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Abstract 

Wind energy is essential in advancing sustainable power generation. However, the presence of vibrations in modern wind 

turbines poses significant challenges, leading to reduced component lifespan and operational failures. This study investigates 

the effects of axial surface cracks on turbine blades and variations in shaft rotational speeds on the performance of a lab-scale 

wind turbine simulator. The primary objective of this study is to optimize parameters for minimizing vibration and 

maximizing power output. A full factorial Taguchi design integrated with grey relational analysis was employed for the 

experimental setup. Regression models were developed using Minitab software to quantify the relationship between crack 

sizes, rotational speeds, and their impact on vibration levels and power generation. The optimal input setting is at a crack size 

of 48 mm and a rotating speed of 150 rpm, leading to a power output of 25.575 W at a vibration range of 10.896 m/s2. The 

coefficients of determination (R-squared ) values are found to be above 99% for best-fit model. This result indicates that 

larger axial crack sizes lead to a considerable decrease in power output at equivalent shaft rotational speeds. This highlights 

the importance of effective speed management and vibration mitigation strategies. The findings emphasize the need for 

robust condition monitoring systems to enhance turbine reliability and efficiency. Future research should explore advanced 

optimization algorithms and incorporate additional variables such as ambient conditions and real-time monitoring data, to 

contribute to the development of more efficient and resilient wind energy systems. 

© 2025 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

Wind energy has rapidly become an important 

component of the global renewable energy landscape, with 

a strong emphasis on enhancing efficiency and reliability 

to support its extensive adoption [1]-[3]. The industrial 

evolution from constant-speed wind turbine systems to 

variable-speed generators, and more recently, to brushless 

generators with full converters, underscores the ongoing 

pursuit of innovation [4][5]. Direct-drive systems, 

particularly valued for their reliability, are now favoured in 

wind turbine applications. As wind power integration into 

the electrical grid increases, advanced power technologies 

are being developed to address the associated challenges 

and improve turbine performance [6]. The growing 

significance of wind energy has further heightened the 

focus on reliability and availability. 

Wind turbines are complex machines engineered to 

convert wind energy into electrical power [7]. These 

turbines typically comprise several key components, 

including the blade, rotor, shaft, generator, and gearbox. 

Horizontal-axis wind turbine types, which dominate the 

marketplace, commonly have three blades and excessive-

speed asynchronous generators [5][8]. The running precept 

involves wind exerting dynamic strain on the blades 

inflicting the rotor to rotate[9]. This mechanical strength is 

finally converted into electrical energy with the aid of the 

generator. The efficiency of this conversion process 

depends on several critical parameters. The blades are 

responsible for transforming wind energy from kinetic to 

mechanical form. They are important for the durability and 

performance of wind turbine systems. They bear 

considerable mechanical hundreds and environmental 

pressures in the course of their operational durations [10]. 

Despite considerable improvements in wind turbine 

generation, the blade’s defects due to one of the kinds of 

cracks remain a persistent trouble [11]. They have an 

effect on the performance and sturdiness of wind turbine 

structures [12]. These defects result in extended protection 

prices, operational downtime, and even capability 

protection dangers [13] [14]. 
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Given the critical nature of fatigue in wind turbines, the 

components like blades and blade joints are particularly 

susceptible to failure. Fatigue analysis has then become a 

critical issue of the design process. It is aimed at predicting 

service life and enhancing reliability [15]. Crack formation 

in blades typically occurs mainly in three steps: crack 

initiation, stable crack extension, and eventual 

fracture[9][11]. The total fatigue life of a blade can be 

computed as the total crack initiation life and crack 

propagation life. 

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑁𝑝𝑟𝑜𝑝𝑜𝑔𝑎𝑡𝑖𝑜𝑛                            (1) 

Wind turbine vibrations present a huge challenge[16]. 

They are affecting both overall performance and longevity. 

Aerodynamic forces, mechanical imbalances, and 

structural defects are the commonplace sources of those 

vibrations[9]. They can bring about decreased element 

lifespans and potential failures [17][18]. Various control 

strategies have been developed to mitigate these problems. 

Vibration monitoring plays an essential position in fault 

detection and analysis [19][20]. Sensors which include 

accelerometers are often used to measure vibrations[16].  

The statistics collected are analyzed, such as the usage of 

special strategies like Fourier Transform, envelope 

evaluation, and regression evaluation [17][21]. Advanced 

software tools and artificial intelligence are increasingly 

more employed for characteristic extraction and fault 

recognition. They enable early warning for maintenance 

and prevent unexpected breakdowns [22]. 

Studies for monitoring blade conditions continued to 

push the envelope in wind turbine studies[23]. Dhanraj et 

al. (2017) proposed an advanced method the use of the 

transmissibility of frequency response capabilities to come 

across blade damage by using alerts acquired from 

multiple sensors [24]. Ou et al. (2017) addressed the 

crucial problem of icing on blades through introducing an 

shrewd detection approaches the usage of SCADA 

statistics [25]. Liu et al. (2019) similarly contributed by 

exploring non-contact thermography strategies for 

detecting blade icing, presenting valuable insights into 

subsurface fault detection [26]. Shaymaa et al. evaluated 

the impact of surface treatment on the turbine blade 

performance [23]. Additionally, Yang et al. (2015) 

underscored the significance of structural health 

monitoring in comparing wind turbine blades, at the same 

time as Antoniadou et al. (2015) highlighted the 

complexities of fault detection in wind turbine settings 

[27][28]. Meanwhile, Florian et al. (2015) proposed a 

blade time assessment model intended at improving 

preventive upkeep planning [29]. 

