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Abstract 

This study introduces an integrated approach that combines Taguchi methodology and machine learning techniques to 

enhance production quality in electrical cable manufacturing. The Taguchi method was employed to identify critical factors 

such as compaction percentage, wire diameter, raw materials, assembly procedures, and operating voltage, converging on an 

optimal solution. Various decision-making algorithms, including decision trees, random forests, boosted decision trees, linear 

regression, and k-star, were utilized alongside evaluation metrics like sensitivity, F1-score, and accuracy. The integration of 

Taguchi and machine learning facilitated the identification of key process parameters and their optimal settings, significantly 

improving the quality and efficiency of cable manufacturing. The optimal solution achieved included a 666 kg/km weight, 2.64 

cm diameter, and a 30% compaction rate, reducing the poor quality cost from 5% to 1.7%. This synergistic approach allowed 

for the optimization of critical process factors, resulting in significant improvements in product quality and reductions in defects 

and costs. 
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1. Introduction  

Power cables have gained prominence in electrical 

power delivery due to their reduced environmental impact, 

compliance with public concerns, and high reliability, 

particularly for offshore renewable energy transmission. 

Moreover, underground energy transmission was 

recognized as a method to provide reliable power supplies 

at a lower total cost, driving the increasing demand for high-

quality power cables. In the context of electricity market 

reformation and liberalization, the reliability of these cables 

is crucial for maintaining an uninterrupted, quality power 

supply. Consequently, developing improved testing and 

measuring technologies has become essential in 

manufacturing high-quality power cables to meet the 

growing electrical demand. 

Furthermore, selecting materials and production 

methods significantly influences conductor conductivity 

and weight, impacting performance and cost-effectiveness. 

Achieving repeatability and reproducibility in conductor 

design is crucial for quality and reliability, particularly in 

advanced packages and assemblies with lead-free wetting 

and higher process temperature requirements. Additionally, 

the manufacturing system design plays a vital role in 

product quality, with reconfigurable manufacturing systems 

offering various configuration alternatives that affect the 

final product. 

Cable chain systems can impact precision and 

articulation as manufacturing equipment and studies have 

shown that eliminating cable chains can improve accuracy 

and reduce articulation. Moreover, the miniaturization of 

conductor tracks and circuit carriers in electronic packaging 

can increase component temperatures and accelerate system 

degradation, emphasizing the critical importance of 

efficient thermal management for ensuring long-term 

reliability in electronic systems. This paper is structured as 

follows: section 2 explains the literature review. Section 3 

is devoted to applying Taguchi and machine learning 

methodology. Section 4 provides results and a discussion, 

and section 5 concludes the research. 

2. Literature review  

The Taguchi method has been widely applied in various 

manufacturing contexts, including flexible manufacturing 

systems performance optimization [10], component 

machining [11], and IT infrastructure security risk 

assessment [12]. Its versatility extends to optimizing 

manufacturing processes for diverse products such as 

printed circuit boards [13], and light-storing ceramics [14]. 

This method offers significant benefits, systematically 

optimizing product quality and reducing costs [15]. Studies 
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have demonstrated its efficacy in yielding better finishing 

and improved surface roughness in manufacturing 

processes [16]. Furthermore, the Taguchi method has been 

successfully employed to minimize total cost under 

stochastic breakdowns in manufacturing processes [17]. 

Researchers have integrated the Taguchi method with other 

techniques to enhance its effectiveness in manufacturing 

optimization. These combinations include response surface 

methodology [18], neural networks [19], and texture profile 

analysis [20]. This integration of methodologies 

demonstrates the adaptability and continued relevance of 

the Taguchi method in addressing complex manufacturing 

challenges.as illustrated in Fig. 1. 

The Taguchi method's capability to optimize product 

designs and manufacturing processes and its effectiveness 

in enhancing the efficiency and stability of quality control 

measures suggests its potential as a valuable tool in electric 

conductor manufacturing. By leveraging this method, 

manufacturers may improve their electric conductors' 

quality, cost-effectiveness, and performance [13]. 

