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Abstract 

The primary objective of this study was to assess the operational efficiency of an oscillating heat pipe featuring an inner 

diameter of 1.7 mm and an outer diameter of 3 mm. This OHP was filled with an acetone-based fluid infused with graphene 

nanoparticles. The research aimed to analyze the effects of altering filler ratio and heat inputs on temperature difference, heat 

transfer coefficient, and thermal resistance in an oscillating heat pipe, with a specific focus on filler ratios ranging from 50% 

to 80% and heat inputs between 20W and 40W. The results reveal that there is a maximum in heat       transfer coefficient of 

220.48W/m2ºC and 224.1 W/m2ºC for acetone and graphene respectively. There is a decrease in thermal resistance 0f 

1.441ºC/W and 1.421ºC/W for acetone and graphene for optimal combinations (40W with 80% filler ratio). Finally, the 

experimental data of 1800 data sets were used to develop the Artificial Neural network model using Radial basis function by 

considering three input parameters viz, fill ratio (50% to 80%), heat load (25W to 40W) and time with an output of temperature 

difference, heat transfer coefficient and thermal resistance. The developed ANN using the radial basis function (RBF) was able to 

predict the experimental parameters of temperature difference, heat transfer coefficient and thermal resistance with 97.70% and 

97.12% accuracy for graphene and acetone respectively. Based on the obtained results MSE values for graphene and acetone 

are 1.015 and 1.064 respectively. 

© 2024 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

In the realm of electronic product development, effective 

thermal management stands as a significant contemporary 

challenge. The production of excess heat by electronic 

devices and circuits has significantly increased. From 

microprocessors to advanced power converters, all 

electronic devices generate heat, and efficiently managing 

this heat is essential for their effective and dependable 

functioning. As electronic designs continue to enable 

improved performance within smaller form factors, 

efficient heat dissipation has become a fundamental 

consideration in the design process. A multitude of modern 

electronic devices now necessitate cooling that surpasses 

the capacities of conventional metal heatsinks. Among the 

solutions to disperse excessive heat, employing heat pipes 

has emerged as an effective strategy, where these pipes 

directly connect to the heat source for heat dissipation. 

Another promising avenue in the realm of heat transfer 

devices, particularly for applications like electronics cabinet 

cooling, is the employment of oscillating or pulsating heat 

pipes (PHPs). Despite their unassuming appearance, these 

devices display fascinating thermos-hydrodynamic 

operational traits. A PHP contains an incomplete fill of a 

working fluid, which autonomously organizes into 

alternating liquid and vapor slugs within its capillary tubes. 

In this configuration, the evaporator section, located at one 

end, absorbs heat and transfers it to the opposite end, the 

condenser section, through the rhythmic motion of the 

liquid-vapor system. Fundamentally, a Pulsating Heat Pipe 

(PHP) operates as a device that transfers heat out of balance, 

functioning through a sophisticated combination of 

different two-phase flow instabilities. Its effectiveness 
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hinges on the consistent preservation of these non-

equilibrium states. Pressure pulsations within the system 

facilitate the movement of liquid and vapor slugs. The 

device's design essentially guarantees that no external 

mechanical energy source is necessary for liquid transport; 

instead, the driving pressure pulsations are solely thermally 

induced. Both single and multiple-loop PHP investigations 

have been extensively documented in the literature, 

shedding light on how various design parameters can 

influence its performance. 

Performance of experimental initiation heat pipes 

utilizing a distinct molten salt mixture as the working 

medium was examined. The trials encompassed varying 

charge quantities from 40g to 80g. Among the combinations 

explored, the 40g configuration demonstrated a favorable 

outcome. The design formulated for this investigation 

showcased enhanced heat transfer characteristics through 

the utilization of a 40g working fluid mixture [1]. 

Experimenting with diverse working liquids including 

ethanol, methanol, acetone, and deionized water, a closed-

circuit pulsating heat pipe with a diameter of 2mm and fill 

levels ranging from 20% to 95% was assessed. The heat 

input ranged from 5W to 100W. The heat input's rise 

engendered an impact on dynamic viscosity, in addition to 

the energy carried by the working medium, involving 

specific heat and latent heat of vaporization. Notably, at 

lower filler loadings, a lower boiling point was observed 

alongside decreased latent heat of vaporization, leading to 

eventual dry-out in the exit state [2]. 

Future demands necessitate advanced cooling 

techniques for micro heat channels in electronic devices, 

focusing on enhanced thermal properties and the generation 

of high heat flux for improved heat transfer capabilities 

specific to applications [3].  

