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Abstract 

Filling time (Td) and volumetric shrinkage rate (Vs) are critical indicators in plastic injection molding. However, these 

two indicators often conflict, making it essential to optimize both simultaneously. This study aimed to optimize the td and Vs 

in simulating a plastic electrical socket product injection molding process. Four process parameters were investigated: melt 

temperature (Tnc), mold temperature (Tk), injection pressure (Ap), and pressure holding time (Ta). The Box-Behnken design 

method was used to determine the number of simulation samples, and the Response Surface Methodology (RSM) was 

employed to develop predictive models for td and Vs. The Non-dominated Sorting Genetic Algorithm (NSGA-II) technique 

was then applied for multi-objective optimization. The results showed that the RSM-based regression models for Td and Vs 

had high coefficients of determination (R2) of 0.946 and 0.990, respectively, indicating the significance of the developed 

models. The NSGA-II optimization generated 21 Pareto solutions, with Tnc ranging from 215.0 to 215.4 °C, Tk from 50 to 60 

°C, Ap from 67.09 to 76.53 MPa, and ta from 2.097 to 2.5 s. These parameter values corresponded to td values from 1.260 to 

1.389 s and Vs values from 4.810 to 5.497%. To verify the accuracy of the optimization method, the solutions with the 

smallest td and Vs values were selected for re-simulation, and the results showed a difference of less than 2.03% between the 

predicted and re-simulated values. These results confirmed the effectiveness of the proposed approach in solving the multi-

objective optimization problem for the plastic injection molding process, thereby enhancing both the efficiency and quality of 

the products. 
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1. Introduction 

The demand for plastic products has witnessed a 

significant surge across diverse industries owing to their 

versatility, durability, and cost-effectiveness. Injection 

molding, a manufacturing process involving the injection 

of molten plastic into a mold, is a highly productive 

method widely adopted in industry[1, 2]. Chen and Turng 

[3]highlighted the versatility of injection molding in 

producing plastic products at higher rates compared to 

alternative methods such as compression molding, 

extrusion, and blow molding. However, the complexity of 

the injection molding process often results in undesirable 

defects. Amran et al. [4] underscored the challenges 

associated with producing complex plastic products with 

precise dimensions, attributing these challenges to the need 

for both advanced technology and precise control of 

process parameters. Suboptimal parameter settings can 

lead to defects like shrinkage, warping, and cracking, 

compromising product quality. Chen et al. [5] delved into 

the specific challenges of processing PET, emphasizing the 

difficulty in establishing optimal process parameters due to 

the unique characteristics and varying responses of 

different plastics to injection molding conditions. Several 

other studies have also been published regarding the 

problem of defects [6-9]. 

Traditionally, the optimization of injection molding 

parameters has been a time-consuming and costly 

endeavor [10, 11]. However, advanced computational tools 

and simulation software, including NX, Moldex3D, 

Moldflow, and others, have revolutionized this process 

[12, 13]. Computer-aided engineering (CAE) enables 

engineers to simulate and predict potential defects, 

facilitating fine-tuning process parameters for optimal 

product quality. However, applying these simulation tools 

is also complex, as obtaining optimal results requires 

carefully selecting and setting up various factors, including 

filling time, pressure, temperature, material properties, and 

specific product requirements. 

Recent studies have explored the application of multi-

objective optimization techniques to address engineering 

goals, such as Grey Relational Analysis (GRA)[14], 

Artificial Neural Network (ANN) [15, 16], Genetic 
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Algorithm (GA)[17], Simulated Annealing (SA) [18], 