In electric conductor manufacturing, the Taguchi 

method has been utilized to determine the optimal 

combination of wire diameters, raw materials, and 

resistances. For instance, in electrochemical machining 

(ECM) processes, Kumar et al. applied the Taguchi method 

to optimize insulation process parameters, including the gap 

between work material and tool, discharge current, and 

electrolyte concentration. They applied voltage to achieve 

optimal surface finish insulation [14], [15]. The method has 

demonstrated its potential to enhance efficiency and cost-

effectiveness in electric conductor manufacturing by 

minimizing the reduction rate in production, thereby 

lowering overall production costs [16]-[19]. Chen et al. 

further investigated the effect of simultaneously changing 

influential parameters of the electrodeposition method using 

a hybrid approach with response surface methodology 

(RSM) [20], highlighting the method's applicability in 

improving the quality and performance of final electric 

conductor products. Moreover, the Taguchi method's 

application in electrical machine design indicates its 

potential for use in the manufacturing process of electric 

conductor insulation [21-23]. The Taguchi method and 

Analysis of Variance (ANOVA) combination could 

contribute significantly to various aspects of electricity.  

 Many researchers studied Quality Control added to 

Machine learning techniques, such as deep learning models, 

are employed for automated defect detection and 

classification in conductor manufacturing, leading to 

improved product quality and reduced manufacturing costs 

[24]., and also, these models learn from diverse datasets of 

defect images or videos, enabling the detection of various 

defect classes and promoting time savings while achieving 

improved accuracy [25]. 

Additionally, Machine learning (ML) has emerged as a 

powerful tool for predicting and improving the quality of 

conductor manufacturing. ML methods predict work piece 

quality in early manufacturing stages, potentially leading to 

significant savings in time, cost, and resources [26]. In 

industrial applications, such as at Bosch Rexroth AG, ML 

has been employed to predict the diameter and roundness of 

bores in manufacturing processes [27]. In the automotive 

industry, ML techniques, including linear regression and 

Long Short-Term Memory (LSTM) networks, predict the 

quality of spot-welding processes, enabling root cause 

analysis and preventive actions [26]. ML offers an efficient 

approach to learning models for quality prediction directly 

from large amounts of measured process data, as 

demonstrated in the abrasion-resistant material 

manufacturing process [27]. 

The global demand for reliable and efficient electrical 

infrastructure necessitates high-quality electric cables. 

However, achieving consistent quality in electrical 

conductor manufacturing remains a significant challenge, 

often resulting in material waste and increased production 

costs. Noncompliant conductors can lead to overheating, 

electrical losses, reduced service life, and even safety 

hazards. 

This study addresses this critical issue by proposing a 

novel hybrid approach that combines the powerful 

statistical methods of Taguchi methodology with the 

predictive capabilities of machine learning (ml) techniques. 

Our objective is to optimize the electrical cable 

manufacturing process by: 

1. Minimizing excess material consumption: reducing 

material waste is essential for cost reduction and 

environmental sustainability. 

2. Identifying influential parameters: identifying the 

critical factors that impact conductor quality will allow 

for targeted process improvements. 

3. Calculating cost implications: quantifying the cost 

savings associated with implementing the optimized 

process will demonstrate the economic viability of the 

proposed approach. 

By integrating Taguchi's robust design principles with 

ml's ability to analyze large datasets and predict outcomes, 

we aim to develop a comprehensive framework that 

effectively pinpoints and optimizes critical process factors, 

ultimately leading to improved product quality, reduced 

defects, and enhanced cost-effectiveness in electrical cable 

production. Demonstrated The effectiveness of this hybrid 

approach was a case study focusing on a specific cable type. 

 
Figure 1. Relation of effect parameters 
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3. Methodology 

This research paper proposes a synergistic framework 

combining Taguchi methodology with machine learning 

(ML) techniques to optimize the manufacturing process for 

electrical conductors, aiming to enhance product quality and 

minimize material consumption. 

3.1. Taguchi Method 

The Taguchi methodology forms the basis of our 

experimental design. It leverages statistical Modeling to 

systematically examine the relationships between crucial 

input factors, such as compaction percentage, wire 

diameter, raw material composition, assembly procedures, 

operating voltage, and critical output responses like 

conductivity, tensile strength, and weight. Using Taguchi 

principles, strategically designed experiments were 

conducted to generate data that elucidate the complex 

interactions within the conductor manufacturing process. 

Taguchi’s quality control method is a prominent approach 

in engineering. It highlights the essential roles of research 

and development (R&D) and product design and 

development in minimizing defects and failures in 

manufactured products. Widely used for quality 

optimization, this method reduces variation and defects in 

products and processes. A key aspect of this approach is 

robust design, which involves creating products or 

processes that are resilient and capable of performing 

effectively under various conditions, thereby reducing the 

influence of external factors. 