A novel design has been devised to optimize the 

utilization of a microplate loop heat pipe for efficient heat 

pipe applications involving sintering temperature and 

insulated wick in electronic chip cooling [4]. Conducting a 

numerical analysis, heat transfer prediction in pulsating heat 

pipes was undertaken. A governing equation was 

formulated encompassing mass, momentum, and energy 

considerations for both water and ethanol, accounting for 

liquid and vapor slugs. Ultimately, the fluids based on water 

and vapor exhibited heat transfer rates of 98% and 94%, 

respectively [5]. To enhance the thermal performance of the 

newly developed closed-loop thermosyphon, an innovative 

approach was adopted. Two distinct methods were 

employed: in the first, the heating elements were 

symmetrically bent at each curve, while in the second, the 

heating elements were asymmetrically placed along the U-

tube due to gravitational orientation. Notably, the non-

symmetrical arrangement of the heating elements led to 

superior and more efficient liquid circulation during the 

process, as observed. However, in the vertical position, 

there was a heat flux dissipation attributed to pool boiling, 

which was constrained to 75%, thereby maintaining the tube 

wall temperature below 80°C [6]. A comprehensive 

mathematical model in fluid dynamics was developed to 

examine how transient thermal and flow characteristics 

affect the thermal stability of an enclosed catalyst. The 

outcomes underscore that the heat generated at individual 

points is significantly influenced by the transient flow 

properties in the interconnected closed loop state. [7]. For 

both two-dimensional and three-dimensional temperature 

distributions, as well as pressure and velocity, the 

convection heat pipe's characteristics were established. The 

formulated model has the capability to anticipate thermal 

resistance across various heat source thresholds in heat 

pipes. Furthermore, this technique can serve in deducing 

capillary parameters for the specified structure through wall 

temperature measurements [8]. A novel testing setup was 

created to assess the thermal performance of partially open 

tubes by measuring temperature, pressure, and mass flow. 

The MATLAB-based simulation algorithm was detailed, 

and the effectiveness of the developed testing apparatus was 

evaluated by comparing the proposed method to acoustic 

phenomena [9]. For the assessment of PHP's predictive 

capabilities, a heat transfer model for a 1D mass-spring 

damper system was formulated. Four distinct models were 

established: those accounting for oscillatory motion, 

translational motion, combinations of both, and no motion. 

The findings suggest that with translational motion and a 

combined approach, the peak PHP is achieved as the extent 

of movement increases under the conditions of both modes 

being satisfied [10]. To ascertain the upper limit of heat 

transfer within the heat pipe, a mathematical model was 

constructed for a mesh wick configuration. The outcomes 

revealed that the heat transfer capacity was affected by 

variables including evaporator temperature, tilt angle, mesh 

layer, mesh size, and mesh count [11]. To enhance the 

efficiency of the heat pipe, it was imperative to determine 

the thermophysical properties required for evaluating the 

working fluid's performance. To accomplish this objective, 

a proficient dimensional analysis approach was employed, 

culminating in the creation of a validated one-dimensional 

mathematical model for the trapezoidal microgroove heat 

pipe. This model, distinguished by its elevated thermal 

conductivity, reduced surface tension, low latent heat of 

vaporization, heightened viscosity, and lower liquid 

density, introduced a highly advantageous and improved 

design, ensuring exceptional performance in the specific 

heat pipe application [12]. In a situation involving an 

oscillating heat pipe with varying liquid input (75% 

volume) in a 4-pass copper system, the power was increased 

from 60 W to 300 W, and frequencies were varied from 1.5 

Hz to 2.5 Hz. The findings indicated that the temperature 

recorded by the thermocouple positioned outside the tube 

was 4-12% lower when compared to the measurements 

taken inside. The effective thermal conductivity calculated 

for the outside measurement was 14,000 W/m K, and for the 

inside measurement was 15,300 W/m K [13]. The heat 

transfer efficiency of a satellite heat pipe can be enhanced 

through the careful consideration of several parameters, 

including wick thickness, diameter, the quantity of wicks, 

wall thickness, length of the condenser and evaporator, and 

the core diameter of the steam section. Finally, a 

comparison between two was carried out. To evaluate the 

performance, a working medium consisting of ammonia and 

methanol was tested and the optimum value was 

determined. The results unequivocally demonstrate that 

when considering the total mass of the heat pipe, a decrease 

in thermal resistance of roughly 82.17% to 57.16% was 

noted for ammonia in comparison to methanol 

combinations [14]. In the context of a transparent 5-turn 

polydimethylsiloxane (PDMS) optical heat pipe (OHP), we 

investigated a fabricated system with dimensions of 190 
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mm x 155 mm, featuring a 2 mm diameter channel. In this 

study, we introduced Al2O, ethanol, and a combination of 

both as working fluids, with a filler content of 70% being 

considered. Our findings indicate that the generation of an 

electric field and the choice of working medium do not 

impact the heat transfer efficiency throughout the process. 

