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Abstract 

Membrane technology has gained prominence in oil-water separation due to its efficiency, sustainability, and ability to 

address complex filtration challenges. Water scarcity remains a critical global concern, further exacerbated by the discharge 

of oily wastewater from industries such as textiles, metal finishing, and food processing. Membrane-based filtration systems 

have emerged as a superior alternative to traditional separation techniques, offering enhanced filtration performance and 

improved water recovery. However, challenges such as membrane fouling, limited durability, and performance variability 

under different operational conditions persist. This review provides a comprehensive evaluation of the mechanical aspects of 

membrane technology in oil-water filtration, focusing on fundamental operational principles, key mechanical parameters 

affecting performance, advancements in membrane materials, and persistent challenges. Additionally, recent innovations in 

membrane fouling mitigation strategies are discussed, with an emphasis on their comparative effectiveness. The review also 

highlights the future research directions necessary to further optimize membrane performance for industrial applications 

© 2025 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

Water scarcity continues to challenge sustainable 

development, with industrial sectors increasingly 

contributing to this crisis by discharging large volumes of 

oily wastewater [1]–[3]. Over recent decades, the 

industrial sector has consistently escalated its water 

consumption. Concurrently, various industrial operations 

generate substantial volumes of oily wastewater, posing a 

threat to human health through contamination of aquatic 

ecosystems [4]–[6]. Oily wastewater, a common 

occurrence, originates from diverse industries such as 

textile manufacturing, metal finishing, oil and gas 

extraction, and food and beverage processing [7]–[9]. 

Notably, oil and gas production contributes to the largest 

stream of oily wastewater globally [10]–[12]. Over time, 

various treatment methods have been developed to address 

oily wastewater, including flotation, coagulation, 

flocculation, gravitational settling, and adsorption [13]–

[15]. However, most of these approaches are constrained 

by the significant use of chemical agents, extensive 

installation space requirements, and limited efficiency in 

separating small oil droplets [16]–[18]. These constraints 

compromise their viability and sustainability. In recent 

years, gravity-based separators, centrifugation, 

hydrocyclones, and conventional physical procedures like 

coagulation and dissolved-air flotation are the most widely 

used industrial technologies for the treatment of oily 

wastewater [19]–[21]. According to Jiao et al. [22], gravity 

separators are inadequate for emulsified oil and were 

created to remove oil droplets that are 150 µm or larger. 

Oil droplet sizes below 40 µm render corrugated plate 

separators inefficient [23]–[26]. Example, hydrocyclone 

performance decreases with oil droplet size [27]–[30]. 

According to Joshua et al. [31], the rejection of oil drops 

from a rejection of 50-80% at 20 µm to between 10 and 

30% at 10 µm. Over the past few years, membrane 

technology has emerged as a promising technique for 

separating oil and water emulsions, with the aim of water 

recovery [32]–[34]. Membrane technology-based for oil-

water separation techniques are robust and compact in 

comparison to conventional filtration procedures, and they 

provide high-quality treated effluent [35]–[37]. Membrane 

technology can effectively reject or remove a variety of 

contaminants, including pathogens and suspended 

impurities, by size exclusion,  and adsorption [38]–[41]. 

Although membrane technology has been widely used for 

oily wastewater separation, its application is limited due to 

membrane fouling (pore blockage), which results in poor 

separation quality of oil and water emulsions [42]–[45]. 

The major issue with commonly used membrane materials 

for oil and water separation is pore blockage (membrane 

fouling), which leads to a drop in permeate flux, reduced 

separation quality, and decreased efficiency [46]–[48]. 

This results in an increase in the retentate aqueous 

solution. Pore clogging during separation causes a rise in 

transmembrane pressure, a frequently observed problem 
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with current membrane materials. Excessive 

transmembrane pressure also raises the temperature of the 

feed aqueous solution, further impairing separation 

efficiency [49]–[53]. Consequently, low membrane 

wettability, poor permeate quality, reduced permeate flux, 

and overall poor membrane performance are common 

issues [54]–[56].  

In recent years, biological treatment has gained traction 

as an environmentally friendly approach, utilizing oil-

degrading microorganisms to break down hydrocarbons 

[57]–[60]. While effective for low-concentration oily 

wastewater, biological methods require long retention 

times and controlled operational conditions, making them 

less practical for high-load industrial discharges [61]–[63]. 

Membrane technology has emerged as a highly promising 

alternative due to its ability to efficiently separate oil and 

water emulsions with high selectivity and minimal 

chemical usage. Microfiltration (MF), ultrafiltration (UF), 

nanofiltration (NF), and reverse osmosis (RO) membranes 

are increasingly applied in industrial wastewater treatment, 

offering advantages such as high permeate quality, reduced 

environmental impact, and scalability [64]–[66]. However, 

challenges such as membrane fouling, energy 

consumption, and material durability remain key areas of 

research and innovation. 

Despite these advantages, membrane fouling remains a 

significant hurdle, impacting separation efficiency by 

blocking membrane pores, reducing permeate flux, and 

lowering oil rejection rates [67]–[69]. Addressing these 

challenges requires a deeper understanding of the 

mechanical factors influencing membrane performance, 

such as transmembrane pressure (TMP), crossflow 

velocity (CFV), and temperature. Additionally, research 

into advanced membrane materials, including ceramic and 

polymeric composites, has contributed to notable 

improvements in mechanical stability and filtration 

efficiency. This review aims to examine the progress made 

in membrane technology for oil-water filtration by 

analysing mechanical operational parameters, recent 

advancements, and persistent challenges. It further 

provides insights into emerging mitigation strategies for 

membrane fouling and highlights future research directions 

to enhance membrane performance. 

2. BASIC Mechanical OPERATION OF membrane 

technology 

In recent years, membrane technology has emerged as a 

promising method for separating oil and water, primarily 

due to its potential to recover water for reuse, a critical 

consideration given the global water scarcity [70]–[73]. 

The field of membrane technology has garnered significant 

attention from researchers due to the pressing water 

scarcity issues worldwide [74]–[76]. To ensure the 

efficient separation of oil and water emulsions using 

membrane technology, it's crucial to understand the basic 

operation of membrane technology used for oil-water 

separation process. Generally, membrane technology is 

characterized by pore sizes and pressure [77]. A range of 

membrane technologies featuring different operational 

pressures and membrane pore sizes have been utilized for 

separating oil and water, as depicted in Table 1.  