This study's primary experimental objective is to 

decrease conductor weight while ensuring electrical 

resistance remains at or below 0.125 ohms. The 

investigation targets critical variables that affect these 

outcomes, applying a significance level (α) of 0.05. The 

factors under consideration include compaction percentage 

with levels set at 15, 20, 25, and 30 and wire diameter with 

levels set at 2.63, 2.64, 2.66, and 2.67 mm. To achieve a 

robust experimental design, the study requires 80 samples, 

calculated as 5*4^2, to account for the two factors with four 

levels each. This sample size ensures a comprehensive 

representation of the conditions under investigation.  An 

experimental data sheet was prepared to record the response 

values for each of the 80 trial conditions, essential for 

analyzing and determining mean response metrics. 

3.2. Data Collection  

The parameters that influence the performance and 

quality of electrical cables are multifaceted and have been 

extensively studied in literature. The choice of conductor 

material and its cross-sectional area directly impact the 

cable's resistance, current-carrying capacity, and thermal 

dissipation characteristics, with larger conductor sizes 

reducing power losses and improving efficiency [39]. The 

insulation material and wire diameters also play a crucial 

role, as the dielectric properties and wire diameter affect the 

cable's voltage rating and ability to withstand electrical 

stress while balancing cost, weight, compaction percentage, 

raw material composition, assembly procedures, operating 

voltage and the required level of protection [40]. 

Additionally, the cable's overall construction, including 

shielding and armoring layers, can impact its 

electromagnetic compatibility and mechanical resistance to 

external factors such as abrasion, impact, and corrosion 

[28]. Data was collected over one year using a control chart 

and process capability to measure the performance of 

defects, which is the material consumed over the upper 

specification limit. (if use = 2000 kg and actual 2500kg, 

then weight consumed =500kg, and any weight less than the 

lower specification limit with specific resistance is 

considered the best condition). 

3.3. Manufacturing processes  

The cable manufacturing process shown in Figure2 can 

be described as follows: 

1. Raw Material: Start with raw material for cable 

production. 

2. Drawing: The raw material is drawn into wires. 

3. Stranding: The wires are stranded together to form a 

conductor. 

4. Insulation Decision: 

 If Medium Voltage (MV), the conductor is used for the 

Overhead Transmission Line (O.H.T.L), and the process 

ends. 

 If Low Voltage (LV), proceed to Insulation. 

5. Insulation: The cable is insulated. 

6. Screening: The cable is screened for additional 

protection (for high-voltage cables). 

7. Assembly: The insulated wires are assembled. 

8. Bedding: A bedding layer is applied to the cable for 

mechanical protection. 

9. Armored Cable Decision: 

 If the cable needs to be Armored, proceed to armoring. 

 If no armor is required, the process ends. 

10. Armoring: Armoring is applied to protect the cable from 

physical damage. 

11. Sheathing: A sheath is applied over the armored cable 

for environmental protection. 

12. Testing: The cable is tested for quality and performance. 

13. Warehouse: The tested cables are stored in a warehouse. 

14. Delivery: The finished cables are delivered to the 

customer. 

The main two processes are drawing and stranding. The 

drawing process is a mechanical process to reduce the wire 

diameter by tension force between 17 to 33 % of the first 

diameter by passing the wire through several dies of a 

specific sequence till we get the required diameter. In the 

stranding process, one wire was in the center of the 

conductor; a second layer containing several wires was 

stranded around it, so the conductor of cables consists of 

several strands of wire in a circular cross-section. Figures 3 

(a and b) present systematic diagram for the drawing and 

stranding processes. 
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Figure 2. Flow chart of the cable manufacturing process 

 

  

Figure 3. a) drawing process b) stranding process 

3.4. Problem Definition  

A dedicated team comprising the authors, operators, 

quality personnel, production engineers, and management 

was established. This team engaged in multiple 

brainstorming sessions and meetings to thoroughly define 

the problem and gather relevant data. Historical preliminary 

data were collected to understand the nature and scope of 

the existing issue. The team employed demand rate criteria 

to evaluate different cable types, as this metric substantially 

impacts financial performance. Specifically, data on the 

average annual demand rate over one year for various cable 

types were gathered. Pareto analysis determined that the 

medium voltage line had the highest demand, representing 

39.2% of the total market. As a result, the project was 

primarily focused on the medium voltage line. 