Experimental setups, including wind turbine 

simulators, are widely used in research to study wind 

turbine vibrations and performance under a set of 

controlled conditions [30]. These studies have examined 

the impact of movement uniformity on vibration and 

power generation [31]. Aeroelastic simulations have 

highlighted the need of precise modelling in identifying 

potential issues related to frequent vibrations [32]. Novel 

approaches have been developed to reduce vibration and 

noise levels, in order to address real-world vibration 

problems [16][33]. 

Regression modelling and optimization techniques are 

extensively used and applied in wind energy research[34]. 

Regression models predict wind turbine performance 

metrics and model power curves[21], along with advanced 

techniques like Extreme Gradient Boosting. They show a 

promise in forecasting power output based on wind 

velocity [35]. Optimization methods, including different 

computing techniques[34], are used to optimize wind farm 

layouts for enhanced efficiency [36]. Sensitivity analysis, 

critical in environmental modelling, is applied in wind 

turbine studies to assess the impact of input variations on 

outputs, contributing to the robustness and accuracy of 

performance models [37][38]. 

This study introduces a novel approach to optimizing 

field power output and minimizing vibration levels in wind 

turbine systems by conducting a Taguchi-based Grey 

Relational analysis of a wind turbine simulation system, 

which is equipped with axially defective blades operating 

at various rotational speeds [5][39]. Unlike previous 

studies, this research incorporates a condition monitoring 

approach to address the interplay between blade defects 

and operational dynamics. The primary goal is to identify 

the optimal operational settings that maximize power 

output [40] while significantly reducing vibration levels 

[16]. As wind turbines continue to increase in capacity and 

complexity, this work highlights the critical importance of 

proactive maintenance strategies, enabled by condition 

monitoring. This ensures sustainable and efficient energy 

production [41]. The novelty lies in the experimental 

integration of defect-driven vibration analysis with 

optimization techniques, in order to provide a practical 

framework for enhancing turbine performance in real-

world scenarios. 

This research paper is structured as follows: Section 2 

presents the methodology used in the study, including the 

simulation setup and data analysis techniques. Section 3 

discusses the results and findings, with a focus on the 

optimization of power output and vibration reduction[34]. 

Finally, Section 4 concludes the study, highlighting its 

contributions to the field and suggesting directions for 

future research. 

2. Methods and Materials 

Real wind speed data from Sohar town, Oman, was 

used as a hypothetical operating range of shaft rotational 

speed utilizing WTS conversion in order to examine the 

performance of a wind turbine simulator (WTS). The 

Vibra Quest (VQ) simulation software and data collection 

system were utilized in the Spectra Quest (SQ) type WTS 

model utilized in this study. The goal of this investigation 

was to lower the vibration waveform range's generated 

average. As seen in Figure 1, this is fundamentally the 

difference between the average of (m) positive peaks and 

the average of (n) negative peaks. The WTS performance 

improved when the vibration range was decreased. The 

average of positive peaks, the average of negative peaks 

and the vibration rangewere determined using the 

following equations: 

Avgerage of positive peaks =  
∑ (positve vibration peaks)m

i=1

m
        (2) 

Avgerage of negative peaks =  
∑ (negative vibration peaks)n

i=1

n
       (3) 

Vibration Range  =  Avgerage of positive peaks −
 Avgerage of negative peaks                                          (4) 

This section consists of: 1) an experimental layout of 

the SQWTS, 2) the Taguchi design of experiment (DoE), 

3)Experimental works on the WTS as per DoE, 4) 

analyzing the generated results of vibration waveform and 

power output, 5) analyzing Taguchi responses, 6) 

regression modelling of vibration level and power output, 

and finally 7) optimizing the multi-responses using Grey 
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Relational Analysis. Figure 2 shows the methodology flow 

chart. 

Experimental setup: As seen in Figure 3, the SQ WTS 

used in this study was a horizontal axis wind turbine with 

three blades. Its weight was 222.7 kg, its centreline height 

was 2.369 m, its sweeping blade diameter was 3.3 m, and 

its base measurements were 2.991 m × 2.438 m. As seen in 

Figure 4, a tachometer and an accelerometer were installed 

on the rotational shaft to detect the vibration level and 

rotational speed in one direction of vibrational stimulation 

[35][16], respectively. As shown in Figures 3 and 4, the 

SQ WTS was equipped with an accelerometer and a 

tachometer to measure vibration levels and shaft rotational 

speeds, respectively. The accelerometer used was a 

piezoelectric type with a sensitivity of 100 mV/g. The 

frequency response rangesfrom 1 Hz to 10 kHz, and the 

measurement accuracy was ±1% of the full scale. This 

high sensitivity and broad frequency response ensure 

accurate detection of vibration signals, including both low-

frequency and high-frequency components. Whereas, the 

tachometer used for measuring shaft rotational speed had a 

resolution of 0.1 RPM and an accuracy of ±0.05% of the 

measured value. This level of precision is considered in 

this research study for capturing variations in shaft speed 

under different experimental conditions. The signals from 

these sensors were read by a data collecting system, which 

then transmitted them to the VQ simulation program for 

analysis and vibration report generation, as shown in 

Figure 5. Figure 6 displays the three axially cracked blades 

that were utilized in this study. 