Adaptive Neuro-Fuzzy Inference System (ANFIS) [19, 

20], Response Surface Methodology (RSM) [21-23] , and 

others. In the field of plastic injection molding, many 

studies have also applied multi-objective optimization 

techniques to achieve goals such as minimizing cycle time 

and maximizing product quality[10]. Zhou et al. [24] 

developed a Differential Sensitivity Fusion Method 

(DSFM) to perform the multi-objective optimization of 

process parameters in plastic injection molding. Their 

results showed that the DSFM-based metamodeling 

approach had better prediction accuracy and performance 

compared to some classical methods, such as response 

surface models and Kriging models. Cao et al. [25] 

conducted an experimental study to develop a regression 

model for warpage and volume shrinkage using the 

Random Forest (RF) algorithm. After establishing the RF 

regression model, a genetic algorithm was used to search 

for the optimal process parameter settings that would 

minimize the regression model's output. Another study 

investigated the optimization of injection molding 

parameters to minimize weld line width and sink mark 

depth in commercial-grade transparent Polymethyl 

Methacrylate (PMMA) components. The study employed a 

Taguchi-based Weighted Aggregated Sum Product 

Assessment (WASPAS) method, an Ant Lion optimization 

algorithm, and analysis of variance to optimize eight 

critical injection molding parameters [26]. In addition, 

many other optimization methods have also been applied 

recently in this field [13, 27-30]. 

Evolutionary algorithms, particularly genetic 

algorithms (GAs) and their variants such as NSGA-II, 

have emerged as powerful tools for addressing multi-

objective optimization challenges in manufacturing 

processes. The NSGA-II has been extensively applied to 

find the Pareto-optimal solutions for injection molding 

processes [31-34]. This method approach evolves a 

population of candidate solutions by applying genetic 

operators like selection, crossover, and mutation. By 

evaluating and comparing the fitness of these candidate 

solutions based on the conflicting objectives, the 

evolutionary algorithm can efficiently explore the solution 

space and identify a diverse set of trade-off solutions[35]. 

Zhai et al. [36] combined an optimization algorithm with 

inverse-deformation design to enhance the injection 

quality of box-shaped parts using six different 

optimization algorithms. They concluded that the 

combination of the BP neural network, Box-Behnken 

design, and NSGA-II method yielded the best prediction 

results. 

In the injection molding process, many performance 

indicators are significantly affected by the molding 

parameters that directly influence the productivity and 

quality of the product. Among these, filling time is a 

crucial indicator of the efficiency and effectiveness of the 

injection molding process [37, 38]. It is also typically 

considered an input parameter that can be controlled. 

Therefore, analyzing filling time as an output can provide 

a better evaluation of how various input parameters affect 

the system's overall performance. On the other hand, 

excessive volumetric shrinkage can result in deformation 

and residual stresses within the molded component [10, 

39]. This indicator is closely related to the molded part's 

final dimensional stability and quality. Understanding 

shrinkage helps predict potential defects and ensures 

required tolerances. As a result, it is essential to optimize 

both filling time and volumetric shrinkage simultaneously. 

Reducing filling time can enhance productivity while 

minimizing volumetric shrinkage, improving dimensional 

accuracy, and decreasing defects. However, these two 

objectives often conflict, as strategies to reduce filling time 

may inadvertently increase volumetric shrinkage and vice 

versa. 

Despite the numerous studies on the multi-objective 

optimization of injection molding processes, significant 

limitations remain in optimizing conflicting objectives and 

applying advanced algorithms to specific products. 

Therefore, this research focuses on optimizing the 

injection molding process for electrical socket production 

by identifying optimal process parameters to minimize 

filling time and volumetric shrinkage. A simulation-based 

approach is employed, utilizing the Box-Behnken design 

to generate experimental data. RSM is then applied to 

develop predictive models for the target metrics. 

Subsequently, the NSGA-II is implemented to determine 

Pareto-optimal solutions, balancing the trade-off between 

filling time and volumetric shrinkage. The results of this 

study contribute to the advancement of injection molding 

processes by providing insights into parameter 

optimization and enhancing quality and efficiency in 

electrical socket production. 

2. Materials and Methods 

2.1. 3D model of electrical socket 

Based on the standard dimensions of a real product, a 

three-dimensional model of the electrical socket is created 

using SolidWorks software, as shown in Figure 3. The 

material for the model is set to ABS (Acrylonitrile 

Butadiene Styrene) from the SolidWorks material library. 