The problem can be summarized as the company's 

challenge in managing an increase in material consumption 

during the manufacturing of its products, leading to an 

overall increase in the weight of the cables, higher 

manufacturing costs, and diminished process efficiency. In 

response, top management resolved to establish a team 

tasked with applying Taguchi methodologies integrated 

with hybrid machine learning to address and resolve this 

issue. Table 1 outlines the scope of improvement costs and 

the defect percentage relative to costs for each process. 
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Table 1. Over cost and defect of each process 

material over 
cost 

(l.e) 

cost 
%* 

defect 
(kg) 

defect 
rate% 

conductor 29168 22 36 0.1% 

insulation 30040 22 1163 3.6% 

copper tape (screening) 30054 22 1437 4.5% 

polypropylene filler 5764 4 4305 13.4% 

polypropylene tape 496 0.37 449 1.4% 

PVC sheathing 9414 7 9082 28.2% 

armoring 14138 10 3830 11.9% 

PVC bedding 13222 9 11939 37% 

total 132300 100 32241 100% 

After determining defect rates, deciding the cost of 

material, and assessing the importance and effect of 

processes on cable, a selection matrix was used to rate the 

factors and their potential impact cable weight. Based on 

these ratings, a priority order was set to determine the vital 

few from the trivial many—Table2. 

  It shows a weight for each factor according to its 

importance in affecting cost for every process and a value 

for these factors (cost, significant parameters, etc.), as 

shown in Table 3. To find the total effect of every process 

on the overall cable manufacturing product, the weight for 

each factor is multiplied by its value for the process, and 

collection for every factor is performed. The overall process 

weight is given byeq.1. 

opw = ∑ piwin
i=1                                                  (1) 

pi is the process value for factor i, and wi is the weight 

for factor i. The percentage contribution for every process 

was divided by the overall process weights for all 

processes. 

These lection matrix shows that the drawing and 

stranding processes have the most significant ratings 

(19%and20%), which means that the conductor is the core 

and essential part of the cable manufacturing process. 

Therefore, we have decided to work with these two 

processes for improvement. 

3.4.1. Cause and effect matrix 

In describing the problem, all measurable variables, 

including inputs and outputs, were incorporated into the 

cause-and-effect matrix. This matrix assigns weights to 

each output variable (y) according to its significance. 

Subsequently, each input variable (x) was assessed based on 

its correlation with the respective output variables. The 

calculations, grounded in both importance and correlation, 

identify the input variables with the highest scores as the 

most suitable candidates for data collection, as illustrated in 

Table 3. The results indicate that wire diameter, elongation, 

tensile strength, resistivity, and raw material diameter are 

the most critical factors influencing the conductor's 

performance. Among the manufacturing process outputs, 

conductor weight and resistance are identified as the most 

significant. 

Table 2. Selection matrix of processes 

selection matrix 

 cost sigma level effect on cable management 
total 

percent 
importance 8 5 9 5 

processes ratings  

drawing 9 8 10 10 252 19% 

stranding 10 9 10 10 265 20% 

insulation 7 6 5 7 166 13% 

screening 6 4 3 7 130 10% 

assembly(filler) 1 5 4 2 79 6% 

assembly(tape) 3 5 6 2 113 9% 

bedding 3 6 6 3 123 9% 

sheathing 2 6 5 4 111 8% 

armoring 2 2 3 3 68 5% 

Table 3. Cause and Effect Matrix 

Process 

Step 

Process Input Importance 

to Y's 

Wire 

Breaker 

Engine Table Central 

Runner 

Central 

W/W 

Ingrid 

Arm 

Layer 

Arm 

Interstrand Total 

Drawing Conductor Type 50 0 0 6 9 6 6 6 9 795 

Resistivity 30 0 0 6 9 6 6 6 9 720 

Raw Material 
Diameter 

20 9 9 6 0 0 0 0 0 915 

Raw Material 

Tensile 

10 9 9 3 0 0 0 0 0 615 

Raw Material 

Elongation 

10 9 9 3 0 0 0 0 0 615 

Stranding Wire Diameter 

Tensile Strength 

50 9 9 3 9 9 9 9 9 1245 

Compaction 
Percent 

15 9 3 3 9 9 9 9 9 1275 

total 210 120 120 60 120 120 60 60 570 210 
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The causes of increasing conductor weight could be 

summarized as follows: 

 Due to the absence of a standardized brake setting, 

operators continuously adjust the compaction 

percentage during manufacturing. This practice 

contributes to increased open lay length, as depicted in 

Table3. 