Table 1. A range of membrane technology indicating various 

operational pressures and membrane pore sizes [78]. 

Membrane Type Operating  
Pressure (bar) 

Pore Size (µm) 

High-Pressure 

Filtration (HPF) 

35 - 65 
 

< 0.001 

Advanced 

Nanofiltration (ANF) 

22 - 45 

 

0.001 – 0.005 

Enhanced 

Ultrafiltration (EUF) 

2 - 12 
 

0.005 – 0.02 

Microfiltration Plus 

(MFP) 

< 2 

 

> 0.02 

Furthermore, Illustrated in Figure 1 is an example of an 

oil and water filtration membrane. The feed consists of oil 

and water emulsions entering the feed stream of the 

filtration membrane for separation. 

 

Figure 1. Schematic oil and water filtration membrane. 

Membrane technology operates like a sieve, with a 

selective surface designed based on the desired end 

product. Generally, membrane technologies used for oil-

water filtration are either hydrophobic or hydrophilic. 

Figure 1 illustrates a membrane technology used for oil-

water separation that repels oil from passing through. For 

example, the feed in Figure 1 represents the oil-water 

emulsions from the feeding tank before filtration. The 

emulsions enter the feed side, passing through the 

membrane configuration at a certain velocity and pressure 

[79]–[82]. Depending on the selectivity of the membrane 

surface, either water or oil is repelled from passing through 

to the permeate side [83]. In this case, the water passes 

through the membrane, as shown in Figure 1, which is 

aimed at water recovery. The emulsions that are not 

filtered return to the retentate tank to be filtered again. The 

model for the analysing the feed is derived from Figure 2 

as indicated below.  

 

Figure 2. Schematic of pressure feed, permeate, and retentate in 

membrane technology. 
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Since the operating pressure is the primary driving 

force for oil-water separation in membrane technology, the 

forces entering the membrane system were equated to the 

forces exiting the system, inspired by the conservation of 

mass equation. Equation (1) was used to estimate the feed 

into the membrane system, implying that the feed is equal 

to the sum of the permeate and retentate [84].  

𝐹𝑒 = 𝑃𝑒 + 𝑅𝑒                                            (1) 

Equation (1), 𝐹𝑒 is the feed, 𝑃𝑒 is the permeate, and 𝑅𝑒 

retentate. Feed in Equation (1) is an aqueous solution 

consist of oil and water emulsions. Emulsions are 

classified as kinetically stable and thermodynamically 

unstable. A derivation of the Gibbs free energy in 

accordance with equation (2) can be used to express the 

theoretical stability and thermodynamics of an emulsion 

[85]. 

∆𝐺 = (𝛾𝐴) − (𝑇∆𝑆)             (2) 

Equation (2), 𝛾 is the surface tension, 𝐴 is the surface 

area, 𝑇 is the emulsion temperature, ∆𝑆 is the entropy of 

mixing, and finally ∆𝐺 is the Gibbs free energy. The 

magnitude of ∆𝐺 gives a hint as to an emulsion's 

thermodynamic stability. If ∆𝐺 is higher than zero in 

value, afterward the emulsions become relatively unstable 

and separate [86]. If this ∆𝐺 value is smaller than zero, the 

emulsions are stable and won't separate. Oil-water and 

water-oil simple emulsions are typically more prevalent 

than complex emulsions in the petroleum, mining, and 

food production industries [59]. Due to the complex oil 

and water emulsions produced by these industries, 

techniques had to be developed to assist with the 

separation of oily wastewater pollution. Membrane 

technology has long been recognized as an effective 

method for handling complex oil and water emulsions [5], 

[87]–[89]. The efficiency of membrane technology is 

measured by the oil-water quality obtained after separation 

in the permeate field. Several factors affecting oil-water 

separation have been reported, including volume flow rate, 

crossflow velocity, pore size, material selection, and 

driving pressure. Kumar et al. [90] conducted a study on 

the performance of a microfiltration membrane technology 

fabricated using an antifouling-coated composite 

membrane for oil and water separation. The membrane 

investigated in their study had porosity of 78% and a pore 

size of 170 nm. The findings revealed that the membrane 

achieved a water permeability of 4841 m3h−1bar−1 under 

an operational pressure of 27.579 kPa. Oil rejections of 

98.80%, 99%, and 92% were attained at oil concentrations 

of 250 mg/L, 500 mg/L, and 1000 mg/L, respectively. 

Furthermore, the results demonstrated an enhanced water 

recovery rate of 85% from the separation of oil-water 

emulsions, in concluding the findings is was stated that 

newly fabricated microfiltration membrane shows great 

potential for the separation of oil and water emulsions. 

Mao et al. [91]  conducted an experimental 

investigation on a high-performance ceramic 

microfiltration membrane technology for separating oil-

water emulsions. The microfiltration membrane employed 

in the study had pore sizes of 210 nm, and its surface 

exhibited roughness properties. The findings revealed a 

membrane permeance of 217 L. m−2. h−1/bar and an oil 

rejection rate of 99.7%. However, further efforts are 

required to enhance the surface properties of piezoelectric 

membranes to achieve better filtration performance and 

reduce membrane fouling. Jiang et al. [92]  created a 

membrane technology with unique surface wettability to 

explore its effectiveness in filtering oil and water 

emulsions. The pore size of the membrane utilized in the 

experimental setup was below 180 µm, and the outcomes 

demonstrated a separation efficiency exceeding 99%. 

Furthermore, the findings highlighted the importance of 

understanding the mechanical operating factors of 

membrane technology to enhance its performance. 

Therefore, it is crucial to understand the mechanical 

parameters that influence the performance of membrane 

technology. 

3. mechanical parameters affecting membrane 

technology performance  

The mechanical parameters that influence the 

performance of the membrane technology during the oil-

water separation process are found to be the flow rate, 

transmembrane pressure (TMP), crossflow velocity (CFV), 

feed temperature (T) [93]–[95]. The influence of these 

mechanical parameters that affects the membrane system 

is measured by permeate quality during the oil-water 

separation that influences the permeate rejections [96]. 

Often the membrane technology operates in one of the two 

techniques during the oil-water separation process, which 

is either the constant transmembrane pressure or constant 

flow rate [97]–[99]. It is important to understand the role 

of pressure in the membrane technology.  