 

Figure 1. Research work concept 

 

Figure 2. Methodology flow chart 

 

 

Figure 3. SQ WTS       

 
Figure 4.  An accelerometer mounted on SQ WTS 

 

Figure 5.  VQ analysis software 

 

Figure 6. Three axial defective blades 
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Taguchi Design of Experiment: The two primary 

independent parameters were used to plan the 

experimental work, the shaft rotational speed (x2) and the 

crack size (x1) in a Taguchi design of experiment 

(DoE)[42]. The independent input parameters and their 

levels are displayed in Table 1. As a hypothetical 

operational range of Sohar wind speed utilizing WTS 

conversion ratio, the axial crack size ranged from 48 mm 

to 90 mm and eventually to 340 mm, while the shaft 

rotational speed varied from 50 rpm to 100 rpm and finally 

to 150 rpm. The selection of crack sizes (48 mm, 90 mm, 

and 340 mm) as levels for the factor x1 in the Taguchi 

design of experiments was based on the realistic 

representation of blade damage rationale. These values 

were chosen to represent varying degrees of transverse 

defects commonly observed in wind turbine blades during 

operation. The range covers small (48 mm), moderate (90 

mm), and severe (340 mm) damage scenarios. This 

provided a comprehensive analysis of how crack size 

impacts vibration and power output.An experimental 

layout based on L9 orthogonal array (nine experimental 

experiments according to the DoE) were conducted in 

total. The experimental setup based on the L9 orthogonal 

array is displayed in Table 2. The generated vibration 

range (average of positive and negative peaks) and power 

output were the answers. 

Table 1. Input parameters and their levels 

Factors Independent 
Parameters 

Level 1 Level 2 Level 3 

x1 Crack size (mm) 48 90 340 

x2 Shaft rotational 
speed (rpm) 

50 100 150 

Table 2. Experimental layout based on L9 orthogonal array 

Experiment

s 

Crack size, x1 

(mm) 

Shaft rotational speed, x2 

(rpm) 

1 48 50 

2 48 100 

3 48 150 

4 90 50 

5 90 100 

6 90 150 

7 340 50 

8 340 100 

9 340 150 

Experimental testing of the WTS as per DoE:This 

required replacing one of the three blades in a methodical 

manner with one that had an axial fault[39][43]. As seen in 

Figure 6, the damaged blades had cracks of 48 mm, 90 

mm, and 340 mm, respectively. The 48 mm cracked blade 

was tested initially at 50 rpm, then 100 rpm, and lastly 150 

rpm for the shaft rotation speed. For the 90 mm and 340 

mm cracked blades, respectively, the same testing was 

conducted again. 

Vibration waveform and power output analysis: The 

data acquisition system received the vibration signals from 

the accelerometer and forwarded them to the VQ software, 

which produced the vibration report in MS Excel format. 

For every test, a specific set of vibration waves (positive 

and negative waveform peaks) was displayed in the 

created report. These waves are then used for vibration 

analysis. The three-phase field-controlled alternator of the 

WTS generated the power output, which consisted of 

voltage and current. The voltage and current displayed on 

the WTS control interface represented the power output. 

Regression modelling: The following regression 

models were created by doing regression modelling for 

power output and vibration ranges: linear, linear and 

squared, linear and interaction, and full model[21]. The 

best fit regression model was determined by comparing the 

models' R-squared values for every response[44]. 

Optimization of multi-responses using Grey Relational 

Analysis: The goal of this research project was to reduce 

vibration and maximize wind turbine system 

performance[34]. Higher the better was the criterion for 

power production and the average of negative vibration 

peaks. In contrast, the lower-the-better criterion was 

applied to positive vibration peaks. The following 

formulae were used to normalize each response's initial 

sequence: 

For higher-the-better criterion: 

𝑌𝑖𝑗 =
𝑋𝑖𝑗−𝑚𝑖𝑛(𝑋𝑖𝑗)

𝑚𝑎𝑥(𝑋𝑖𝑗)−𝑚𝑖𝑛(𝑋𝑖𝑗)
                                                (5) 

For lower-the-better criterion: 

𝑌𝑖𝑗 =
𝑚𝑎𝑥(𝑋𝑖𝑗)−𝑋𝑖𝑗

𝑚𝑎𝑥(𝑋𝑖𝑗)−𝑚𝑖𝑛(𝑋𝑖𝑗)
                                                (6) 

where xij is the measured response, min(xij) is the 

minimum of xijand max(xij) is the maximum of xij, i is the 

response variables and j is the experiment number. The 

Deviation Sequence (distinguishing coefficient) ∆ijwas 

calculated as follows:  

∆𝑖𝑗= 𝑚𝑎𝑥(𝑌𝑖𝑗) − 𝑌𝑖𝑗                                                   (7) 

where max(Yij) is the expected sequence, Yijis the 

comparability sequence and ∆ij is the deviation sequence 

of max(Yij) and Yij. The grey relational coefficient ξijwas 

calculated as follows: 

𝜉𝑖𝑗 =
𝑚𝑖𝑛(∆𝑖𝑗)+𝜁×𝑚𝑎𝑥(∆𝑖𝑗)

∆𝑖𝑗+𝜁×𝑚𝑎𝑥(∆𝑖𝑗)
                                             (8) 

where ζ is the differentiating coefficient, 0≤ζ≤1, and 

0.5 is the widely accepted value. The grey relational grade 

GRG(γj) for each experiment was computed as follows, for 

n number of responses: 

𝛾𝑗 =
∑ 𝜉𝑖𝑗

𝑛
𝑖=1

𝑛
                                                                  (9) 

If larger γj is obtained, then the equivalent set of 

process parameters is nearer to the most favourable 

optimal setting. 