 Occasionally, the conductor's resistance exceeds the 

specified requirements during the stranding process. To 

rectify this, operators insert larger wire diameters into 

the conductor's center, which results in an increase in 

conductor weight. 

 Additionally, when the drawing machine's dies become 

scratched, operators increase the distance between the 

rolls to prevent further wire scratching. This adjustment, 

however, leads to an increased conductor diameter and 

weight. 

3.5. Machine learning methodology  

This section provides an overview of the machine 

learning (ML) methods employed to compare the accuracy 

of combined models with individual models to predict the 

quality of electrical cables. The process involved dividing 

the dataset into training and testing sets, with 70% of the 

data used for training and 30% for testing to evaluate the 

efficiency of the proposed ML algorithm. 

Figure 4 presents a typical ML workflow, outlining key 

stages in constructing and assessing a model. This workflow 

includes data collection, preprocessing, essential feature 

selection, and training dataset creation. The model is 

subsequently trained, cross-validated, and optimized before 

deployment. Cross-validation plays a critical role in this 

process, as it allows for performance assessment and 

enhancement by using a separate validation dataset to refine 

the model. 

Standard ML algorithms—such as decision trees, 

random forests, linear regression, and K-star—are selected 

based on the problem's specific requirements, which 

enhances the overall effectiveness of the ML approach, as 

illustrated in Figure 4. The iterative process of model 

retraining and optimization further contributes to the 

development of the final deployed mode. 

 
 Figure 4. Lay length 

On the other hand, several machine learning algorithms 

were employed, including decision trees, random forests, 

boosted decision trees, linear regression, and K-star 

algorithms. Each of these algorithms plays a distinct role in 

model construction and is selected based on the specific 

requirements and characteristics of the problem. This target 

selection enhances both the versatility and effectiveness of 

the overall machine-learning approach, as illustrated in 

Figure 5. 

3.5.1. Performance Evaluation Methods 

3.5.1.1. Model performance and evaluation metric. 

Several evaluation metrics were employed: specificity, 

sensitivity, f1-score, and area under the receiver operating 

characteristic curve. The confusion matrix considered 

includes true positives and false positives), true negatives 

and false negatives  

 

Figure 5.  Layout of machine learning 
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CapAccuracy =
TP+TN

TP+TN+FP+FN
                                        (3) 

recall =
TP

TP+FN
                                                                  (4) 

F − Score  =
2∗Sensitivity∗Specificity

Specificity+Sensitivity
                   (5) 

3.5.2. Bidirectional Symbiosis 

Crucially, the Taguchi methodology and the ML 

component operate synergistically and bi-directionally. The 

Taguchi experiments provide ML algorithms with 

structured and comprehensive data, enabling them to build 

highly accurate predictive models. Conversely, the insights 

gleaned from the ML models inform the Taguchi 

methodology, guiding the design of future experiments and 

refining the optimization process. 

This bidirectional symbiosis allows the framework to: 

 Broaden ML's predictive power: The ML models 

benefit from the systematic and statistically sound data 

generated by the Taguchi approach. 

 Enhance Taguchi's systematic experimental 

approach: The insights from ML models will guide the 

selection of parameters and levels in future experiments. 

4. Result and decision 

4.1. Taguchi Methodology Results 

The Taguchi analysis identified open lay length as the 

primary factor contributing to the increase in conductor 

weight. Additionally, key parameters influencing the 

outcomes were identified, prompting the decision to 

conduct an experimental study to optimize these 

parameters. The parameters under consideration included 

compaction percentage, which refers to the pressure applied 

to the brakes to reduce speed when a specific resistance is 

required, and wire diameter, which is the diameter of the 

wire drawn from the machine for stranding. 

Analysis of interaction plots for the response graph 

indicated that the optimal parameter settings were a 

compaction percentage of 4% and a wire diameter of 2 mm. 

These settings were expected to yield minimal weight while 

maintaining an acceptable resistance level. 

The data revealed that, at a compaction percentage of 

30%, a diameter of 2.64 mm resulted in a weight of 630 and 

a resistance of 0.121. A similar trial at the same compaction 

level with a slightly larger diameter of 2.67 mm resulted in 

a weight of 640 and a resistance of 0.119. Under different 

conditions, a 20% compaction with a diameter of 2.63 mm 

produced a weight of 665 and a resistance of 0.120. Another 

trial with 30% compaction and a diameter of 2.66 mm 

yielded a weight of 645 and a resistance of 0.121. 