[15]. Pulsating heat pipe tests were conducted using 

different concentrations and filling ratios of ethanol, 

methanol, cetyltrimethylammonium chloride (CTAC), and 

C19H42CIN, comparing them to ionized water. Thermal 

properties were examined for a closed-circuit heat pipe with 

35%, 50%, and 65% filling fractions. The lowest thermal 

resistance occurred at 50% filling fraction, achieving 0.34 

K/W under high heat loads. [16]. By introducing various 

inclinations (0°, 30°, and 45°) in the condenser section, 

methanol at 50% filling level was employed as the working 

fluid in a closed-loop pulsating heat pipe. The findings 

emphasized the pivotal role of gravity and fluid 

thermophysical properties in distinct heat loads and 

inclinations, contributing to performance evaluation. 

Notably, a 45° incline demonstrated improved heat transfer 

effectiveness in the closed-loop pulsating heat pipe [17]. An 

innovative approach was employed, involving additive 

manufacturing of multi-layer Ti-6AI-4V tubes for 

oscillation, accommodating different working fluids 

including acetone, water, and n-pentane. This layer-by-

layer technique introduced a secondary wicking structure 

that acted as a capillary, facilitating fluid pumping within 

the OHP system [18]. To induce further imbalanced 

differential pressure, encompassing forces like capillary and 

gravitational pressure, implementing a PHP would involve 

the straightforward installation of an opposing heat source 

assembly within a convection tube design. This system 

would operate with a thermal conductivity of 12,603 

W/mºK and a thermal resistance of 0.0729 W/K [19]. 

Considering these perspectives, conducting experimental 

visualizations seems highly appropriate. It enables the 

measurement and analysis of flow properties with 

substantial evidence, ultimately leading to improved 

performance in the developed systems. [20]. Apart from all 

these performance methods of Close loop pulsating heat 

pipe (CLPHP) can also be evaluated using Al2O3 and 

deionized as a nanofluid to measure the performance of 

working fluids. Based on the observations thermal 

resistance was measured around 48% less than that of water 

[27]. In some cases, numerical methods have been 

introduced to predate the oscillatory movement of the 

fluids. Based on the observations, the study suggests that in 

fluids with high anti-thixotropic properties, harmonics are 

significantly altered, potentially leading to chaotic behavior 

in the bubble. For instance, under conditions of Rx = 0.001 

and ξ = 1/81, a one-micron-sized bubble could expand to 

nearly 30 times its initial size [28]. The current research 

centers on analyzing the unconfined laminar flow of 

nanofluid and the heat transfer attributes surrounding a 

square cylinder, exploring the effects of different angles of 

incidence within the unsteady regime [29]. The heat transfer 

rate from the cylinder is augmented either with an increase 

in Richardson number or Reynolds number [30]. The 

influence of thermal radiation, velocity slip, Weissenberg 

number, power-law index parameter, and magnetic field on 

the boundary layer flow and heat transfer of tangent 

hyperbolic fluid with zero normal flux of nanoparticles past 

a stretching sheet were the parameters may influence the 

flow of nano fluids [31]. Pulsation frequency and amplitude, 

Reynolds number, Darcy number, medium porosity, 

nanoparticles fraction, and geometric ratio affect the 

system's thermal performance. It discovers direct 

correlations between heat transfer rate and pulsation 

amplitude, medium porosity, Darcy number, nanoparticles 

fraction, and geometric ratio, while the pulsation frequency 

has a neutral effect [32]. Numerical results and graphical 

representations are obtained for velocity, temperature, and 

concentration distributions, as well as skin friction, local 

Nusselt number, and local Sherwood number, across 

various values of governing parameters. The findings 

indicate that velocity decreases with an increase in first and 

second-order velocity slip and suction, while it increases 

with an increase in the power-law parameter [33]. Three-

dimensional computations were conducted on a single flow 

passage with periodic boundary conditions to predict the 

thermal resistance and pressure drop of the heat sinks. The 

results indicate that increasing the flow velocity 

simultaneously decreases the thermal resistance and 

increases the pressure drop [34]. Apart from all this work 

some of the suitable materials also can be used for the heat 

transfer and storage medium in a moving bead heat 

exchanger for the solar power plants [35]. When it comes to 

numerical analysis is concern temperature rises with 

increasing radiation parameter (R), magnetic parameter 

(M), thermophoresis parameter (Nt), Brownian motion 

parameter (Nb), and Eckert number (Ec) [36]. 

