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Abstract 

Utilizing the Laplace transform to derive the quadrupole model for both the direct and inverse problems, the temperature 

regulation of thin plate sides was examined. The polynomial expansions about poles and zeros are used to approximate the 

resultant hyperbolic functions. For multilayer plates, the open-loop and closed-loop control techniques were developed. The 

benefits and drawbacks of this method are demonstrated by simulation results for a two-layer plate. With this method, one may 

use the opposite side's temperature to regulate the temperature of one side of the plate in real time. 

© 2024 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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Nomenclature 

L: Plate thickness[m]. 

𝐺1: Direct problem transfer function. 

𝐺2: Inverse problem transfer function. 

𝜃1: The input temperature of the direct problem [0C]. 

𝜃2: The output temperature of the direct problem [0C]. 

𝜃2𝑑: The desired temperature [0C]. 

𝐺𝑐: The Controller transfer function. 

𝑘: The thermal conductivity [
𝑚2

𝑠𝑒𝑐
]. 

𝐴: The amplitude of input temperature [ 0C].  

∅: The heat flux [W/m2]. 

𝛼: The thermal diffusivity [ 
𝑊

𝑚.𝐾
 ]. 

𝑠: The complex variable. 

𝐴𝑠: The area of the plane isothermal that is considered for the  

x-transfer [m2]. 

⍵: The frequency [rad/sec]. 

IHCP: Inverse Heat conduction problem. 

N: Number of terms for the direct problem. 

M: Number of terms for the inverse problem. 

PC: Personal computer. 

𝐺𝑑𝑖𝑟 = 𝐺1: Direct problem transfer function. 

𝐺𝑖𝑛𝑣 = 𝐺2: Inverse problem transfer function. 

1. Introduction 

Metal plate temperature regulation is necessary for a 

wide range of heat transfer applications. Applications 

include chemical reactors, heat exchangers, distillation 

columns, heating plates, and furnaces for heating metal 

slabs. This calls for heating one surface to the appropriate 

temperature while maintaining the same temperature on the 

other. In the past, the problem could only be limited to 

measuring one side of the metal plate and calculating the 

temperature on the other.As a result, the entire temperature 

distribution over the thickness of the plate might be obtained 

by solving an inverse problem. This study looks at the more 

difficult problem of controlling plate temperature. 

According to Stolz [1], one of the earliest methods for 

solving inverse heat was this. In terms of the related direct 

problem's numerical inversion. He constructed the inverse 

problem. For tiny time increments, the Stolz solution 

seemed unstable nonetheless. While Miller et al. [2] and 

Murio initially provided regularized approaches [3] created 

a method called mollification that smooths the estimation of 

the surface temperature. With his method, the inverse 

problem is stabilized, and tiny time increments are 

permitted [4, 5]. Some studies computed the heat flow at 

one of the outer boundaries of the one-dimensional system 

using the Kalman smoothing approach [6, 7].Bofeng Bai et 

al [8] created a simple method to estimate the two-

dimensional heat conduction. A semi-finite body's 

temperature at one site, or a finite body's temperature at two 

locations, may be exploited by M. Monde to offer an 

analytical solution to the inverse heat by Laplace transform 

[9].R. Pourgholi et al. [10] addressed the linear Inverse Heat 

Conduction Problem(I H CP) by Duhamel's principle to the 

matrix and using singular value decomposition. Numerous 

approaches to solving IHCP with various types of boundary 

conditions were presented by Cheng-Yu Ku, Edyta 

Hetmaniok et al., and Andrzej et al. [11, 12, and 13]. A book 

by Denis et al. describes how to solve the heat equation 

using integral transforms by using the thermal quadrupoles 

approach [14, 15]. For reconstructing the unknown heat 
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flow on the boundary in 2D and 3D scenarios, Adel Mhamdi 

and colleagues used a technique predicated on 

the interpretation of the frequency domain inverse heat 

control problem to solve the linear inverse heat conduction 

problem [16]. Xiaoshu and colleagues [17] presented an 

analytical method to study the transmission of heat in a 

composite slab subjected to cyclical temperature changes. 