These variations in diameter, weight, and resistance 

across different compaction percentages highlight the 

relationships among these variables in the experimental 

trials. They provided valuable insights into the relationship 

between process parameters and resulting weight and 

resistance values, supporting informed decision-making in 

optimizing conductor manufacturing processes. The results 

of this experimental design are illustrated in Figures 6 and 

7. 

 

Figure 6. Interaction plot for resistance 
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Figure 7. Interaction plot for weight 

4.2. Regression analysis 

Regression analysis identifies the empirical 

mathematical relationship between the cause (independent 

input variables) and effect (output response). This technique 

is used to fit experimental data into an equation or model, 

with the objective of estimating the relationship between the 

output response and independent variables. The coefficient 

values used in the analysis are presented in Tables 4 and 5. 

4.3. Analysis of Variance 

Analysis of Variance (ANOVA) is a statistical method 

used to determine whether significant differences exist 

between multiple sample groups by comparing the variation 

within sample groups (often referred to as “noise”) to the 

average differences between the groups. ANOVA focuses 

on variability and involves calculating several measures of 

this variability. 

An ANOVA analysis was conducted using specialized 

software to assess the relative significance of individual 

factors. In Tables 4 and 5, "DOF" represents the degrees of 

freedom, "SS" is the sum of squares, "MS" is the mean 

squares or estimated variance, and "F" is the variance ratio. 

The results from the ANOVA analysis, as shown in Table 

4, provide insights into the relationship between weight and 

the parameters of diameter and compaction. 

Table 4. ANOVA analysis 

SOURCE DF SS MS F P 

diameter 3 378 126 5.75 0.0175 

compaction 3 4799 1599 72.97 0.000 

interaction 9 2000 222 10.14 0.000 

error 64 1403 21 

total 79 8581 

 

Based on the optimum value for weight and resistance, 

as shown in Figures 8 and 9, the values 2.64 cm for diameter 

and 30% for compaction give the optimum solution, 

predicted value weight, and resistances of 666 kg/km and 

0.1224 ohms, respectively. 

Table 5. ANOVA Table for Resistance versus Diameter and 

Compaction 

source DF SS MSS F P 

diameter 3 0.000120623 0.00003107 0.82 0.480 

compaction 3 0.0001770 0.00008379 0.69 0.5493 

interaction 9 0.0006290 0.00008379 1.63 0.4530 

error 64 0.004489 0.00007379  

total 79  

4.4. Machine Learning Models Results 

This research aimed to develop and evaluate machine 

learning models for classifying quality products. The 

dataset used for this evaluation consisted of 20% of the total 

data. we assessed the performance of these models based on 

various performance metrics, including sensitivity, f1-

score, and accuracy) 

4.4.1. Comparison of Decision Tree Machine Learning 

Models for Performance Evaluation 

In this section, various well-known machine learning 

models are evaluated to classify product quality into two 

identified classes. A binary classification task has been 

designed based on the features analyzed in Section 3.1. 

Figure 8 presents a detailed table with the performance 

metrics of five machine learning models employed for a 

classification task. The metrics reported are accuracy, f-

score, and recall, each with distinct implications for model 

evaluation. Accuracy represents the percentage of instances 

correctly classified by the model, with higher values 

indicating better performance. The f-score is a harmonic 
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means of precision and recall, reflecting a balance between 

these two measures, where higher values are preferable. 

Recall quantifies the percentage of actual positive cases that 

the model correctly identified, and higher recall is desirable. 

Examining the model performances, the decision tree 

model exhibits good accuracy at 92% but relatively low f-

score and recall compared to other models, suggesting 

potential issues with precision or a tendency to miss positive 

cases. The random forest model achieves slightly lower 

accuracy at 90% but demonstrates a better f-score and 

significantly higher recall than the decision tree, indicating 

a more favorable balance between precision and recall and 

an enhanced ability to capture positive instances. The 

boosted decision trees model performs similarly to the 

random forest, with a good f-score and slightly lower recall. 

Conversely, the linear regression model has the lowest 

accuracy but the highest f-score and recall, which is unusual 

for a classification model employed as linear regression was 

typically for regression problems. This anomaly may be 

attributable to a mismatch in model selection or potential 

overfitting of the data. 

