arising 

within machine mechanisms during braking, as 

demonstrated in the preceding section. The coefficients of 

dynamic overload for the elastic links in the circular 

knitting machine mechanisms were determined. The study 

revealed that during the braking of mechanical systems, 

dynamic loads significantly surpass those encountered 

during the start-up phase, a crucial factor that must be 

considered in machine design. The findings of this research 

hold potential for future applications in the development of 

novel machines and mechanisms.  
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