Using the Laplace transform, Mitsutake et al. were able to 

analytically solve I H CPcases where there were far-field 

boundary conditions [18, 19].The 1D I H CPwere 

numerically solved by Mohammad et al. via the Tikhonov 

regularization approach. [20]. In order to solve a nonlinear 

heat conduction issue with temperature-dependent 

thermophysical properties, Guangjun Wang et al. employed 

the conjugate gradient technique and integrated heat flow 

measurement in the objective function [21, 22]. In order to 

translate the heat flow and temper on the front surface into 

those on the back surface, they first employed the Laplace 

transform to simplify the eq.by 3D to 1D via modal 

expansion [23]. A new closed-loop method for managing 

plate temperature using the inverse problem is presented by 

Necsulescu et al. [24-31].This work's main goal is to 

regulate a finite thin plate's surface temperature while heat 

from the opposite direction heats it up repeatedly. This is 

accomplished by solving the problem using the Laplace 

transform to create the quadrupole model equations and by 

utilizing an inverse problem formulation to create a 

temperature control loop. 

2. Formulating Problems 

With perfect interlayer contact, the temper Transm, 

through a wall of multi materials may be calculated for each 

layer using the thermal quadrupoles technique. The 1D heat 

conduction formula for the n-layer situation with perfect 

contact is as follows: 
𝜕2𝑇

𝜕𝑥2   =   
1

∝

𝜕𝑇

𝜕𝑡
                                                                 (1) 

Where is the H.F. 

∅ =  −𝑘
𝜕𝑇

𝜕𝑥
                                                                         (2) 

For the case of applying sinusoidal temperature variation 

𝜃1(0, 𝑡) on one side x=0 and searching for the temperature 

of the other side 𝜃2(𝐿, 𝑡) x=L as the boundary conditions 

are 

𝜃1(0, 𝑡) = 𝐴𝑠𝑖𝑛⍵𝑡𝜃2(𝐿, 𝑡) = 𝑓𝑟𝑒𝑒                           (3) 

∅1(0, 𝑡) =  𝑓𝑟𝑒𝑒∅2(𝐿, 𝑡) =  0            (4) 

In the complex domain: 
𝜕2𝜃

𝜕𝑧2    =    
𝑠

𝛼
𝜃(𝑧, 𝑠)    (5) 

 For n-layer plate using Quadrupole approach, the model 

is  
(𝜃1∅1)  =  𝑀1𝑀2 … 𝑀𝑛(𝜃𝑛∅𝑛)                                   (6) 

Where 
𝑀1  =  [𝐴1𝐵1𝐶1𝐷1] 
𝑀2  =  [𝐴2𝐵2𝐶2𝐷2]                       (6-1) 

𝑀𝑛  =  [𝐴𝑛𝐵𝑛𝐶𝑛𝐷𝑛] 
Where: 

𝐴1 =  𝐷1 =𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾1𝐿1) 

𝐵1= 

1

𝑘1 ∗ 𝐾1 ∗ 𝐴𝑠
𝑠𝑖𝑛ℎ sinh(𝐾1𝐿1) 𝐶1

= (𝐾1 ∗ 𝑘1 ∗ 𝐴𝑠)𝑠𝑖𝑛ℎ (𝐾1𝐿1) 

𝐾1 =  √
𝑠

∝1
 

For 𝐴𝑠 is the plate surface area. 

and: 

𝐴2 =  𝐷2 =𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾2𝐿2) 

𝐵2= 

1

𝑘2 ∗ 𝐾2 ∗ 𝐴𝑠
𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾2𝐿2) 

𝐶2 = (𝐾2 ∗ 𝑘2 ∗ 𝐴𝑠)𝑠𝑖𝑛ℎ (𝐾2𝐿2) 

𝐾2 =  √
𝑠

∝2
 

𝐴𝑛 =  𝐷2 =𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾𝑛𝐿𝑛) 

𝐵𝑛= 

1

𝑘𝑛 ∗ 𝐾𝑛 ∗ 𝐴𝑠
𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝑛 𝐿𝑛) 

𝐶𝑛 = (𝐾𝑛 ∗ 𝑘𝑛 ∗ 𝐴𝑠)𝑠𝑖𝑛ℎ (𝐾𝑛𝐿𝑛) 

𝐾𝑛 =  √
𝑠

∝𝑛
 

L1, L2 and Ln are the thicknesses of each layer and have 

it is specified diffusivity (α1, α2   and αn) for each layer. 