Overall, the random forest and boosted decision tree 

models perform best in this scenario, balancing accuracy, f-

score, and recall. Furthermore, these models were generally 

better choices for classification tasks. The decision tree 

model may benefit from tuning its parameters to improve 

recall, while the linear regression model warrants further 

investigation to determine if the data requires different 

preprocessing for better results. 

4.4.2. Selection Feature 

This study was conducted to enhance the understanding 

of defect importance analysis and to assist manufacturers in 

more effectively evaluating trends in the electrical 

conductor production process. To achieve this, decision tree 

models were employed to assess defect significance, 

determining the critical score for each variable involved in 

predicting the final product's quality. As shown in Figure 9, 

the selected defects were compaction and wire diameter. A 

defective score plot was developed to provide a relative 

score for each variable, with the faults ranked in descending 

order of importance. By examining the decision tree 

coefficients, it is possible to identify the primary 

characteristics used in categorization. In this case, the 

increase in compaction coefficient corresponds with the 

findings of the statistical analysis. This result aggregates the 

findings from Section 4.4 as described in references (29-

31). 

 

Figure 8. Performance of ml classification models 

 
Figure 9. Features of models 
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4.4.3. Tornado Sensitivity Analysis  

The impact of reducing conductor weight on the overall 

weight of other materials within a cable. The total cable 

weight decreased from 9321 kg/km to 8895 kg/km, 

resulting in a significant saving of 426 kg/km. Achieved. 

This reduction was primarily by directly decreasing the 

conductor’s weight by 63 kg/km. However, the effects 

extended beyond the conductor, with additional weight 

reductions in other components. The insulation, bedding, 

and sheathing materials saw reductions of 79 kg/km, 44 

kg/km, and 70 kg/km, respectively, suggesting that the 

smaller conductor size allowed for less material usage in 

these surrounding layers while maintaining functionality. 

Furthermore, the armoring weight decreased by 95 kg/km, 

likely due to the reduced overall cable diameter, which 

required less armoring material for protection. The weight 

reductions in screening and filling materials were relatively 

minor at 22 kg/km and 28 kg/km, respectively, indicating 

that these components were less directly affected by 

conductor size. The thriving weight reduction through 

conductor modification offers significant cost savings in 

cable manufacturing and transportation, enhances 

efficiency in handling and installation, and provides 

environmental benefits by reducing material consumption, 

contributing to sustainability efforts (ref. 32-33), illustrated 

in Figure 10. 

5. Discussion 

The Revised Discussion Section is Divided into Two 

Sub-Sections: Theoretical implications and Practical 

Implications as Follows: 

5.1. Theoretical Implications 

The graph illustrates that the wire diameter initially 

decreases as the compaction percentage increases, reaching 

a minimum of approximately 23.5% compaction. However, 

further increases in compaction lead to an increase in wire 

diameter. This bell-shaped relationship between 

compaction and wire diameter is crucial for optimizing the 

electrical conductor manufacturing process, as noted in 

references (30-32). 

The data presented in the tables shows that at 30% 

compaction, the wire diameter ranges from 2.64 to 2.67 mm, 

with corresponding weights between 630 and 645 grams 

and electrical resistances between 0.119 and 0.121 ohms. At 

20% compaction, the wire diameter is 2.63 mm, the weight 

is 665 grams, and the resistance is 0.120 ohms, as shown in 

Figure 11. 

Understanding the trade-offs between compaction, wire 

diameter, weight, and electrical resistance is crucial for 

ensuring the quality and performance of the final electrical 

conductor. The goal is to identify the optimal compaction 

level that results in the desired wire characteristics, 

balancing the various factors to meet the application’s 

requirements. These results align with the practical and 

experimental findings presented in Sections 4.3 and 4.4. 

 

Figure 10. Tornado sensitivity analysis 
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Training Set (Left Panel): The scatterplot indicates that 

the data points closely follow the green dashed line, 

representing the ideal scenario where the fitted values match 

the actual values. This alignment suggests that the model 

has effectively captured the patterns within the training 

data, although minor deviations from the line point to some 

prediction errors. 

Test Set (Right Panel): In contrast, the scatterplot for the 

test set reveals a more excellent dispersion of points around 

the green dashed line, indicating that the model's predictive 

accuracy diminishes when applied to unseen data. This 

increase in scatter may indicate overfitting, where the model 

performs well on the training data but struggles to 

generalize to new data. 