3. Results and Discussion 

This section includes regression analysis and 

optimization of the vibration reports that the VQ software 

produced. 

3.1. Initial observations 

During the initial setup phase, early observations were 

conducted to assess the initial/baseline performance of the 

wind turbine system (WTS) with both healthy and 

defective blades. The detection of an axial defect in one 

blade was associated with heightened vibration levels and 

variability in power output[39]. These findings were 

essential for this research since they illustrated the effects 

of blade defects under different conditions: 
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 The simulator with three healthy blades demonstrated 

almost stable operational behaviour, characterized by 

low vibration levels[16]. Power output consistently 

rose within the expected ranges corresponding to the 

respective rotational speeds. The recorded vibration 

waveforms were almost smooth, exhibiting almost no 

irregularities. This indicated that the blades were 

balanced and functioning correctly. 

 Substituting one healthy blade with an axially defective 

blade led to noticeable changes[23][43]. Increased 

vibration levels were immediately detected, which 

significantly affected the turbine’s dynamic 

behaviour[9]. The vibration waveforms showed 

irregularities and exhibited higher peaks compared to 

the healthy blade configuration. Additionally, the 

power output with the defective blade fluctuated more, 

reflecting the repercussions of increased vibrations and 

possible energy losses[23]. 

3.2. Waveformanalysis results 

The VQ program was used to record and analyze the 

vibration signals. For every test case, this software 

produced an intricate time-domain waveform. The 

vibration waveforms produced by the VQ program are 

shown in Figure 7. As the rotational speed rose, the 

vibration levels also increased. 

Taking into account the Taguchi design of experiment, 

a thorough execution of the experimental work was carried 

out for 9 tests [42]. The VQ software produced a 

waveform report for each test that included a series of 

vibration waves with positive and negative peaks. 

Concurrently, the three-phase field-controlled alternator 

generated the power output (voltage and current) that was 

shown on the WTS control interface. The measured 

responses from the experimental study are displayed in 

Table 3. Figure 8 shows the changes in vibration range and 

power output. 

3.3. Taguchi Response Analysis 

Taguchi's response analysis is aimed at  minimizing 

variability and designing experiments to maximize 

performance metrics [42][44]. Response for means and 

response for signal-to-noise ratios were used to examine 

the experimental tests on the WTS with an axially cracked 

blade [9]. The impact of the input process parameters on 

the average of positive and negative peaks, vibration 

range, and power output, is described in depth. 

3.3.1. Taguchi’s Response Analysis for the average of 

negative peaks 

The average of the negative side of the vibration 

waveform peaks was examined in order to determine the 

impact of two process parameters: crack size (x1) and 

rotating speed (x2). The performance of the system was 

impacted by changes in each factor (x1 or x2), as 

demonstrated by the Mean and Signal to Noise Ratios 

values in Table 4. Based on the higher-the-better criterion, 

the study revealed that the optimal set of process 

parameters was (x1-1 x2-1). This corresponded to a crack 

size of 48 mm and a rotational speed of 50 rpm. Figure 9 

displays the response graphs for the mean of negative 

peaks for Means and Signal to Noise Ratios. 

3.3.2. Influence of process parameters on the average of 

negative peaks 

Variations in the size of the cracks had a smaller effect 

on the values of the vibration waveform's average of 

negative peaks. The average values from level 1 to level 3 

slightly rose. This suggested that negative peak amplitudes 

were slightly increased by larger cracks. On the other 

hand, there is a much variance in negative peaks when the 

rotational speed increases. Mean negative peak values 

highly dropped as the rotating speed increased from level 1 

to level 3. The further emphasis on the importance of 

rotating speed over crack size in this response was 

provided by the Delta value of 4.596. 

Table 3. Measured responses from experimental tests 
 

 Input Parameters  Responses 

Tes

ts 

Crack Size, x1 

(mm) 

Rotational Speed x2 

(rpm) 

 Avg. (negative peaks) 

(m/s2) 

Avg. (positive peaks) 

(m/s2) 

Vibration Range 

(m/s2) 

Power output 

(W) 

1 48 50  -1.407 1.448 2.855 1.804 

2 48 100  -4.962 4.718 9.680 9.794 

3 48 150  -5.472 5.425 10.896 25.575 

4 90 50  -1.411 1.469 2.881 1.539 

5 90 100  -4.959 4.732 9.691 9.425 

6 90 150  -6.014 5.911 11.924 22.950 

7 340 50  -1.350 1.534 2.884 1.478 

8 340 100  -5.161 4.672 9.833 8.908 

9 340 150  -6.469 6.470 12.940 21.988 
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a) b) c) 

   
d) e) f) 

   
g) h) i) 

Figure 7. Vibration waveforms: a) at 50 rpm (crack size = 48 mm), b) at 100 rpm (crack size = 48 mm), c) at 150 rpm (crack size = 48 mm), 

d) at 50 rpm (crack size = 90 mm), e) at 100 rpm (crack size = 90 mm), f) at 150 rpm (crack size = 90 mm), g) at 50 rpm (crack size = 340 
mm), h) at 100 rpm (crack size = 340 mm), and i) at 150 rpm (crack size = 340 mm) 