Further results will be presented for a two-layer n=2 case 

for simplifying the mathematical presentation. 

3. Simulation Model for a Two-layer Plate 

 

Figure 1. Material description in two layers. 

The matrix for n=2 layers is given by 

𝑀1 ∗ 𝑀2 =  [𝐴𝐵𝐶𝐷]                                                    (7) 

Where 

𝐴 =  𝐴1 ∗ 𝐴2 + 𝐵1 ∗ 𝐶2 

 𝐵 =  𝐴1 ∗ 𝐵2 + 𝐵1 ∗ 𝐷2 

𝐶 =  𝐶1 ∗ 𝐴2 + 𝐷1 ∗ 𝐶2 
𝐷 =  𝐶1 ∗ 𝐵2 + 𝐷1 ∗ 𝐷2 

This product will give  

𝐴 =𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾1𝐿1) 𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾2𝐿2) + 
𝐾2𝑘2

𝐾1𝑘1

𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾1𝐿1)𝑠𝑖𝑛ℎ (𝐾2𝐿2) 

𝐵 =
1

𝐾2𝑘2𝐴𝑠
𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾1𝐿1) 𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾2𝐿2)

1

𝐾1𝑘1𝐴𝑠

𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾1𝐿1)𝑐𝑜𝑠ℎ (𝐾2𝐿2) 

𝐶 = 𝐾1𝑘1𝐴𝑠𝑐𝑜𝑠ℎ(𝐾2𝐿2) 𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ𝐾1𝐿1

+ 𝐾2𝑘2𝐴𝑠𝑐𝑜𝑠ℎ(𝐾1𝐿1)
𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾2𝐿2) 

𝐷 =
𝐾1𝑘1

𝐾2𝑘2
𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾1𝐿1) 𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾2𝐿2) +

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾1𝐿1) 𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾2𝐿2) 

Such that 

𝜃1 =  𝐴 ∗ 𝜃2 +  𝐵 ∗ ∅2                                                (8) 

∅1 = 𝐶 ∗ 𝜃2 +  𝐷 ∗ ∅2                                                  (9) 

Solving these two equations gives  𝐺(𝑠) =
𝜃2

𝜃1
as the 

temperature-dependent transfer function between the input 

and output temperatures. 
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For the boundary conditions (3) and (4), the results is 
𝜃2

𝜃1
=

1

𝐴
                                                                        (10) 

Where A is 

𝐴 =𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾1𝐿1) 𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝐾2𝐿2) + 
𝐾2𝑘2

𝐾1𝑘1

𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ(𝐾1𝐿1)𝑠𝑖𝑛ℎ (𝐾2𝐿2)                                         (11) 

Given that 

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥) 𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑦)

=  
1

2
[𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) +

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 − 𝑦)] 

𝑠𝑖𝑛ℎ(𝑥)𝑠𝑖𝑛ℎ(𝑦) =  
1

2
[𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) −

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 − 𝑦)] 
Where 

𝑥 =  𝐾1𝐿1 

 𝑦 =  𝐾2𝐿2 
A becomes 

𝐴 =  
1

2
[𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) +𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 − 𝑦) +

𝑏{𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) −𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 − 𝑦)}] (12) 

where 

𝑏 =  
𝐾2𝑘2

𝐾1𝑘1
 

Case 1: Same material and same thickness. 

This will give  

𝑏 = 1 
Equation (10) becomes 

𝐴 =  
1

2
[𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) +𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(𝑥 + 𝑦)]       (13) 

I n case of the two layers' same thickness: 

𝐿1 =  𝐿2 =  
𝐿

2
   (14) 

𝑥 =  𝑦 = 𝐾
𝐿

2
    (15) 

Substitute for x and y in equation (11) gives 

𝐴 =  
1

2
[𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ (𝐾

𝐿

2
+ 𝐾

𝐿

2
) +𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ (𝐾

𝐿

2
+

𝐾
𝐿

2
)]                                                                               (16) 

or 

𝐴 = 𝑐𝑜𝑠ℎ (𝐾𝐿)                                                           (17) 

Case 2: Different materials and same L of (L/2). 