Moreover, the scatterplots highlight a potential 

overfitting issue, where the model demonstrates satisfactory 

performance on the training set but exhibits reduced 

accuracy on the test set. As shown in Figure 12, exploring 

strategies such as regularization, increasing the dataset size, 

or simplifying the model to enhance its generalization 

capability may be advisable. 

Comparison of Capabilities in Cable Manufacturing: 

Taguchi Methodology and Hybrid Machine Learning 

Approaches 

In this study, we utilized Taguchi methodologies of 

hybrid machine learning to tackle the challenges of elevated 

material consumption and defect rates in cable 

manufacturing, particularly emphasizing the drawing and 

stranding processes. These methodologies enabled us to 

pinpoint critical factors affecting cable weight and cost, 

such as wire diameter, raw material quality, and process 

control. Our analysis indicated that the drawing and 

stranding processes were responsible for significant 

material waste and cable weight, accounting for 19% and 

20% of the overall effect, respectively. Consequently, we 

prioritized these processes for optimization to achieve cost 

reduction. In contrast, the study by D.C. Sheridan et al. and 

R.K.Roy  adopted a different approach by integrating 

Taguchi methods with AI and traditional optimization 

techniques to address similar issues of process 

inefficiencies and material defects in insulation, sheathing, 

and armouring, Ref. (10). Both studies underscore the 

importance of process variability in influencing defects and 

material waste, finding that precise process control during 

the drawing stage is essential for minimizing defect rates. 

For instance, our research identified that variability in wire 

diameter due to operator adjustments led to increased 

conductor weight and defects, while Y. Zhang’s study 

observed that tension control and material quality issues 

resulted in higher defect rates and material wastage (1,11). 

5.2. Practical implications 

The increase in conductor’s weight results from several 

factors. Firstly, the absence of a specific value for brake 

settings leads operators to continuously adjust the 

compaction percentage during manufacturing, causing 

fluctuations in the open lay length. Secondly, during the 

stranding process, conductor resistance occasionally 

exceeds the required level, prompting operators to insert 

larger wire diameters into the conductor's center to address 

the issue, inadvertently increasing the overall weight. 

Additionally, scratches on the dies of the drawing machine 

force operators to widen the distance between rolls to 

prevent further wire damage, which increases the diameter 

and contributes to the conductor’s increased weight. 

5.3. Confirmation experiments 

Confirmation experiments are conducted to verify the 

factors and levels selected in an experiment that influence a 

product or process to behave in a specific manner. Ten 

confirmation experiments are performed at the process's 

optimal settings, as agreed upon in Section 2 and presented 

in Table 6. 

Table 6. displays the process data collected for the improved 

process conditions. 

TRIAL 
NO. 

COMPACTION DIAMETER WEIGHT RESISTANCE 

1 30 2.64 630 0.124 

2 30 2.64 628 0.1225 

3 30 2.64 640 0.123 

4 30 2.64 613 0.124 

5 30 2.64 625 0.122 

6 30 2.64 680 0.125 

7 30 2.64 644 0.1245 

8 30 2.64 618 0.121 

9 30 2.64 655 0.119 

10 30 2.64 621 0.123 

 
Figure 12. Scatter of response 
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6. Conclusion 

This study has shown how integrating Taguchi 

methodology with machine learning techniques can 

effectively optimize the manufacturing process of electrical 

cables. By carefully analyzing and adjusting key factors like 

compaction percentage, wire diameter, and material usage, 

the study identified optimal settings that significantly 

improved product quality and manufacturing efficiency. For 

example, the optimized process parameters reduced 

material usage, with the total cable weight decreasing by 

426 kg/km, and reduced production costs, lowering the cost 

of poor quality from 5% to 1.7%. These improvements were 

achieved without compromising the quality of the final 

product. This approach deepened the understanding of the 

factors influencing the manufacturing process and provided 

a practical framework that can be applied to similar 

industrial processes. The findings indicate that this 

integrated method can help manufacturers reduce defects, 

lower costs, and maintain high product standards, ultimately 

contributing to more efficient and sustainable production 

practices. Furthermore, defect analysis and corrective 

actions have significantly improved the processes by 

eliminating the elements that cause defects. This 

improvement is sustainable, leading to a permanent 

enhancement in quality. The cost of poor quality (coq) has 

been significantly reduced from 5% over cost to 1.7% over 

cost, a reduction of 66%. 

A statement of data availability 

Data is provided within the manuscript. 
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