The volume of the 3D model is calculated to be 19.33 cm3, 

and the weight of the preform is estimated by the software 

to be 19.72 g. This detailed 3D model developed in 

SolidWorks provides an accurate representation of the 

actual product dimensions and material properties, which 

can be used for further analysis and simulations. The use 

of standard product dimensions and commercially 

available modeling software ensures that the digital model 

closely matches the physical characteristics of the real-

world electrical socket component. 

ABS plastic material was selected in this study due to 

its superior properties, including high impact strength, 

good heat resistance, and excellent processability. 

Specifically, ABS is well-suited for applications requiring 

high mechanical strength and a good surface finish. The 

detailed technical specifications of the ABS resin used in 

this study are presented in Table 1, which includes melt 

temperature, thermal Conductivity, and other relevant 

processing parameters. 
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2.2. Methods 

This research investigates the optimization of filling 

time (td) and volumetric shrinkage rate (Vs) during the 

injection molding of plastic products. A Box-Behnken 

design was employed to establish experimental conditions 

for four process parameters: melt temperature (Tnc), mold 

temperature (Tk), injection pressure (Ap), and pressure 

holding time (ta). RSM method was subsequently applied 

to develop predictive models for filling time and 

volumetric shrinkage. The NSGA-II was then utilized to 

identify optimal parameter combinations that minimize 

both objectives simultaneously. The research methodology 

is visually represented in Figure 2. 

Table 1. Primary properties of ABS plastic material 

N. o Properties Unit Value 

1 Max melt temperature ºC 280 

2 Min melt temperature ºC 200 

3 Specific heat capacity  J/(Kg-K) 2700 

4 Young Modulus MPa 2250 

5 Thermal Conductivity W/(m-K) 0.18 

6 Max shear stress MPa 0.3 

7 Poisson’s Ratio   0.39 

 
Figure 1. 3D model of electrical socket 

 
Figure 2. Flowchart of the study methodology 
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2.2.1. Process Parameter Selection 

This research employs the Box-Behnken design method 

to determine the number of simulation samples. Three 

levels for each parameter were selected based on material 

properties and previous related studies (Table 2). Filling 

time td (s) and volumetric shrinkage rate Vs (%) were 

chosen as the output parameters of interest. This research 

employs the Box-Behnken design method to determine the 

number of simulation samples. Three levels for each 

parameter were selected based on material properties and 

previous related studies (see Table 2). Specifically, for 

ABS material, the recommended melt temperature ranges 

from 200 to 280 °C, and the mold temperature ranges from 

25 to 80 °C. The injection pressure and pressure-holding 

time were selected based on various research studies and 

actual production practices at the factory [40, 41]. Other 

parameters were set as constants to isolate the effects of 

the varying parameters on the outcomes. This approach 

simplifies the analysis and focuses on the specific 

interactions being investigated. 

Flow analysis was conducted using the SolidWorks 

Plastics module of SolidWorks software. Besides the 

parameters under investigation, other settings were kept 

constant as shown in Table 3. A thin-walled mesh method 

was employed, resulting in a total of 21,347 nodes and 

42,786 elements. 

Table 2. Coded and Actual Values of Processing Parameters 

N.o Processing parameter Unit 
Low Center High 

-1 0 +1 

1 Melt temperature (Tnc) ºC 215 220 225 

2 Mold temperature (Tk) ºC 50 55 60 

3 Injection pressure (Ap) MPa 60 70 80 

4 Pressure holding time (ta) s 1.5 2.0 2.5 

Table 3. Some main setting parameters 

N.o Parameter setting Value 

1 Cooling time 10 s 

2 Ambient temperature 30 ºC 

3 Filling time Auto 

4 
Flow/pack switch point in filled 

volume 
99% 

5 Nozzle diameter 2 mm 

6 
Sprue diameter, runner 

diameter, and branch diameter 
6mm 

2.2.2. RSM model 

This study employs the statistical design method of 

RSM to investigate the interactions between injection 

molding process parameters and output responses. This 

method allows for the construction of a mathematical 

model describing the relationship between process 

parameters and output responses, thereby identifying the 

optimal point of the injection molding process. The full 

mathematical model is described in Equation (1) 