3.1. Transmembrane Pressure  

The mechanical pressure in membrane technology, 

commonly known as transmembrane pressure (TMP) or 

the driving force, is directly proportional to the permeate 

flux (J), a measure of membrane performance [100]. As 

the pressure increases, the permeate flux also increases. 

However, higher operating mechanical pressure can also 

increase membrane resistance due to the proportionality 

law (𝐽 ↑ 𝛼 𝑅𝑡 ↑)[101]. Darcy’s law model is the 

fundamental model developed to estimate the 

transmembrane pressure in a membrane system, relating it 

to the performance of the membrane system, as 

demonstrated by equation (3) [102]. 

∆𝑃 = 𝐽µ𝑅𝑚               (3) 

Equation (3), 𝐽 represents the permeate flux, ∆𝑃 is the 

transmembrane pressure, µ is the viscosity of the fluid, and 

𝑅𝑚 is the membrane resistance. It should be noted that 

while the equation (3) is adequate for estimating the 

transmembrane pressure in a membrane system, however, 

its application is limited due to it does not account for the 

effects of membrane pores on the surface of the 

membrane. To address this limitation, the Hagen-

Poiseuille model was developed to incorporate the effects 

of pores, as shown equation (4), where 𝑟 is the pore radius 

and 𝐿 is the pore length [103].  Although equation (4) 

considers the effects of the pore sizes on the estimation of 

the transmembrane pressure, its application is limited due 

to it does not take into account the mechanical resistance 

of the membrane surface. To improve equations (3) and 

(4), equation (5) was developed to measure the mechanical  

resistance in membrane system to improve the 

performance, where 𝑅𝑓 is fouling resistance and 𝑅𝑐𝑝 is the 

concentration polarization resistance [104]. It has been 

noted that equation (3), (4), and (5) has been widely used 
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to estimate the mechanical pressure of the membrane 

technology, although the equation (5) indicates the 

improved mechanical pressure estimation it is limited due 

to it does not consider the effects of osmotic pressure and 

membrane thickness.  

∆𝑃 =
𝐽8µ𝐿

𝑟2
              (4) 

∆𝑃 = 𝐽(µ𝑅𝑚 + µ𝑅𝑓 + µ𝑅𝑐𝑝)             (5) 

Tomczak et al. [105] conducted experimental analyses 

on an ultrafiltration membrane for separating oily 

wastewaters to recover water. The experiments were 

conducted across a broad range of temperatures (303 and 

323 K), flow rates (2.9 – 0.82 m/s), and transmembrane 

pressures (0.28 – 0.40 MPa). Remarkably, the findings 

showed that the filtrate obtained was free of oil, and the 

content of organic compounds was reduced by over 80%. 

Sanyal et al. [106] employed ceramic material to produce a 

membrane for the separation of oil and water aimed at 

water recovery. In their experimental analysis, the 

transmembrane pressure was varied from 0.28 to 0.40 

MPa. The results revealed an enhanced performance with a 

30% increase in permeate flux. Xie et al. [107] constructed 

an experimental test rig utilizing ceramic material to create 

a membrane for separating oil and water with the aim of 

water recovery. Throughout the experimental evaluation, 

the pressure was maintained constant. The results revealed 

a porosity of 41%, water permeability of 746 

L. m−2. h−1/bar, and a membrane performance in removing 

waste oil of 88%. Zhao et al. [108] engineered a 

microfiltration membrane for oil and water recovery 

employing ceramic material. The membrane, featuring a 

porosity of 30 – 34% and a pore size of 4.3 µm, underwent 

testing. The outcomes demonstrated a water permeability 

of 36.3 L. m−2. h−1/bar. Zhong et al. [109] fabricated the 

ultrafiltration membrane for oil and water separation using 

ceramic material. During the experimental testing the 

permeate flux and oil rejection were monitored at the 

constant pressure to achieve the improved performance. 

The results revealed the improved water flux of 303.63 

L. m−2. h−1/bar.  

3.2. Cross-flow velocity  

The cross-flow velocity (𝑉𝑐𝑓) in membrane technology 

is often used to describe the mechanical velocity of the 

fluid flowing parallel to the membrane surface, which 

helps to mitigate fouling and concentration polarization 

[110]. The cross-flow (𝑉𝑐𝑓)  velocity plays an important 

role during the oil-water separation process. Four 

alternative outcomes are identified by the cross-flow 

velocity (𝑉𝑐𝑓): partial permeability, rejection, pinning, and 

permeation during the oil-water separation process [111]. 

The critical cross-flow velocity at which a pinned droplet 

detaches can be estimated from the velocity at this point 

[112]. It is important to review the mathematical models 

used to optimize the mechanical cross-flow velocity in 

membrane technology. To date, there are limited 

mathematical models developed to evaluate the 

mechanical velocity in the membrane. However, the 

common models employed for velocity evaluation are 

given by equation (6) and (7) [113], [114]. The equation 

for cross-flow velocity (𝑉𝑐𝑓) is presented in (6), where 𝑉𝑐𝑓 

is the cross-flow velocity, 𝑄𝑐𝑓 is the cross-flow volumetric 

flow rate, and 𝐴𝑐𝑓 is the cross-flow area. In some systems, 

the cross-flow velocity can also be expressed in terms of 

the membrane module and configuration. For example in 

tubular membrane module, it can be approximated by 

equation (7), where 𝐷𝑡 is the diameter of the tubular 

membrane module. In contrast, the mechanical velocity 

presented in equation (6) and (7) shows limitations in 

terms of the estimation of the mechanical velocity because 

the effects of emulsions viscosity are not considered. 

𝑉𝑐𝑓 =
𝑄𝑐𝑓

𝐴𝑐𝑓
                                    (6) 

𝑉𝑐𝑓 =
4𝑄𝑐𝑓

𝜋𝐷𝑡
2                                                            (7) 

Over the years, it has been reported that cross-flow 

velocity and transmembrane pressure significantly affect 

membrane technology performance. Increased cross-flow 

velocity and decreased transmembrane pressure have been 

associated with higher shear stress and reduced 

concentration polarization. According to Hengyang et al. 