 
Figures 8. Vibration range and power output variation 

 
Table 4. Response Table for the average of negative peaks 

Level  Means  Signal to Noise Ratios 

  x1 x2  x1 x2 

1  3.053 5.611  8.2733 14.9801 
2  2.872 1.973  7.0083 5.8912 

3  2.673 1.015  4.9424 -0.6473 

Delta  0.380 4.596  3.3309 15.6274 
Rank  2 1  2 1 
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3.3.3. Taguchi’s Response Analysis for the average of 

positive peaks 

In this case, the process parameters of crack size (x1) 

and rotation speed (x2) were compared to the average of 

the positive side of the vibration waveform peaks. Changes 

in either factor (x1 or x2) had an effect on the WTS's 

performance, as Table 5's Mean and Signal to Noise Ratios 

demonstrated. When using the lower-the-better criterion, 

the research revealed that the optimal set of process 

parameters was (x1-1 x2-1) also, which equated to a 

rotational speed of 50 rpm and a crack size of 48 mm. The 

response graphs for Means and Signal to Noise Ratios' 

average of negative peaks are shown in Figure 10. 

3.3.4. Influence of process parameters on the average of 

positive peaks 

A similar pattern was discovered when the vibration 

waveform's average of its positive peaks was examined. 

As the size of the crack developed, the methods gradually 

climbed from level 1 to level 3. This implied that higher 

positive peak amplitudes resulted from larger cracks. But 

rotating speed had even another more pronounced effect. 

From level 1 to level 3, the Signal to Noise Ratio (SNR) 

dropped. This showed that there was a considerable 

negative correlation between higher rotational speeds and 

positive peaks. Similar to the impacts on negative peaks, 

the noticeable Delta of 4.451 highlighted how rotational 

speed affected this parameter more than crack size. 

3.3.5. Taguchi’s Response Analysis for the vibration range 

The current study additionally looked at how the 

vibration waveform range was affected by the two process 

parameters: (x1) and (x2). Table 6 illustrates how changes 

in either of the two factors (x1 or x2) impacted the system's 

efficiency. The study also revealed that the optimum 

possible set of process parameters was (x1-1 x2-1), (a 

rotational speed of 50 rpm and a crack size of 48 mm) 

based on the lower-the-better criterion. The average 

vibration range response graphs for Means and Signal to 

Noise Ratios are shown in Figure 11. 

a)  b)  
Figure 9. Response graphs for the average of negative peaks: a) Means, b) Signal to Noise Ratios 

Table 5. Response Table for the average of positive peaks 

Level  Means  Signal to Noise Ratios 

  x1 x2  x1 x2 

1  3.864 1.484  -10.460 -3.425 

2  4.037 4.707  -10.759 -13.456 
3  4.225 5.935  -11.108 -15.446 

Delta  0.362 4.451  0.649 12.021 

Rank  2 1  2 1 

 

a)  b)  

Figure 10. Response graphs for the average of positive peaks: a) Means, b) Signal to Noise Ratios 
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3.3.6. Influence of process parameters on the vibration 

range 

The vibration range analysis further reinforced the 

conclusion regarding the dominant role of rotational speed. 

As crack size increased, the average vibration range also 

rose. This suggested that larger cracks contributed to a 

wider range of vibration. The Delta value of 0.742 

indicated a consistent effect but the influence of rotational 

speed was markedly more significant. With a Delta of 

9.241, the widening of the vibration range at higher speeds 

(from 2.873 to 11.920) highlighted that the increased 

rotational speeds led to substantial enhancements in the 

vibration profile, which correlated with the turbine's 

operational dynamics. 

3.3.7. Taguchi’s Response Analysis for the power output 

The impact of the two process parameters on the power 

output was also tested. Changes in each factor (x1 and x2) 

had an effect on the system's performance, as Table 7's 

Mean and Signal to Noise Ratio numbers demonstrate. 

Based on the higher-the-better criterion, the research 

revealed that the optimal practicable set of process 

parameters was (x1-1 x2-3). This suggested a rotational 

speed of 150 rpm and a crack size of 48 mm. The response 

graphs for the power output for Means and Signal to Noise 

Ratios are shown in Figure 12. 

Table 6. Response Table for vibration range 

Level  Means  Signal to Noise Ratios 

  x1 x2  x1 x2 

1  7.811 2.873  -16.525 -9.167 
2  8.165 9.735  -16.815 -19.766 

3  8.552 11.920  -17.097 -21.504 

Delta  0.742 9.047  0.572 12.337 
Rank  2 1  2 1 

 

a) b)  

Figure 11. Response graphs for vibration range: a) Means, b) Signal to Noise Ratios 

Table 7. Response Table for power output 

Level  Means  Signal to Noise Ratios 

  x1 x2  x1 x2 
1  12.391 1.607  17.700 4.088 

2  11.305 9.376  16.815 19.433 

3  10.791 23.504  16.412 27.405 
Delta  1.600 21.897  1.289 23.317 

Rank  2 1  2 1 

 

a)  b)  

Figure 12. Response graphs for the power output: a) Means, b) Signal to Noise Ratios 
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3.3.8. Influence of process parameters on the power output 

The effects of these parameters were considerably more 

evident when looking at the generated power output. The 

power output continuously dropped as the crack size rose. 