 

Y=α0+∑αiXi+∑αiiXi
2+∑αijXiXj+ε

k

ij

k

i=1

k

i=1

 (1) 

In which: 

Y - Objective function corresponding to td and Vs; 

Xi, Xj - Injection molding process parameters affecting the 

corresponding objective function; 

αi - First-order regression coefficient, describing the 

influence of factors Xi on the Y; 

αij- First-order regression coefficient, describing the 

simultaneous influence of 2 factors Xi and Xj; 

αii- Second-order regression coefficient, describing the 

second-order influence of factor Xi on the objective 

function Y; 

α0- Free coefficient in the model; 

ε - Statistical error related to the mean value. 

2.2.3. NSGA- II method 

This study combines the NSGA-II algorithm with the 

RSM approach to optimize machining quality with respect 

to the input parameters. The NSGA-II algorithm differs 

from the simple genetic algorithm in applying a ranking 

step before performing the selection operator. This ranking 

process is based on Pareto dominance between individuals, 

allowing the algorithm to identify and prioritize 

individuals with better characteristics [42-44]. Based on 

non-dominated sorting, NSGA-II ensures that the 

individuals with the best fitness values across multiple 

objectives have a higher probability of progressing to the 

next generation. This hierarchical approach organizes the 

individuals into different fronts based on their dominance 

relationships, with individuals in the higher fronts being 

given higher priority for selection. Additionally, NSGA-II 

employs an elitist strategy, which involves merging the 

parent and offspring populations. This allows for 

cooperative competition between individuals from 

different populations, leading to the creation of a more 

effective next generation. This cooperation helps to 

prevent the loss of valuable solutions and promotes the 

exploration of diverse regions in the search space. 

3. Results and Discussion 

3.1. Simulation analysis results 

The simulated results for 27 different conditions and 

their corresponding td and Vs are presented in Table 4. 

Figure 3 specifically illustrates the analysis results for 

model 01 (Tnc = 220ºC; Tk = 55ºC; Ap= 70 MPa and ta = 

2s). The simulation analysis results show that the mold is 

filled after 1.305 s, with a volume shrinkage of 5.679%. 

3.2. RSM model 

Predictive mathematical models for td and Vs 

parameters were developed using RSM, as presented in 

Equations 2 and 3. The accuracy of the models was 

assessed using the coefficient of determination (R2), a 

measure of the goodness of fit between the predicted and 

observed values. The regression analysis revealed that the 

predictive equations for td and Vs had R2 values of 0.946 

and 0.990, respectively, indicating a high degree of 

accuracy and the ability to accurately describe the 

relationship between input and output parameters. These 

findings align with previous studies that emphasize the 

importance of accurate modeling in optimizing injection 

molding processes using RSM [45, 46].  

 Figure 4 illustrates the good agreement between the 

predicted and observed values of td and Vs, with the 

residuals being nearly collinear, further confirming the 

efficacy of the developed models. The relationship 

between simulated and predicted results for td and Vs is 

depicted in Figure 5. 
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Table 4. Process parameters and corresponding td and Vs results 