𝐿1 =  𝐿2 =  
𝐿

2
                                                                 (18) 

Such that for equation (13) and 𝐾1 =  √
𝑠

∝1
  and  𝐾2 =

 √
𝑠

∝2
 

𝑥 − 𝑦 =  √𝑠 [
𝐿(√∝2− √∝1)

2√∝1∝2
] =   √𝑠 ∗ 𝐴𝐴                           (19) 

Where 

  𝐴𝐴 = [
𝐿(√∝2− √∝1)

2√∝1∝2
]                                                      (20) 

and 

𝑥 + 𝑦 =  √𝑠 [
𝐿(√∝2+ √∝1)

2√∝1∝2
] = √𝑠 ∗ 𝐵𝐵                            (21) 

Where 

𝐵𝐵 = [
𝐿(√∝2+ √∝1)

2√∝1∝2
]                                                     (22) 

Equation (10) becomes 

𝐴 = [
1

2
+

𝑏

2
] [𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(√𝑠 ∗ 𝐵𝐵)] + [

1

2
−

𝑏

2
] [

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(√𝑠 ∗ 𝐴𝐴)]                                                    (23) 

Where 

AA and BB are constants, not functions of s 

and 

𝑏 =  √∝1

√∝2

𝑘2

𝑘1
                                                                  (24) 

Equation (10) gives the Direct problem transfer function 

𝐺1 =  
1

𝐴
= 1/{[

1

2
+

𝑏

2
] [𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(√𝑠 ∗ 𝐵𝐵)] + [

1

2
−

𝑏

2
] [𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(√𝑠 ∗ 𝐴𝐴)]}                                               (25) 

While the inverse problem transfer function is: 

𝐺2 =  
1

𝐺1
= 𝐴 = [

1

2
+

𝑏

2
] [𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(√𝑠 ∗ 𝐵𝐵)] + [

1

2
−

𝑏

2
] [𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ(√𝑠 ∗ 𝐴𝐴)]                                               (26) 

For the simulations, the transfer functions with 

hyperbolic functions from equation (25) and (26) were 

approximated about these approximations the poles 𝑝1𝑝2 … 

of direct problem (𝐺1 ) and the zeros 𝑧1𝑧2 … of inverse 

problem (𝐺2 ) as follows 

𝐺1(𝑠)
≈ 1

/{[
1

2

+
𝑏

2
]

(𝑠 − 𝑝1)(𝑠 − 𝑝2)(𝑠 − 𝑝3)(𝑠 − 𝑝4)(𝑠 − 𝑝5)(𝑠 − 𝑝6) …

𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6 …
         

+ [
1

2

−
𝑏

2
]

(𝑠 − 𝑓1)(𝑠 − 𝑓2)(𝑠 − 𝑓3)(𝑠 − 𝑓4)(𝑠 − 𝑓5)(𝑠 − 𝑓6) …

𝑓1𝑓2𝑓3𝑓4𝑓5𝑓6 …
 }  

Where 

𝑝𝑛 =  −[
(2𝑘 − 1)𝜋

2
∗

1

𝐵𝐵
]2,     𝑛 = 1,2,3, … 𝑝𝑛 

𝑓𝑛 =  −[
(2𝑘 − 1)𝜋

2
∗

1

𝐴𝐴
]2,     𝑛 = 1,2,3, … 𝑝𝑛 

and 

𝐺2(𝑠) ≈ [
1

2
+

𝑏

2
]

(𝑠 − 𝑧1)(𝑠 − 𝑧2)(𝑠 − 𝑧3)(𝑠 − 𝑧4) …

𝑧1𝑧2𝑧3𝑧4 …
 

             +[
1

2
−

𝑏

2
]

(𝑠 − 𝑦1)(𝑠 −  𝑦2)(𝑠 − 𝑦3)(𝑠 −  𝑦4) …

𝑦1𝑦2𝑦3𝑦4 …
 

Where 

𝑧𝑛 = −[
(2𝑘 − 1)𝜋

2
∗

1

𝐵𝐵
]2,     𝑛 = 1,2,3, …  𝑧𝑛 

𝑦𝑛 = −[
(2𝑘 − 1)𝜋

2
∗

1

𝐴𝐴
]2,     𝑛 = 1,2,3, … 𝑧𝑛  

For both closed-loop and open loop methods, 

simulations were run. The closed-loop control block 

schematic is displayed. in Fig. (3), whereas the diagram for 

open-loop control is shown in Fig. (2). 

 
Figure 2. An open loop block schematic. 