Larger cracks have a negative effect on the capacity to 

produce energy, as demonstrated by a Delta of 1.600. On 

the other hand, rotational speed had a largely favourable 

effect. The mean power output increased significantly with 

increasing rotational speeds, rising from 1.607 at level 1 to 

a high of 23.504 at level 3, with a Delta value of 21.897. 

3.4. Analysis of variance for measured performance  

The input parameters, rotational speed (x2) and crack 

size (x1) had a significant impact on the system's reactions, 

as demonstrated by the analysis of variance (ANOVA) for 

the observed performance in WTS[44]. Minitab statistical 

software was used to construct an ANOVA at a 95% 

confidence level for the performance metrics. An ANOVA 

in this case showed that rotational speed (x2) was the most 

important factor affecting the power output as well as the 

vibration range [45]. On the other hand, a statistically 

secondary role effect was seen for crack size (x1). This 

analysis is displayed in Table 8. 

With continuously high F-values and extremely low p-

values across the board, the ANOVA findings showed that 

rotational speed (x2) was the highest significant factor 

influencing all of the performance measures in the wind 

turbine simulator[44]. While crack size (x1) was less 

important, it was more significant on the power output and 

largely significant on the vibration range[11]. But if the 

WTS runs for a longer period of time, its relevance is 

taken into account. 

3.5. Multi-Regression modelling results 

This section presents the results of a regression analysis 

that quantified the link between the average of negative 

peaks, average of positive peaks, vibration range, and 

power output as responses, and the crack size (x1) and 

shaft rotational speed (x2) as predictors. To find the best 

model fit for WTS performance, four different kinds of 

regression models were created. Minitab software was 

utilized for the regression analysis[21]. Each model's input 

variables are displayed in Table 9. To choose the best-fit 

model, the coefficient of determination (R-squared) values 

of the created models were compared, as Table 10 

illustrates. 

 

 

Table 8. Analysis of variance (ANOVA) analysis 

Response Source DF Adj SS Adj MS F-Value P-Value 

Average of negative peaks x1 2 0.2165 0.1082 1.39 0.348 
x2 2 35.2714 17.6357 226.39 0.000 

Error 4 0.3116 0.0779   

Total 8 35.7995    
Average of positive peaks x1 2 0.1964 0.0982 1.10 0.416 

x2 2 31.7151 15.8575 177.48 0.000 

Error 4 0.3574 0.0893   
Total 8 32.2689    

Vibration range x1 2 0.825 0.4127 1.29 0.369 

x2 2 133.708 66.8538 209.32 0.000 
Error 4 1.278 0.3194   

Total 8 135.811    

Power output x1 2 4.003 2.002 2.39 0.207 
x2 2 739.456 369.728 441.63 0.000 

Error 4 3.349 0.837   

Total 8 746.808    

Table 9. Regression models for vibration range and power output 

Regression model Input variables 

Linear Linear: x1: Crack size, x2: Rotational speed,  
  

Linear + Squared 
Linear: x1: Crack size, x2: Rotational speed,  

Squared: x1
2: Crack size2, x2

2: Rotational speed2 
  

Linear + interaction 
Linear: x1: Crack size, x2: Rotational speed,  

Interaction: Crack size × Rotational Speed (x1× x2) 
  

Full quadratic (Linear + Squared + Interaction) 

Linear: x1: Crack size, x2: Rotational speed,  

Squared: x1
2: Crack size2, x2

2: Rotational speed2 
Interaction: Crack size × Rotational Speed (x1× x2) 

Table 10. R2 values of various developed regression models 

Regression model  R2 values (%) 

 
 Average of negative peaks 

(m/s2) 

Average of positive peaks 

(m/s2) 

Vibration range 

(m/s2) 

Power output 

(W) 
Linear  89.021 92.641 90.932 96.675 

Linear + Squared  99.130 98.892 99.059 99.552 

Linear + interaction  89.680 93.261 91.573 96.919 
Full quadratic (Linear + Squared + 

Interaction) 

 99.789 99.512 99.700 99.795 
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From these developed regression models shown in the 

Table 10, the full quadratic model showed the best fit. The 

regression equations for the responses are: 

 

Average of negative peaks = 4.884 −
0.00289 𝑥1 −  0.14826 𝑥2 + 1.2 × 10−5𝑥1

2 +
0.000536 𝑥2

2 −   3.1 × 10−5𝑥1 × 𝑥2                             (10) 

 

Average of positive peaks = −3.711 + 0.00290𝑥1 +
0.01198𝑥2 − 1.2 × 10−5𝑥1

2 − 0.000399𝑥2
2 +

                                                       2.8 × 10−5𝑥1 × 𝑥2        (11) 

 

Vibration range = −8.60 + 0.0058𝑥1 + 0.2681𝑥2 −
2.4 × 10−5𝑥1

2 − 0.000935𝑥2
2 + 5.9 × 10−5𝑥1 × 𝑥2     (12) 

 

Power output = 1.33 − 0.0286𝑥1 − 0.0218𝑥2 +
8.2 × 10−5𝑥1

2 + 0.001272𝑥2
2 − 8.5 × 10−5𝑥1 × 𝑥2     (13) 

3.6. Optimization and sensitivity analysis 

This study set out to balance the power output and 

reduce vibration levels in order to maximize the 

performance of the wind turbine system. Using a full 

factorial design in Minitab software and Grey Relational 

Analysis (GRA), the optimization procedure was carried 

out. The process of optimization led to the definition of the 

optimal process parameter configurations[34][45]. The 

GRA prioritized two main goals: reducing vibration level 

(lower-the-better) and increasing power output (higher-

the-better). The range between the average of the positive 

and negative peaks in this instance is the vibration level 

(range). This indicated that during the optimization 

process, only the vibration range and power output 

responses are taken into account. For every experimental 

test, a Grey Relational Grade (GRG) was calculated using 

these parameters. Table 11 shows the calculated Rey 

Relation Coefficients GRCs and GRG values, and ranking. 