N. o Tnc (ºC) Tk (ºC) Ap (Mpa) ta (s) td (s) Vs (%) 

1 220 55 70 2 1.305 5.679 

2 225 55 70 1.5 1.292 6.066 
3 225 60 70 2 1.267 6.028 

4 215 55 60 2 1.509 5.612 

5 225 55 70 2.5 1.292 5.811 
6 220 60 80 2 1.273 5.792 

7 220 55 80 1.5 1.305 5.756 

8 215 55 80 2 1.290 5.360 
9 215 60 70 2 1.285 5.548 

10 220 60 70 1.5 1.273 5.843 

11 220 50 70 1.5 1.322 5.659 
12 220 55 80 2.5 1.300 5.548 

13 220 60 60 2 1.302 5.954 

14 215 55 70 1.5 1.312 5.501 
15 220 55 70 2 1.300 5.686 

16 225 50 70 2 1.300 5.893 

17 215 55 70 2.5 1.312 5.095 
18 220 55 60 1.5 1.390 5.988 

19 225 55 60 2 1.312 6.065 

20 220 60 70 2.5 1.273 5.650 
21 225 55 80 2 1.293 5.989 

22 220 50 60 2 1.458 5.551 

23 220 55 60 2.5 1.400 5.413 
24 220 50 80 2 1.314 5.543 

25 215 50 70 2 1.352 5.195 
26 220 50 70 2.5 1.322 5.194 

27 220 55 70 2 1.305 5.679 

 

Figure 3. Filling time (a) and volumetric shrinkage rate (b) of model 01 

 
td = 6.74957 + 0.04656× Tnc  - 0.11207 × Tk-0.193695 × Ap-0.0107 × ta + 0.000351 × Tnc 
× Tk + 0.0004975 × Tnc × Ap + 0.0005775 × Tk×Ap-0.00069 ×Ap×ta- 0.0002365 × Tnc

2 - 
0.0001105 × Tk

2 + 0.000355125 × Ap
2 + 0.01495 × ta

2 

(2) 

 

 

Vs = 7.96045 + -0.10321 × Tnc + 0.63409 × Tk -0.279765 × Ap -5.35497 × ta -0.002187 × 
Tnc × Tk + 0.000879 × Tnc × Ap + 0.01512 × Tnc × ta -0.000768 × Tk × Ap + 0.0272 × Tk × 
ta + 0.018345 × Ap × ta + 0.0004335 × Tnc

2 - 0.0011265 × Tk
2 + 0.000621125 × Ap

2 - 
0.27555 × ta

2 

(3) 
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Figure 4. Normal Plot of Residuals for td (a) and Vs (b)

 
Figure 5. Comparison between simulation and prediction results for td (a) and Vs (b) 

Table 5. ANOVA analysis results of td 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Model 14 0.052 94.59% 0.052 0.004 15.00 0.000 

  Linear 4 0.037 66.72% 0.037 0.009 37.03 0.000 

   Tnc 1 0.003 6.14% 0.003 0.003 13.63 0.003 

   Tk 1 0.013 23.41% 0.013 0.013 51.98 0.000 

   Ap 1 0.021 37.17% 0.021 0.021 82.50 0.000 

   ta 1 0.000 0.00% 0.000 0.000 0.01 0.932 

  Square 4 0.009 16.76% 0.009 0.002 9.30 0.001 

   Tnc*Tnc 1 0.001 2.10% 0.000 0.000 0.75 0.405 

   Tk*Tk 1 0.001 1.82% 0.000 0.000 0.16 0.694 

   Ap*Ap 1 0.007 12.70% 0.007 0.007 26.91 0.000 

   ta* ta 1 0.000 0.13% 0.000 0.000 0.30 0.595 

  2-Way Interaction 6 0.006 11.11% 0.006 0.001 4.11 0.018 

   Tnc*Tk 1 0.000 0.56% 0.000 0.000 1.23 0.289 

   Tnc*Ap 1 0.002 4.46% 0.002 0.002 9.90 0.008 

   Tnc* ta 1 0.000 0.00% 0.000 0.000 0.00 1.000 

   Tk*Ap 1 0.003 6.01% 0.003 0.003 13.35 0.003 

   Tk* ta 1 0.000 0.00% 0.000 0.000 0.00 1.000 

   Ap* ta 1 0.000 0.09% 0.000 0.000 0.19 0.670 

Error 12 0.003 5.41% 0.003 0.000       

  Lack-of-Fit 10 0.003 5.38% 0.003 0.000 44.23 0.022 

  Pure Error 2 0.000 0.02% 0.000 0.000       

Total 26 0.055 100.00%             
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ANOVA was performed to verify the adequacy of the 

RSM models in capturing the statistical relationships 

between the two responses and the processing parameters. 