[115] their analysis of oil-water separation in membrane 

systems showed that stronger turbulence can enhance 

stationary membrane flux by 41.7% with higher cross-flow 

velocity and more intense ultrasound. Jinglin et al. [116] 

studied the application of membrane systems in 

conjunction with zeolite to treat oily wastewater without 

altering the oil rejection coefficient. They found that a 

greater tangential flow velocity (0.01 m/s) quadrupled the 

flow across the membrane. Despite the feed solution 

having a high oil concentration (500 mg/L), the 

membrane's performance remained excellent. In addition, 

higher quasi-steady-state permeate fluxes ( 165 𝐿 ∙ ℎ−1 ∙
𝑚−2 at a CFV of 4.1 𝑚 ∙ 𝑠−1 compared to 240 𝐿 · ℎ−1 ·
𝑚−2 at a cross flow velocity of 7.1 𝑚 · 𝑠−1 after a 

filtration time of 250 min) were achieved by increasing the 

cross-flow velocity. This increase reduces the likelihood of 

oil particles accumulating on the membrane surface, 

thereby lowering the degree of fouling. Jinglin et al. [117] 

found that at a fixed transmembrane pressure of 1.0 bar, 

increasing cross-flow velocity from 0.25 to 1.0 𝑚 · 𝑠−1 

resulted in increased shear stress at the membrane surface 

and decreased the average rate of oil particle adsorption 

from 23% to less than 7%. According to Sura et al. [49], 

the initial membrane flux was 250 𝐿 ∙ ℎ−1 ∙ 𝑚−2under 

lower transmembrane pressure/cross-flow velocity 

settings, and 750 𝐿 ∙ ℎ−1 ∙ 𝑚−2 under higher 

transmembrane pressure/cross-flow velocity conditions, 

about 2.7 times greater. To further improve the membrane 

performance during oil-water separation it is important to 

understand the influence of temperature during the 

filtration process. 

3.3. Temperature  

Temperature affects various factors that impact 

membrane performance [118]–[121]. As temperature 

increases, the viscosity of the feed solution decreases, 

enhancing permeate flux by reducing resistance to flow 

through the membrane [122]–[125]. Elevated temperatures 

can increase the solubility of certain solutes, potentially 

improving separation efficiency and reducing the 

likelihood of fouling [126]–[129]. As temperature rises, 

the permeability of the membrane typically increases due 

to the expansion of membrane pores and greater molecular 

activity, resulting in higher flux rates [130]–[132]. 

Temperature also affects fouling and scaling behavior. 

Higher temperatures can decrease the viscosity and density 

of the feed, reducing the chance of foulant accumulation 

[68].  
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However, they can also promote the precipitation of 

salts, leading to scaling. Additionally, the chemical and 

physical stability of membrane materials can be 

compromised at higher temperatures, affecting membrane 

integrity and longevity [133]. Increased temperature can 

elevate the osmotic pressure of the feed solution, 

particularly in systems with high solute concentrations, 

impacting the driving force of processes like reverse 

osmosis [134]. Understanding these temperature effects is 

essential for optimizing membrane performance and 

ensuring efficient and sustainable operation in various 

applications. Over the years, key temperature-related 

models have been developed to understand the 

performance of membrane technology, as indicated by 

equations (8) to (12) [51]. The viscosity-temperature 

relationship is given by the Arrhenius model in equation 

(8), where µ(𝑇) is the viscosity at temperature T, µ0 is the 

reference viscosity at temperature 𝑇0, while 𝐸𝑎 is the 

activation energy for viscosity, R is the universal gas 

constant, T is the temperature in Kelvin, and 𝑇0 is the 

reference temperature in Kelvin.  

µ(𝑇) = µ0𝑒𝑥𝑝 (
𝐸𝑎

𝑅
(

1

𝑇
−

1

𝑇0
))            (8) 

In contrast, equation (8) does not consider the effects 

permeability due to this concerns this model was subjected 

to improvements where the facts such as permeability of 

the membrane often increases with temperature were 

considered, then the permeability-temperature relationship 

model was given by mathematical equation in (9), where 

𝐾(𝑇) is the permeability at temperature, 𝐾0 is the 

reference permeability, 𝐸𝑝 is the activation energy for 

permeability, 𝑇 is the temperature in Kelvin, and 𝑇0 is the 

reference temperature in Kelvin [135]. The flux through 

the membrane generally increases with temperature due to 

decreased viscosity and increased permeability, flux-

temperature equation is given by equation (10), where 

𝐽(𝑇) is the permeate flux at temperature, 𝐽0 is the reference 

flux, 𝐸𝐽 is the activation energy for flux, 𝑇 is the 

temperature in Kelvin, and 𝑇0 is the reference temperature 

in Kelvin [136]. However, equation (10), does not take 

into account the effects of viscosity, this aspect makes this 

model to the limited. In comparison, equation (8), (9), and 

(10) does not consider the effects of mechanical membrane 

resistance which rises during the oil-water separation, it is 

important to note that these models need the improvements 

for industrial application.   

𝐾(𝑇) = 𝐾0𝑒𝑥𝑝 (
𝐸𝑝

𝑅
(

1

𝑇0
−

1

𝑇
))                           (9) 

 𝐽(𝑇) = 𝐽0𝑒𝑥𝑝 (
𝐸𝐽

𝑅
(

1

𝑇
−

1

𝑇0
))          (10) 

Furthermore, mechanical aspect of the temptation 

influence during oil-water filtration were investigated to 

improve on the existing mathematical models. The 

membrane resistance can change with temperature, 

typically decreasing as temperature increases, the 

membrane resistance and temperature equation is given by 

equation (11), where 𝑅𝑚 is the membrane resistance at 

temperature, 𝑅𝑚0 is the temperature coefficient of 

resistance, 𝑇 is the temperature in Kelvin, and 𝑇0 is the 

reference temperature in Kelvin [137]. Additionally, the 

osmotic pressure and temperature relationship was 

developed to estimate the osmotic pressure, as indicated by 

equation (12), where 𝜋 is the osmotic pressure, 𝐶 is the 

concentration of the solute, 𝑅 is the universal gas constant, 

and 𝑇 is the temperature in Kelvin [138]. Although these 

equations help in understanding and predicting the effects 

of temperature on various aspects of membrane 

performance. 

𝑅𝑚(𝑇) = 𝑅𝑚0(1 − 𝛼(𝑇 − 𝑇0))          (11) 

𝜋 = 𝐶 × 𝑅 × 𝑇                            (12) 

Table 2 provides a comprehensive overview of the key 

mechanical parameters influencing membrane technology 

performance, highlighting their impact, mathematical 

models, and current research insights. 