Table 11. Calculated GRCs, GRG values and ranking 

Experiments 

Grey Relation Coefficients 

(GRCs) 

GRG Rank 
Vibration 

Range 
Power Output 

1 1.000 0.336 0.668 2 

2 0.425 0.433 0.429 7 

3 0.385 1.000 0.693 1 

4 0.995 0.334 0.664 3 

5 0.425 0.427 0.426 8 

6 0.357 0.821 0.589 5 

7 0.994 0.333 0.664 4 

8 0.419 0.420 0.420 9 

9 0.333 0.771 0.552 6 

The GRG created a single performance score by 

combining the GRCs. With a GRG of 0.693, Test 3 (x1-

1x2-3) ranked highest. This indicated the optimal setting of 

a crack size of 48 mm and a rotating speed of 150 rpm. 

The best overall performance was represented by this set 

of input combinations [45]. Test 3 was the most optimum 

scenario since it obtained a greater GRG and provided the 

best balance between power output and vibration 

management. Table 14 displays the results confirmed. For 

GRG, the regression equation is: 

GRG = 1.36 − 9.1 × 10−4𝑥1 − 0.01706𝑥2 + 3 ×
10−6𝑥1

2 + 8.5 × 10−5𝑥2
2 − 4 × 10−6𝑥1 × 𝑥2                  (14) 

Table 14. Initial and optimal setting for WTS performance 

analysis 

 Initial setting 
Optimal 

setting 

Parameters and levels x1-1 x2-1 x1-1 x2-3 

Average of negative peaks 

(m/s2) 
-1.407 -5.472 

Average of positive peaks (m/s2) 1.448 5.425 

Vibration range (m/s2) 2.855 10.896 

Power output (W) 1.804 25.575 

Grey Relational Grade 0.668 0.693 

Sensitivity Analysis: Using the regression equations 

derived in this analysis, sensitivity was evaluated through 

systematic perturbations of the input parameters. The 

range of tested values was established from the 

experimental conditions: crack sizes of 48, 90, and 340 

mm, and rotational speeds of 50, 100, and 150 rpm. For 

each parameter, sensitivity was defined as the percentage 

change in the response variables resulting from a fixed 

percentage change in the input parameters[44]. This 

allowed for a comparative assessment of which parameter 

had a more substantial impact on the output variables: 

 Impact of Crack Size Changes: An increase in crack 

size was observed to marginally elevate both types of 

average peak measurements, with a more pronounced 

effect when rotational speeds were maintained at their 

highest value[11]. For instance, when the crack size 

increased from 48 mm to 340 mm at a rotational speed 

of 150 rpm, the average of positive peaks escalated 

significantly, affirming the evident sensitivity of this 

response to crack size variations. Specifically, the 

sensitivity ratio indicated that a 10% increase in crack 

size could lead to a response upsurge ranging between 

2.5% to 4.6% across the different measures, with the 

average of positive peaks exhibiting the most 

pronounced sensitivity. 

 Influence of Rotational Speed: In contrast, variations in 

rotational speed notably demonstrated a more dramatic 

impact on the operational parameters of the WTS. As 

rotational speed increased from 50 rpm to 150 rpm, a 

significant increase in power output and vibration 

levels was registered. Sensitivity analysis specified that 

a 10% increment in rotational speed would result in an 

approximate 20% increase in the power output, clearly 

highlighting its dominant influence over the power 

generation capabilities of the WTS. This was 

corroborated by the high Delta values presented in the 

analysis, which further confirmed that rotational speed 

outstripped crack size in effect on performance metrics. 

 Combined Effects: The interaction between these 

parameters was also assessed. The interaction terms in 
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the full quadratic regression model indicated that 

simultaneous variations in both crack size and 

rotational speed lead to synergistic effects on the 

vibration range and power output[11]. For example, a 

combined increase of 10% in both parameters yielded 

an approximately 25% rise in power output, driven 

largely by the compounded impacts of increased 

tension and mechanical stress during higher operational 

speeds. 

3.7. Comparison with Previous Studies 

The findings of this study were validated through a 

comparative analysis with recent investigations [46]-[49]. 

Table 15 provides a summary of the comparative analysis. 

This current study highlights the optimization of vibration 

and power output in wind turbines with axial defects using 

experimental setups and Taguchi-based Grey Relational 

Analysis. In contrast, a study achieved 83.315% fault 

classification accuracy using chi-square feature selection 

with Random Forest [46], while another study reported 

97% classification accuracy with Relief and KNN under 

multiple fault scenarios [47]. Comparatively, an additional 

study identified frequency shifts caused by blade erosion 

and achieved 98% classification accuracy, demonstrating 

the efficacy of signal decomposition techniques for early 

fault detection [48]. Similarly, a further study used an ML-

based approach leveraging ReliefF feature selection and 

XGBoost achieved a remarkable 99.4% accuracy, 

outperforming other classifiers like KNN and SVM [49]. 