The results, summarized in Tables 5 and 6, indicate that 

both response surface models are highly significant (P< 

0.05), confirming the models' validity.Furthermore, the 

ANOVA results revealed that three process parameters 

(Tnc, Tk, and Ap) have a significant impact on td, with P-

values less than 0.01, however, ta was not significant for 

the td. This may be because td primarily reflects the initial 

stage of the injection process, where the material is rapidly 

injected into the mold cavity. While holding pressure time 

is important for ensuring the part maintains its shape and 

compensates for shrinkage after filling, it does not directly 

influence the filling time itself. The analysis also 

quantified the contribution of each factor to the variation 

in td, with Ap being the most influential factor (37.17%), 

followed by Tk (23.41%) and Tnc (6.14%). For Vs, all four 

process parameters were found to be significant based on 

the ANOVA results in Table 5. The relative contributions 

of these factors to the variation in Vs were determined to 

be 55.42% for Tnc, 19.56% for ta, 14.01% for Tk, and 

1.58% for Ap. 

Figure 6 shows the relationship between the processing 

parameters and the td value. Increasing the injection 

pressure results in a greater pushing force, helping the 

material to flow into the mold more quickly, thereby 

significantly reducing the time required to complete the 

mold filling process[47]. Higher mold temperature will 

reduce the viscosity of the material, making it easier to 

flow into the mold. Meanwhile, the melting temperature 

determines the flowability of the molten plastic before it is 

injected into the mold. Therefore, higher melting 

temperature can also increase the flowability of the 

material, thereby improving the mold filling process[48]. 

However, in this study, the pressure holding time ta has no 

significant effect on the mold filling time. This is because 

this parameter is mainly related to the control of shrinkage 

and the improvement of product quality after the mold 

cavity has been filled. 

Melt temperature has a direct impact on volumetric 

shrinkage (Figure 7). Excessive temperature can lead to 

material degradation or loss of mechanical properties, 

resulting in increased shrinkage upon cooling. Prolonged 

pressure holding time allows the plastic to remain under 

pressure for longer as it cools and solidifies, compensating 

for shrinkage and improving final product quality [49]. 

Generally, higher mold temperatures slow down the 

solidification process, allowing for better molecular 

alignment and reducing shrinkage. However, increasing 

mold temperature in this study resulted in increased 

volumetric shrinkage. This may be attributed to the 

complex geometry and design of the electrical outlet, 

where high mold temperatures can induce internal thermal 

stresses during cooling, leading to non-uniform 

deformation and increased overall shrinkage. Injection 

pressure, while significantly impacting filling time, has a 

relatively smaller effect on volumetric shrinkage, as most 

shrinkage occurs during the cooling and pressure-holding 

phases[10, 50]. 

Table 6. ANOVA analysis results of Vs 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Model 14 1.866 99.00% 1.866 0.133 84.74 0.000 