Table 2. Mechanical parameters affecting membrane technology performance 

Mechanical 
Parameter 

Definition Effect on 
Performance 

Key Mathematical 
Models 

Limitations Recent Experimental 
Insights 

Transmembrane 

Pressure (TMP) 

The pressure 

difference across 
the membrane that 

drives filtration. 

Higher TMP 

increases 
permeate flux but 

may enhance 

membrane 
resistance and 

fouling. 

Darcy’s Law, 

Hagen-Poiseuille 
Equation, Modified 

Resistance Model 

Does not always 

account for osmotic 
pressure and 

membrane 

thickness. 

TMP variations affect oil 

rejection efficiency and 
fouling behavior, requiring 

optimized pressure levels. 

Crossflow 
Velocity (CFV) 

The velocity of 
fluid moving 

parallel to the 

membrane surface, 

reducing fouling 

and polarization. 

Increased CFV 
improves shear 

stress, reduces 

fouling, and 

enhances 

membrane flux. 

Velocity-Flow Rate 
Relationship, 

Tangential Flow 

Velocity Equations 

Existing models do 
not fully consider 

emulsion viscosity 

effects. 

Higher CFV enhances 
membrane performance by 

reducing oil deposition and 

increasing flux. 

Feed 

Temperature 
(T) 

The temperature of 

the feed solution, 
affecting viscosity, 

permeability, and 

membrane stability. 

Higher 

temperatures 
reduce viscosity, 

improve flux, but 

may promote 
scaling and 

degrade 

membrane 
materials. 

Arrhenius Viscosity 

Model, Permeability-
Temperature 

Relationship, 

Osmotic Pressure 
Equation 

Many models do 

not incorporate 
mechanical 

resistance changes 

at different 
temperatures. 

Optimal temperature 

control prevents excessive 
scaling while maintaining 

high separation efficiency. 
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4. performance MATRICS of membrane 

technology 

The effectiveness of membrane technology is largely 

influenced by the interaction between its internal 

mechanical properties and key performance factors, 

including oil rejection, permeate flux, and resistance to 

fouling [139]–[141]. Inadequate analysis of these 

parameters and factors can compromise the quality of the 

filtrate, leading to a decline in membrane performance. 

Current trends in membrane technology improvements 

focus on optimizing mechanical parameters such as 

temperature, pressure, flow dynamics, feed solution 

properties, and membrane material characteristics to 

enhance the efficiency and effectiveness of membrane-

based processes [141]–[143]. Massoumeh et al. [144] 

conducted a study on the performance of a microfiltration 

membrane fabricated using an antifouling-coated 

composite membrane for oil and water separation. The 

membrane investigated in their study had porosity of 78% 

and a pore size of 170 nm. The findings revealed that the 

membrane achieved a water permeability of 4841 

m3h−1bar−1 under an operational pressure of 27.579 kPa. 

Oil rejections of 98.80%, 99%, and 92% were attained at 

oil concentrations of 250 mg/L, 500 mg/L, and 1000 mg/L, 

respectively. In contrast, it has been reported that high 

pressure reduces the filtrate quality, hance at 1000 mg/L 

indicated the performance of 92% [145].  

Yonghong et al. [66] conducted an experimental 

investigation on a high-performance ceramic 

microfiltration membrane for separating oil and water 

emulsions. The microfiltration membrane employed in the 

study had pore sizes of 210 nm, and its surface exhibited 

roughness properties. The findings revealed a membrane 

permeance of 217 L. m−2. h−1/bar and an oil rejection rate 

of 99.7%. However, further efforts are required to enhance 

the surface properties of piezoelectric membranes to 

achieve better filtration performance and reduce membrane 

fouling. While Guohui et al. [146] created a membrane 

with unique surface wettability to explore its effectiveness 

in filtering oil and water emulsions. The pore size of the 

membrane utilized in the experimental setup was below 

180 µm, and the outcomes demonstrated a separation 

efficiency exceeding 99%. However, during the analysis 

the effects of variation of applied pressure was not 

evaluated. Furthermore, the findings indicated that the 

future of membrane technology depends on developing 

membranes with these wetting properties that can 

withstand high transmembrane pressures, achieve higher 

permeation rates of the desired liquid, resist fouling, and 

be manufactured scalable at a reasonable cost [147]. 

Creating a selective wettability membrane with these 

characteristics will demand innovative solutions and pose 

various intellectual and research challenges [148]. Such 

membranes will address the increasing needs for waste and 

byproduct treatment across a wide range of fields. Xuan et 

al. [149]  devised a novel approach to enhance the 

efficiency and anti-oil fouling performance of polymeric 

membranes for oil and water separation. Experimental 

analyses were conducted to assess membrane 

effectiveness, revealing superoleophobic surface properties 

and significant resistance to oil adhesion. The membrane 

exhibited a water flux of 1000 L. m2. h−1 and a separation 

efficiency of 97%. However, the surface energy and 

surface tension of this membrane needs a further 

investigation since it was reported that it too 18-50 

seconds for oil-water permeation to take place, afterwards 

the cake layer was observed.  Jiaqian et al. [150] 

constructed a multifunctional membrane to investigate the 

separation of oil and water emulsions through the gravity-

driven method. The results indicated a high permeation 

flux reaching up to 46312 ± 1583 L. m2. h−1 and a 

separation efficiency exceeding 98%. But extraction 

efficiency was reported to be decreasing over time.  In 

agreement, Yuan et al. [151] engineered a superwetting 

membrane for the separation of oil and water emulsions 

aimed at water recovery. The outcomes demonstrated a 

flux of up to 2000 L. m2. h−1 and a remarkable separation 

efficiency of 99.99%. In contrast, Mahya et al. [152] 

established a novel experimental setup incorporating a 

microfiltration membrane system to compare the flux 

recovery ratio of modified and unmodified membranes 

during the separation of oil and water emulsions for water 

recovery. The testing phases involved feed concentrations 

of 300 mg/L and 500 mg/L. Initially, testing was 

conducted using the unmodified membrane, followed by 

experimentation on the modified membrane surface. The 

results revealed a flux recovery ratio of 90.76% for the 

modified membrane, significantly higher than the 20.41% 

observed for the bare membrane. 