 



 © 2024 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 18, Number 3  (ISSN 1995-6665) 488 

4. Simulation Results 

Simulations were run using an aluminum (Al) alloy 2024 

T6 with a thickness of L2 = 0.015 [m], and a thin Al plate 

with a L1 = 0.015 [m], thermal diffusivity α1 = 9.715e-5 

[m2/sec], and thermal conductivity k1 = 237 [w/m. 

K].Thermal diffusivity α2= 7.3e-5 [m2/sec] and thermal 

conductivity k2 = 177 [w/m. K] for the second layer for two 

two-layer cases. Multiple values of the ω sinusoidal input 

were tested, along with the truncated transfer functions and 

some sample values of M = 4 zeros and N = 8 poles. 

 
Figure 3. Block schematic of a closed loop. 

𝜃2𝑑 is the desired value of 𝜃2 and 𝐺𝑐 is the closed-loop control law. 

 
A 

 
B 

 
C 

 
D 
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E 

 
F 

Figure 4. Open loop response θ1 for the Inverse problem with N = 8, M = 4, and ω = (A) 0.1, (B) 1, (C) 5, (D) 10, (E) 20, and (F) 40 

radian/second 

 
A 

 
B 

 
C 
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D 

 
E 

 
F 

 
G 

Figure 5. θ2 response of an open loop control system with N = 8, M = 4, and ω =(A)  0.1, (B) 1, (C) 5, (D) 10, (E) 20, (F) 40, and (G) 100 

radian/second. 
 

From Figure 4 (A - F) we can see that the response to the 

inverse problem is increasing with frequency but at a slower 

speed than we see in the single-layer case due to different 

types of material for the second layer. Figures 5 (A–E) show 

that the system response is nearly identical to the intended 

value, but Figures 5 (F&G) show that the response begins 

to fall with increasing frequency. 
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C 

 
D 
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Figure 6. Closed loop response θ1 for the inverse problem with N=6, =1, M=4, and ω = (A) 0.1, (B) 1, (C) 5, (D) 10, (E) 20, (F) 40, and (G) 
100 radian/second. 
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Figure 7.Shows the θ2 response of the closed loop control for N = 6, = 1, M = 4, and ω = (A) 0.1, (B) 1, (C) 5, (D) 10, (E) 20, (F) 40, (G) 
160, and (H) 200 radian/second. 

 



 © 2024 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 18, Number 3  (ISSN 1995-6665) 494 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 



 © 2024 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 18, Number 3  (ISSN 1995-6665) 495 

 
G 

 
H 

Figure 8. Closed-loop control response θ2 for N = 6, = 10, M = 4, , and for ω = (A) 0.1, (B) 1, (C) 5, (D) 10, (E) 20, (F) 40, (G) 160, and (H) 
200 radian/second.While the inverse response grows extremely quickly in the final figure (6-G), Figure 6(A-F) shows that the response to the 

inverse problem increases with the frequency increase. The system response is half of the intended value, as predicted, from Figure 7(A–F). 

This is because of the gain value of one. However, Figure 7(G–H) shows that the response value starts to drop with increasing frequency. 

Figure 8 ( A - H) on the other hand shows how we can always bring the response value close to the desired value by using a gain value of 

(10) which is acceptable and keeps the system stable. 

 
Figure 9. Plotting the root locus for N = 8, and M = 4. 

 
Figure 10. Plotting the root locus for N = 6, and M = 4. 

 

From Figures ( 9 & 10) we see that the number of terms 

is the major factor for the stability of the system, as we can 

see from Figure (9) the system is stable only for a gain value 

up 4.43 where the curve intersects imaginary axis, while 

figure (10) shows that the system is always stable for any 

gain value. 
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5. Conclusion 

The suggested method, which is based on the solution of 

an inverse problem, allows the temperature on one face of a 

plate to be regulated in real-time to the other face's desired 

value. The outcomes of the simulation show the benefits and 

drawbacks of this method. Polynomial expansions are used 

to approximate the resultant hyperbolic functions. The 

closed-loop strategy has a longer frequency bandwidth than 

the open-loop approach, according to the data. Because 

truncated polynomials are used, the suggested methodology 

differs from other regularization techniques for ill-posed 

problems and is especially well-suited for real-time 

temperature management.This approach must be further 

investigated for multilayer plates and verified through 

experiments. 
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