  Linear 4 1.708 90.58% 1.708 0.427 271.35 0.000 

   Tnc 1 1.045 55.42% 1.045 1.045 664.14 0.000 

   Tk 1 0.264 14.01% 0.264 0.264 167.93 0.000 

   Ap 1 0.030 1.58% 0.030 0.030 18.90 0.001 

   ta 1 0.369 19.56% 0.369 0.369 234.42 0.000 

  Square 4 0.075 4.00% 0.075 0.019 11.97 0.000 

   Tnc*Tnc 1 0.002 0.11% 0.001 0.001 0.40 0.540 

   Tk*Tk 1 0.004 0.24% 0.004 0.004 2.69 0.127 

   Ap*Ap 1 0.043 2.30% 0.021 0.021 13.08 0.004 

   ta* ta 1 0.025 1.34% 0.025 0.025 16.09 0.002 

  2-Way Interaction 6 0.083 4.43% 0.083 0.014 8.84 0.001 

   Tnc*Tk 1 0.012 0.63% 0.012 0.012 7.60 0.017 

   Tnc*Ap 1 0.008 0.41% 0.008 0.008 4.91 0.047 

   Tnc* ta 1 0.006 0.30% 0.006 0.006 3.63 0.081 

   Tk*Ap 1 0.006 0.31% 0.006 0.006 3.75 0.077 

   Tk* ta 1 0.018 0.98% 0.018 0.018 11.76 0.005 

   Ap* ta 1 0.034 1.79% 0.034 0.034 21.39 0.001 

Error 12 0.019 1.00% 0.019 0.002       

  Lack-of-Fit 10 0.019 1.00% 0.019 0.002 112.15 0.009 

  Pure Error 2 0.000 0.00% 0.000 0.000       

Total 26 1.885 100.00%             

 
Figure 6. Contour plot for the influence of process parameters on td  
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3.3. Multi-objective optimization using NSGA-II 

This study employs a multi-objective optimization 

model using the NSGA-II algorithm to minimize both 

filling time (td) and volume shrinkage rate (Vs) while 

adjusting processing parameters (Tnc, Tk, Ap, and ta). The 

relationships between these parameters and the objectives 

are established using RSM. The goal is to find the optimal 

combination of processing parameters within specified 

constraints. Table 7 presents the details and values 

associated with the input parameters and objectives. For 

this specific study, the population size, mutation rate, 

crossover rate, and maximum generations were set to 60, 

0.25, 0.8, and 500, respectively. These settings were 

chosen to ensure a reasonable convergence rate for the 

optimization process. 

The results of the NSGA-II optimization analysis are 

presented in Figure 8 with 21 Pareto solutions (Table 8). 

For the objective function td, the range is from 1.260 to 

1.389 s, and for the objective function Vs, it varies from 

4.810 to 5.497%. The corresponding processing 

parameters Tnc range from 215.0 to 215.4 ºC, Tk from 50 to 

60 ºC, Ap from 67.09 to 76.53 Mpa, and ta from 2.097 to 

2.5s. The NSGA-II method is highly flexible as it provides 

21 Pareto solutions, allowing manufacturers to select the 

most suitable parameters based on their priorities, such as 

prioritizing efficiency by choosing a shorter filling time or 

prioritizing quality by selecting a lower volumetric 

shrinkage rate. 

Table 7. Processing parameters and optimization objectives 

Pocessing parameters 
Level 

Objectives 
Low High 

Melt temperature (Tnc) 215 225 
Filling 

time (td, s) 
Minimum 

Mold temperature (Tk) 50 60 

Volume 

shrinkage 

(Vs, %) 

Minimum 

Injection pressure (Ap) 60 80   

Pressure holding time (ta) 1.5 2.5   

 
Figure 7. Contour plot for the influence of process parameters on Vs 

 

Figure 8. Multi-objective optimization results using NSGA-II 
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To validate the results of the optimization process using 

the NSGA-II method, the study conducted simulation 

analyses for two cases corresponding to the smallest values 

of the objective functions td and Vs. The results of the 

simulation analysis and comparison with the optimal 

values obtained by the NSGA-II method are presented in 

Table 9. The results indicate that the difference between 

the predicted and observed values is less than 2.03%, 

confirming the accuracy of the method used to solve the 

multi-objective optimization problem related to plastic 

flow during the injection molding process. This finding is 

consistent with other studies that have employed NSGA-II 

and similar modeling techniques. For example, Li et al. 

[31] combined Kriging with NSGA-II to optimize the 

quality of plastic parts, achieving an accuracy of 4.6%. 

Similarly, Lu and Huang [51] integrated the Ellipsoidal 

Basis Function Neural Network (EBFNN ) model with the 

NSGA-II algorithm, reporting a maximum error of 

15.767% for the volumetric shrinkage ratio and 9.952% for 

warpage deformation. 