Najib et al. [153] fabricated a low-cost clay membrane 

which has both thermal and mechanical stability during oil 

and water separation process. The results revealed the 

porosity of 29%, water permeation of 290 L. m−2. h−1, and 

rejection performance of 96.9%. While Jinglin et al. [154] 

developed a self-cleaning and economically viable 

composite membrane for the separation of oil and water 

emulsions to enable water recovery. The membrane 

surface featured an average pore size of 190 nm. The study 

unveiled a stationary flux of 190 L. m−2. h−1/bar and an 

enhanced rejection performance by 65.7%. Also, the 

results indicated that at increased pore sizes the flux 

increases with an accumulation of cake layer. However, 

this study did not consider the effects of applied pressure, 

which is one of the important parameters to be considered 

during the filtration.   

Additionally, Yajie et al. [155] conducted experimental 

tests using a nanofibrous membrane with superoleophilic 

properties for separating oil and water emulsions to 

facilitate water recovery. The results demonstrated a stable 

permeate flux reaching as high as 536 ± 40 L. m−2. h−1/bar 

after 10 hours of continuous filtration of oil and water 

emulsions. Similarly, the study of Yajie did not also 

consider the effects of pressure, which also the oil 

rejection ratio is not indicated. Moreover, Somjyoti et al. 

[156] constructed a test rig employing a hydrophobic 

composite membrane to separate oil from water for water 

recovery. Throughout the testing phase, the membrane 

permeability was closely monitored to attain optimal 

separation efficiency. The findings demonstrated a 

consistent flux ranging from 80 to 100 L. m−2. h−1 and 

excellent water rejection exceeding 99%.  

Conversely, Shiwei et al. [157] conducted experimental 

analyses on an ultrafiltration membrane for separating oily 

wastewaters to recover water. The experiments were 

conducted across a broad range of temperatures (303 and 
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323 K), flow rates (2.9 – 0.82 m/s), and transmembrane 

pressures (0.28 – 0.40 MPa). Remarkably, the findings 

showed that the filtrate obtained was free of oil, and the 

content of organic compounds was reduced by over 80%. 

Shahidul et al. [158] conducted experimental research on a 

microfiltration composite membrane for separating oil and 

water emulsions to enable water recovery. Throughout the 

experimental testing, the oil concentrations were varied 

from 250 mg/L to 1000 mg/L. The membrane had a 

porosity of 78% and an average pore size of 170 nm. The 

results demonstrated excellent performance, with increased 

oil rejections observed as the oil concentrations rose from 

98.80% to 99.20%. In agreement, Jietao et al. [159] 

explored the application of low-cost membrane technology 

by utilizing bauxite membranes with straight pores for oil 

and water separation processes. Throughout the 

experimental procedure, consideration was given to the 

effective average oil diameter of approximately 1.90 µm, 

as well as initial permeation fluxes of 4.31× 103 and 10.35 

× 103 L. m−2. h−1. The findings indicated promising 

outcomes, with rejection rates reaching nearly 100%. In a 

similar vein, Miray et al. [160]  investigated the efficacy of 

membrane technology in oil and water separation by 

examining a range of feed concentrations from 7.5 to 200 

ng/mL. The findings highlighted an enhanced oil and 

water separation performance exceeding 80%. The latest 

advancements in membrane technology are summarized in 

Table 3, based on the analysis of the performance metrics 

discussed in this section. 

Table 3. Membrane Technology Performance Analysis 

Membrane 
Technology  

Strengths Limitations Applications Future Directions 

Antifouling-Coated 

Composite 

Membrane 

High oil rejection 

(98.80% - 99%), high 

permeability 

Performance declines at 

high oil concentrations 

(1000 mg/L) 

Oil-water separation, 

industrial wastewater 

treatment 

Enhancing antifouling 

properties, improving high-

concentration performance 

Ceramic 

Microfiltration 

Membrane 

High oil rejection 

(99.7%), good 

permeance 

Surface roughness affects 

long-term efficiency 

Oil emulsion 

separation, industrial 

processes 

Refining surface properties 

for better efficiency 

Surface Wettability 
Membrane 

High separation 
efficiency (>99%), 

unique surface properties 

Lack of pressure variation 
analysis 

 

Advanced filtration of 
emulsions 

Developing membranes with 
higher transmembrane 

pressure resistance 

Superoleophobic 
Polymeric 

Membrane 

Superoleophobic 
properties, resistance to 

oil adhesion 

Surface tension needs 
further study, formation 

of cake layer 

Oil-water separation 
in harsh environments 

 

Optimizing surface energy 
and tension for better 

filtration 

Gravity-Driven 

Multifunctional 
Membrane 

High permeation flux 

(46312 L.m².h⁻¹), 
efficient separation 

Efficiency declines over 

time 
 

Gravity-driven 

filtration for oil-water 
emulsions 

Enhancing durability and 

separation stability 
 

Superwetting 

Membrane 

High separation 

efficiency (99.99%), 
water recovery potential 

Scaling challenges for 

mass production 
 

Water recovery from 

emulsions 
 

Improving scalability and 

manufacturing techniques 

Modified 

Microfiltration 

Membrane 

Higher flux recovery 

ratio (90.76%) compared 

to unmodified membrane 

Initial lower performance 

in unmodified state 

 

Membrane 

modification for 

improved 
performance 

Enhancing modification 

methods for better 

performance 

Low-Cost Clay 

Membrane 

Thermal and mechanical 

stability, cost-effective 

Lower porosity (29%), 

moderate permeation rate 

Cost-effective 

filtration in resource-
limited settings 

Increasing porosity while 

maintaining mechanical 
stability 

Self-Cleaning 

Composite 
Membrane 

Self-cleaning properties, 

economic feasibility 

Increased pore sizes lead 

to cake layer 
accumulation 

Water recovery, 

industrial wastewater 
treatment 

Improving cleaning 

efficiency and longevity 
 

Nanofibrous 

Superoleophilic 

Membrane 

Stable permeate flux 

(536 L.m⁻².h⁻¹/bar), 

durable 

Effects of pressure not 

analyzed, no oil rejection 

ratio reported 

Oil-water emulsion 

separation, long-term 

applications 

Evaluating pressure effects, 

refining oil rejection 

properties 

Hydrophobic 
Composite 

Membrane 

Consistent flux (80-100 
L.m⁻².h⁻¹), high water 

rejection (>99%) 

Flux variations under 
different conditions not 

extensively tested 

Separation of oil from 
water in diverse 

industrial settings 

Expanding research on 
different operational 

conditions 

Ultrafiltration 
Membrane 

Effective oil removal, 
reduces organic 

compounds (>80%) 