Based on the previous investigations the comparative 

study of acetone and graphene was not discussed in terms 

of filler ratio, heat input [37, 38]. Hence, the present work 

discussed the multi-turn copper PHP is considered for 

experimental investigations. Acetone and Graphene-based 

nanofluids are selected as working fluids for Pulsating Heat 

Pipe (PHP) operations. Experiments under transient 

conditions are conducted for various heat inputs. Both the 

thermal resistance and heat transfer coefficient are assessed, 

with the findings being corroborated through an Artificial 

Neural Network (ANN) model on a radial basis. This Radial 

basis function-ANN has the ability to simultaneously 

estimate both thermal resistance and heat transfer 

coefficient, with a particular focus on analyzing the 

temperature deviation between evaporator and condenser. 

This investigation aims to identify superior parameter 

settings for nanofluids using Graphene and Acetone as base 

fluids. The parameters examined include filler content, heat 

load and time duration. This research provides a valuable 

opportunity to predict the most effective parameters, 

thereby reducing the time required for laboratory 

experiments. This initiative represents the integration of 

practical experiments and computational modeling and 

includes every conceivable combination of parameters. 

2. Materials and method 

In the present investigations, two types of liquids such 

as acetone and graphene particle based nano fluid were used 

to determine the heat transfer coefficient, temperature 

difference and thermal resistance for different filler ratios 

and thermal stress conditions. The purity of the graphene is 

99% with a diameter of ~15 nm, while the purity of the 

acetone was around 99% and was considered in this study. 
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The detailed technical specifications of the condenser, the 

evaporator and all the equipment details with liquid 

properties are shown in Table 1. The selection criteria for 

the detailed experiments on the heat transfer performance of 

Oscillating Heat Pipes (OHP) using acetone and graphene 

as working fluids focused on two key variables: filler ratio 

and heat load conditions. Filler ratio represents the 

percentage of the OHP's internal volume that is occupied by 

the working fluid. By experimenting with a range of 

fractions, from a relatively balanced 50% to a more fluid-

dominated 80%, the study aims to observe how the heat 

transfer efficiency varies with different levels of fluid 

saturation. The heat load conditions are critical for 

evaluating the OHP's performance under different thermal 

stresses. The range from 25 to 40 Watts, increasing in steps 

of 5 Watts, provides a gradient of thermal inputs to assess 

how the OHP copes with escalating heat levels. the selection 

of these specific filler fractions and heat load conditions 

enables a comprehensive evaluation of the OHP's efficiency 

and effectiveness in transferring heat.  

In the present investigations, acetone-based fluid has 

been considered because of its high volatility makes it well-

suited for use in heat pipes. When acetone is exposed to heat 

in the hot end of the heat pipe, it evaporates quickly, 

forming vapor that travels to the cold end. This rapid 

vaporization enhances the heat transfer coefficient, 

allowing for efficient heat removal from the hot end. The 

high volatility of acetone ensures rapid phase change, 

facilitating efficient heat transfer within the heat pipe. 

Additionally, acetone's low boiling point allows for 

operation at relatively low temperatures, making it suitable 

for cooling applications where precise temperature control 

is necessary. 

3. Experimental Procedure. 

Preparation of a nanofluid with graphene involves 

dispersing them into acetone with Sodium Dodecyl Sulfate 

(SDS) as a surfactant. Techniques like magnetic stirring, 

probe sonication, and ultra-centrifuging ensure nanoparticle 

dispersion and stability. graphene are chosen for their 

unique properties: high aspect ratio, strength, and 

conductivity. Acetone is chosen for its availability, safety, 

and compatibility. SDS lowers surface tension between 

acetone and graphene, aiding dispersion. Add optimized 

SDS amount to water to prevent excessive foam. Introduce 

graphene based on desired concentration. Place container on 

a magnetic stirrer with a magnetic stir bar for mixing and 

the final prepared nanofluid with steps is shown in Fig.1. 