Despite the significant findings of this study, several 

limitations warrant further investigation. The scope of the 

study was confined to four primary processing parameters 

in the injection molding of electrical outlets, while 

numerous other factors influence the process. Future 

research should broaden its scope to encompass a wider 

range of processing parameters. Additionally, the proposed 

method's validation was solely based on simulations, 

necessitating experimental verification. Furthermore, a 

comparative analysis with other optimization algorithms 

could provide insights into the method's relative 

performance. By addressing these limitations and 

conducting comprehensive comparisons, future studies can 

offer a more holistic understanding of plastic injection 

molding and contribute to enhanced manufacturing 

efficiency. 

 

Table 8. Results of 21 optimal solutions corresponding to processing parameters 

N.o Tnc (ºC) Tk (ºC) Ap (Mpa) ta (s) td (s) Vs (%) 

1 215.00 50.00 67.09 2.500 1.389 4.810 

2 215.01 50.03 72.61 2.497 1.334 4.835 

3 215.02 52.69 75.83 2.450 1.300 5.047 

4 215.00 60.00 75.37 2.097 1.260 5.497 

5 215.04 51.88 76.53 2.475 1.301 4.995 

6 215.00 50.01 68.99 2.500 1.368 4.813 

7 215.01 55.60 75.16 2.391 1.287 5.222 

8 215.02 54.93 75.78 2.486 1.290 5.141 

9 215.03 50.73 76.50 2.478 1.305 4.927 

10 215.00 50.01 67.13 2.500 1.388 4.812 

11 215.00 60.00 75.37 2.097 1.260 5.497 

12 215.01 56.47 75.81 2.294 1.281 5.308 

13 215.00 50.09 71.42 2.496 1.343 4.832 

14 215.00 59.61 75.62 2.437 1.264 5.368 

15 215.00 59.65 75.55 2.357 1.263 5.403 

16 215.04 51.44 76.20 2.497 1.304 4.952 

17 215.01 50.33 74.04 2.496 1.322 4.864 

18 215.03 56.60 75.70 2.446 1.281 5.241 

19 215.02 58.21 75.25 2.386 1.272 5.337 

20 215.01 56.52 75.68 2.374 1.281 5.273 

21 215.04 53.46 75.18 2.465 1.299 5.076 

Table 9. Simulation validation results of td and Vs compared to optimized values 

Processing parameters Optimization results Test results Deviation (%) 

Tnc (ºC) Tk (ºC) Ap (Mpa) ta (s) td (s) Vs (%) td (s) Vs (%) td (s) Vs (%) 

215.0 50.0 67.09 2.5 1.389 4.810 1.378 4.902 0.77 1.90 

215.0 60.0 75.37 2.1 1.260 5.497 1.285 5.409 2.03 1.61 
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4. Conclusion 

This study successfully demonstrated the application of 

Response Surface Methodology (RSM) and the Non-

Dominated Sorting Genetic Algorithm II (NSGA-II) for 

optimizing filling time (td) and volumetric shrinkage rate 

(Vs) in the injection molding of plastic electrical sockets. 

Four process parameters, including melt temperature (Tnc), 

mold temperature (Tk), injection pressure (Ap), and 

pressure holding time (ta), were used. By establishing 

predictive models for these critical quality characteristics 

and employing a multi-objective optimization approach, 

the research identified Pareto-optimal solutions that 

effectively balanced conflicting objectives. The results 

indicate that the predictive models for td and Vs were 

developed, exhibiting high coefficients of determination 

with R² values of 0.946 and 0.990, respectively. Applying 

NSGA-II for multi-objective optimization generated 21 

Pareto solutions, with Tnc ranging from 215.0 to 215.4 °C, 

Tk ranging from 50 to 60 °C, Ap ranging from 67.09 to 

76.53 MPa, and ta ranging from 2.097 to 2.5 s. These 

values corresponded to td values ranging from 1.260 to 

1.389 s and Vs values ranging from 4.810 to 5.497%. 

Finally, verification through re-simulation of the solutions 

confirmed the method's accuracy, with differences less 

than 2.03%. The findings of this study provide valuable 

insights into the complex interplay between process 

parameters and product quality in injection molding. The 

methodology presented can be adapted to optimize other 

product attributes and applied to a broader range of 

materials and product geometries. 
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