Performance varies with 
temperature and flow rate 

Oil removal from 
wastewater, organic 

compound reduction 

Optimizing operation across 
wider temperature and 

pressure ranges 

Microfiltration 
Composite 

Membrane 

High oil rejection 
(98.80%-99.20%) at 

varying oil 

concentrations 

Limited testing for long-
term durability 

 

Filtration of 
emulsions with 

variable oil 

concentrations 

Investigating long-term use 
and durability 

 

Bauxite Membrane Low-cost, high rejection 
rates (~100%) 

Limited study on scaling 
potential 

Low-cost oil-water 
separation 

Developing economically 
viable scaling options 

Membrane 

Technology for Low 
Feed Concentrations 

Enhanced separation 

performance (>80%) 
even at low feed 

concentrations 

Efficiency variation with 

different feed 
concentrations 

 

Efficient separation 

for low-concentration 
feed streams 

Enhancing efficiency at 

varying feed concentrations 
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5. challenges and ADVANCED STRATEGIES 

FOR MITIGATING PERFORMANCE DECLINE 

in membrane technology 

The challenge of effectively separating oil-water 

emulsions has intensified with the development of 

advanced membranes designed for oil removal. As 

industries generate increasing volumes of oily wastewater 

containing emulsified oil, efficient treatment methods are 

essential to facilitate safe disposal or water reuse [161]–

[163]. Membrane technology has emerged as a viable 

solution due to its ability to remove oil droplets as small as 

15 µm while maintaining cost-effectiveness and high 

separation efficiency [164]–[167]. However, despite its 

advantages, membrane-based processes face a persistent 

challenge: membrane fouling. 

Membrane fouling occurs when unwanted materials—

such as oil residues, suspended particles, and other 

contaminants—accumulate on the membrane surface or 

within its pores during the separation process [168]–[170]. 

This accumulation obstructs membrane pores, leading to a 

reduction in permeate flux and a decline in the quality of 

the filtered water. In severe cases, complete pore blockage 

significantly compromises membrane performance, 

making oil-water separation less efficient [171]–[174]. Jie 

et al. [175] highlighted membrane technology as an 

effective approach for treating oily wastewater, but its 

practical application is often hindered by fouling caused by 

oil adsorption onto the membrane surface. Addressing this 

issue is critical for enhancing membrane longevity and 

operational efficiency. 

The occurrence of membrane fouling in oily 

wastewater treatment requires ongoing maintenance and 

contributes to increased operational costs. Several factors 

influence fouling behaviour in oil-water emulsions, 

including the deformability of oil droplets, their tendency 

to coalesce within the bulk solution and on the membrane 

surface, membrane wetting by oil films, pore blockage, 

and the intrusion of oil into the membrane structure [176]–

[178]. These complexities create unique challenges that 

must be addressed to improve membrane performance. To 

mitigate membrane fouling, researchers are exploring 

innovative strategies, including surface modifications to 

enhance antifouling properties, the development of 

hydrophilic and superoleophobic membranes, and 

advancements in cleaning techniques to prolong membrane 

lifespan. Understanding and overcoming these challenges 

are essential to optimizing membrane-based oil-water 

separation technologies, ensuring their long-term viability 

for industrial and environmental applications. 

Figure 3 shows an example of the fouling phenomenon 

in the membrane technology used for oil and water 

separation. In Figure 3, where is the 𝐝𝐩 is pore diameter 

and d is the foulant diameter, when the foulant’s diameter 

is roughly equal to the pore diameter, membrane pores 

plug. Also, the foulant reduces the filtration area by 

reducing the pore cross-sectional area, which affects the 

filtration quality during the oil/water separation process 

[179].  Finally, when the foulant diameter is greater than 

the pore diameter, complete pore blockages occur, the cake 

layer is formed, and there will be minimal or no oil/water 

separation by the membrane system [180]. Membrane 

fouling is a greater challenge faced by the oil and water 

separation technology reported in the literature study 

[181], [182]. Fouling mitigation is expensive, typically 

involves delays in the treatment of oily wastewater, and 

lowers the effectiveness of membrane filtration, which 

lowers the quality of the oil-water separation [40], [183]. 

 
Figure 3. Example illustrating membrane fouling. 

To combat membrane fouling, researchers and engineers 

have developed various mitigation strategies, each 

employing unique mechanisms with specific advantages 

and limitations. These strategies aim to minimize fouling 

buildup, enhance membrane cleaning efficiency, and 

prolong membrane lifespan [14], [184]–[186]. Among the 

most widely explored approaches are surface modifications, 

chemical cleaning, physical backwashing, and the 

incorporation of antifouling coatings [187]–[189]. 

Surface modification techniques, such as grafting 

hydrophilic or superoleophobic coatings onto membranes, 

have shown promising results in reducing oil adhesion and 

fouling. By altering membrane surface properties, these 

modifications enhance resistance to oil adsorption and 

biofouling, leading to improved separation performance 

[190]–[192]. Additionally, periodic backwashing—where 

pressurized water or air is used to dislodge accumulated 

contaminants—helps restore membrane permeability and 

extends operational efficiency [193], [194]. 

Furthermore, the integration of advanced cleaning 

protocols, including chemical cleaning agents and 

enzymatic treatments, has been employed to dissolve and 

remove foulants more effectively. Emerging technologies, 

such as electrically assisted cleaning and the use of novel 

nanomaterials, are also being explored to further optimize 

fouling control. 

A comparative analysis of these mitigation strategies is 

presented in Table 4, highlighting their effectiveness, 

operational feasibility, and potential drawbacks. 

Understanding and implementing effective fouling control 

methods is crucial for improving the reliability of 

membrane technology in oil-water separation applications. 

Advancements in membrane materials have played a 

crucial role in improving oil-water separation efficiency, 

addressing challenges such as membrane fouling, 

mechanical stability, and permeability [209], [210]. 

Researchers have developed various membrane materials, 

each offering unique advantages and limitations under 

different operational conditions. Polymeric membranes 

remain widely used due to their cost-effectiveness and ease 

of fabrication [211], [212]. However, they are prone to 

fouling and may require surface modifications to enhance 

their performance. Ceramic membranes, on the other hand, 

exhibit superior thermal and chemical resistance, making 

them ideal for high-temperature and harsh industrial 

environments [213]–[215]. 