These results collectively emphasize the value of 

integrating experimental insights, advanced signal 

processing techniques like Discrete Wavelet Transform, 

and AI-driven methods such as machine learning 

classifiers to enhance the reliability, operational 

performance, and predictive maintenance of wind energy 

systems. With these approaches, it is possible to achieve 

early fault detection, reduce unplanned downtime, 

optimize power generation, and extend the service life of 

critical wind turbine components, ultimately contributing 

to the sustainability and efficiency of renewable energy 

infrastructure. 

 

Table 15. Comparative Analysis with Previous Studies 

Current Study Study ref. [46] Study ref. [47] Study ref. [48] Study ref. [49] 

Experimental setup, 

Taguchi DoE, and Grey 

Relational Analysis. 

Chi-square feature 

selection with RF and 

SVM. 

ReliefF and chi-square 

feature ranking with ML. 

DWT signal 

decomposition and FFT for 

vibration analysis. 

ReliefF-based feature 

selection with KNN, 

SVM, and XGBoost. 

Optimized multi-

response with R-

squared values above 

99% for best-fit model. 

RF achieved 83.315% 

classification 

accuracy. 

KNN achieved 97% 

classification accuracy. 

DWT+FFT achieved 98% 

classification accuracy; 

detected frequency shifts 

due to erosion. 

XGBoost achieved 99.4% 

accuracy, outperforming 

KNN and SVM. 

Crack size, rotational 

speed, vibration, power 

output. 

Vibration features in 

time-domain. 

Statistical vibration 

features and fault 

diagnosis. 

Frequency shifts (16 Hz to 

24 Hz) and erosion 

detection sensitivity. 

Fault conditions: healthy, 

cracked, eroded, twisted. 

Experimental insights 

into managing blade 

defects. 

Highlighted ML’s 

role in enhancing 

fault diagnostics. 

Advanced ML models for 

multi-fault classification. 

Demonstrated DWT’s 

utility for early damage 

detection and proactive 

maintenance. 

Showcased ML's potential 

for predictive 

maintenance with 

superior fault detection. 
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4. Conclusions 

This research investigated the effects of blade axial 

defects on the operational performance of wind turbine 

systems (WTS), with more focus on vibration levels and 

power output[23][43]. Through the application of 

advanced statistical techniques, including regression 

analysis and Taguchi response analysis, the variations in 

crack size and rotational speed were clarified on how they 

influenced the performance metrics of the WTS[42]. 

The study revealed that the presence of axial defects 

led to significant increases in vibration levels[39][43]. This 

adversely affected both the stability and efficacy of the 

turbine’s operational performance. Specifically, the 

recorded average negative peaks climbed from -1.407 m/s² 

to -6.469 m/s² (with a 340 mm crack at 150 rpm), while 

average positive peaks increased from 1.448 m/s² to 6.470 

m/s² under similar conditions. This demonstrated the 

pronounced impact of blade defects. Furthermore, power 

output fluctuated dramatically as being reflected with these 

changes. When one blade was replaced with a defective 

blade, the power output dropped from 25.575 W to 1.478 

W at lower rotational speeds, illustrating the detrimental 

effect of blade integrity on energy generation. 

Additionally, through sensitivity analysis, the rotational 

speed played an essential role in determining the WTS’s 

overall operational dynamics. The findings indicated that 

increases in rotational speed from 50 rpm to 150 rpm 

significantly influenced the power output, with an increase 

from 1.804 W to 25.575 W. This underscored the strategic 

importance of optimizing operational speed settings. 

Conversely, while the crack size increased, its impact on 

power output was significantly overshadowed by the effect 

of rotational speed[9]. It detected almost a four-fold 

increase in power output (from 1.804 W to 25.575 W) 

when speed was elevated at a constant crack size. 

The implications of these findings extend to the broader 

wind energy sector. They emphasized the critical need for 

robust condition monitoring systems and predictive 

maintenance strategies. The developed regression models, 

with R² values exceeding 99%, demonstrated exceptional 

predictive accuracy. For instance, the final regression 

equation for power output demonstrated an R² of 99.795 

and confirmed the model's effectiveness in predicting 

operational performance based on varying input 

parameters [44]. This provided a reliable framework to 

forecast performance degradation and plan maintenance 

proactively. The capability is particularly relevant for 

large-scale wind farms, where early detection of blade 

defects can minimize downtime, reduce repair costs, and 

ensure consistent energy output. 

Moreover, this research highlights the importance of 

integrating real-time monitoring tools and advanced data 

analytics in wind turbine management. These technologies 

can enhance the longevity and efficiency of wind turbines 

by identifying and addressing emerging defects before 

they escalate. The study’s insights also inform design 

improvements, advocating for blade materials and 

structures that are more resistant to fatigue-induced 

damage. 

Finally, this work bridges the gap between theoretical 

research and practical application, as a means to improve 

the reliability, efficiency, and sustainability of wind energy 

systems. Future research should focus on exploring 

advanced monitoring technologies, such as AI-driven 

diagnostics and the development of resilient turbine 

designs to mitigate further the challenges posed by 

structural defects. 
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