Despite their high efficiency, their brittleness and 

elevated production costs pose limitations. Composite 

membranes combine the benefits of polymeric and ceramic 
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materials, offering enhanced mechanical strength and 

tenable properties [216]–[218]. These membranes 

demonstrate high rejection efficiencies and improved 

durability. Similarly, nanofibrous membranes provide high 

surface area and permeability, making them suitable for 

advanced filtration applications [219]–[221]. However, 

large-scale application remains a challenge. 

Superhydrophilic and superoleophobic membranes 

have emerged as promising solutions for mitigating 

fouling and enhancing oil-water separation [222]–[224]. 

Superhydrophilic membranes exhibit excellent antifouling 

properties, reducing the accumulation of oil residues on 

the membrane surface. Meanwhile, superoleophobic 

membranes, characterized by their ability to repel oil while 

allowing water to pass through, offer self-cleaning 

properties and high separation efficiency [225], [226]. 

Despite their advantages, these innovative membranes 

require further research to address scalability and cost-

effectiveness for widespread industrial use. A comparative 

analysis of different membrane materials under various 

operational conditions is provided in Table 5: Performance 

Metrics of Different Membrane Materials and Figure 4: 

Oil Rejection Efficiency of Membranes. This comparison 

highlights key performance parameters, including pressure 

and temperature ranges, flow rates, oil rejection 

efficiencies, fouling resistance, advantages, and 

limitations. Understanding these aspects is critical for 

selecting the most suitable membrane material for specific 

oil-water separation applications, ensuring both efficiency 

and long-term sustainability. 

Table 4. Comparative Analysis of Membrane Fouling Mitigation Strategies 

Strategy 

 
Mechanism 

 
Effectiveness 

 
Limitations 

 
Impact on 

Performance 

Flux 

Recovery 

Membrane 

Lifespan 

References 

Surface 

Modification 
 

Alters 

surface 
properties to 

reduce 

adhesion 

High (95% oil 

rejection) 

Limited long-

term stability 
 

Reduces fouling, 

but coating 
degradation may 

occur 

50–100 

L/m²·h 
 

 

Moderate 

 
 

 

[195]–[198] 

Backwashing 
 

Reverses 

filtration 

flow to 
dislodge 

foulants 

Moderate 

(85% flux 

restoration) 
 

Ineffective 

for 

irreversible 
fouling 

 

Restores flux but 

may not remove 

all foulants 
 

70–85% 

 

Moderate to 

Low 

 
 

[175], [188], 

[199]  

Chemical 

Cleaning 
 

Dissolves 

foulants 
using 

acids/alkalis 

High (80–95% 

flux recovery) 

Can degrade 

membrane 
material 

Effective but 

reduces 
membrane 

lifespan 

80–95% 

 

Low 

 
 

[200]–[202] 

Electrochemical 

Methods 
 

Uses 
electrical 

forces to 

remove 
foulants 

High (98% oil 
rejection) 

 

High energy 
consumption 

 

Enhances 
rejection but 

energy-intensive 

 

100–120 
L/m²·h 

 

 

Moderate to 
High 

 

[203]–[205] 

Biological 

Cleaning 
 

Uses 

enzymes or 

microbes to 
break down 

fouling 

Moderate to 

High (75–90% 

flux recovery) 
 

 

High cost, 

optimization 

needed 
 

Environmentally 

friendly, but slow 

process 
 

75–90% 

 

High 

 

[206]–[208]  

Table 5. Performance Metrics of Different Membrane Materials 

Membrane 

Material 

Pressure 

Range 
(MPa) 

Temperature 

Range (°C) 

Flow Rate 

(L.m⁻².h⁻¹) 

Oil 

Rejection 
Efficiency 

(%) 

Fouling 

Resistance 

Key Advantages Limitations 

Polymeric 

Membrane 

0.1 - 0.5 5 - 80 500 - 2000 85 - 98 Moderate Cost-effective, easy 

fabrication, flexible 
applications 

Prone to fouling, 

lower 
mechanical 

stability 

Ceramic 
Membrane 

0.2 - 1.0 10 - 300 1000 - 5000 95 - 99.9 High High thermal 
stability, excellent 

chemical resistance 

Higher cost, 
brittle under 

extreme 

conditions 

Composite 
Membrane 

0.1 - 0.8 5 - 120  800 - 4000 90 - 99.5  High Enhanced 
mechanical 

strength, tenable 

properties 

Complex 
fabrication, 

potential cost 

challenges 

Nanofibrous 

Membrane 

0.05 - 0.5  5 - 90  600 - 3500  88 - 98.5  Moderate 

to High 

High surface area, 

improved 

permeability 

Limited large-

scale 

applications 

Superhydrophilic 
Membrane 

0.1 - 0.6  5 - 100  700 - 3800 90 - 99  Very High Superior antifouling 
properties, high 

durability 

May require 
advanced 

fabrication 

techniques 

Superoleophobic 

Membrane 

0.1 - 0.7 5 - 110  750 - 4200  92 - 99.8 Very High Excellent oil 

repellence, self-

cleaning ability 

Limited 

commercial 

availability 
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Figure 4. Oil Rejection Efficiency of Membranes 

Future direction  

Advancements in membrane technology have 

significantly improved oil-water separation efficiency, 

enhancing permeate flux, selectivity, and membrane 

lifespan. Recent progress has focused on refining 

membrane materials, optimizing operational parameters, 

and mitigating challenges such as fouling and scaling. As a 

result, membrane technology has become an increasingly 

viable solution for complex oil-water separation processes. 

However, critical challenges remain, particularly in 

managing membrane fouling, scaling, and ensuring 

durability under varying operational conditions. Future 

research should prioritize optimizing key mechanical 

parameters, including transmembrane pressure, 

temperature, and cross-flow velocity, to enhance filtration 

efficiency while reducing energy consumption. The 

influence of osmotic pressure and membrane thickness on 

filtration performance has received limited attention, 

underscoring the need for the development of more 

advanced mathematical models. These models should 

accurately predict membrane behaviour under diverse 

operating conditions, providing a framework for 

optimizing industrial-scale filtration processes. 

Additionally, the lack of mathematical models evaluating 

mechanical velocity in oil-water filtration membranes 

presents a gap in understanding flow dynamics, which 

must be addressed to improve system efficiency.  
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