The set-up described in the specifications makes it 

possible to carry out heat transfer experiments with different 

liquids. Based on previous research, acetone and graphene-

based Nano fluids exhibit enhanced thermal conductivity 

due to their unique properties. These two Nano fluids were 

selected in the present investigations. Fig. 3 presents a 

detailed schematic of the experimental setup. In this setup, 

copper is utilized for the capillary tubes in both the 

evaporator and condenser sections, with these tubes having 

an inner diameter of 2 mm and an outer diameter of 3 mm, 

as shown in Fig. 2. The total length of the closed-loop 

pulsating heat pipe is 2060 mm, with each of the evaporator 

and condenser sections being 500 mm long. A glass tube, 

which is 1000 mm long, is used to enable observation of the 

flow inside the Oscillating Heat Pipe (OHP) and is placed 

connecting the evaporator and condenser sections. This 

glass tube is made of borosilicate glass with an inner 

diameter of 2 mm and an outer diameter of 3 mm. The 

connection between the glass and copper tubes is made 

using silicon rubber tubes with an inner diameter of 2 mm 

and an outer diameter of 4 mm. Additionally, they exhibit 

leak-proof characteristics and can withstand elevated 

temperatures. Controlled heating is accomplished through a 

mica heater with a power rating of 350 W, designed for 

heating the working fluid. Temperature measurements are 

facilitated by four K-type thermocouples, capable of 

operating within a temperature range of -50 to 500°C with 

a maximum error of 0.10°C. Within the experimental setup, 

four thermocouples are securely positioned in the 

evaporator section, while two are placed in the condenser 

section. The temperatures recorded by two specific 

thermocouples in the evaporator section are denoted as T1 

and T2, respectively. The temperatures recorded by two 

thermocouples in the condenser section are denoted as T3 

and T4, respectively. These thermocouples are affixed to the 

walls of the copper tube. To ensure consistency, 

experiments are repeated, and temperature readings at 

various locations are obtained through the thermocouples. 

A data logger, specifically an Omega data logger (OM-

SQ2020) with an accuracy margin of 0.10°C, is employed 

to log the test data. Throughout the entire setup, glass wool 

is uniformly applied to ensure effective insulation of the 

experimental arrangement. 

Table 1. Detail technical specification of condenser and evaporator section 

Condenser Section Evaporator section 

Inner diameter 2mm Material Copper tube 

Outer diameter 3mm Inner diameter 2mm 

Length  500mm Outer diameter 3mm 

Inner dia. copper tube 2mm Length 500mm 

Outer dia. copper tube 3mm   

Borosilicate glass dia. 2mm   

Borosilicate glass length 1000mm   

Heater   Insulator  

 Type  Mica Heater Teflon 100*50cm 

 Capacity  1000 W Glass Wool K=0.042W/mK 

Data Acquisition system  Thermocouples  

Multi-channel data logger 24 bit Type K Type 

Output  8 O/P Range -50ºC to 950ºC 

Fluid used Boiling Point (C) Melting Point (C) Temp. Range (C) Specific Heat Cp (J/Kg K) 

Acetone 54 -92 0-126 2030 

Graphene 4200 3652 0-2600 2100 
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                    Figure 1. Nano fluid Preparation                                                Figure 2. Copper tube with borosilicate glass tube  

 

Figure 3.  Experimentation setup with all necessary arrangement 

4. Results and analysis 

The detailed experiments were conducted based on 

different filler fractions of 50%, 60%, 70% and 80% and 

heat load conditions of 25 to 40 W with an interval of 5 W 

to determine the heat transfer performance of OHP for 

acetone and graphene. The experiment was conducted over 

a 30-minute duration, during which temperature data was 

continuously recorded by the data logger at one-second 

intervals. To examine the temperature disparity between the 

evaporator and condenser sections, alterations in load and 

fill ratio conditions were implemented. The extensive 

analysis involved the computation of three crucial output 

parameters: the temperature difference between the 

evaporator and condenser sections, the heat transfer 

coefficient, and the thermal resistance. These parameters 

were evaluated for both graphene and acetone nanofluids. 

Finally, the experimental result was validated using an 

artificial neural network (radial basis function). This 

approach was chosen to improve understanding of the 

validation process. In order to provide a deeper insight into 

the experimental investigations, a detailed breakdown of the 

experimental procedures for each individual parameter is 

presented below. 

4.1. Temperature difference for different Filler ratio of 

acetone and graphene-based nanofluid  

Transient experiments involved varying working fluids, 

namely Acetone and Graphene-based nanofluids, and 

recording temperature fluctuations over time. The 

experiments persisted until a steady state was attained. In 

Fig. 4, the time-dependent temperature difference between 

the evaporator and condenser is depicted for graphene and 

acetone under different heat inputs. Observations were 

conducted while adjusting the heat input from 25 W to 40 

W for filler proportions ranging from 50% to 80%. 

When operating with a filler ratio of 70% and heat input 

of 35 W and 40 W, the maximum temperature fluctuation 

was observed after 200 seconds, as shown in Fig. 4. The 

steady-state temperature of acetone for filler proportions of 

50% and 60%, 70% and 80% were 98.27°C, 81.43°C, 

77.36°C and 57.64°C, respectively. Similarly, the steady-

state temperatures for graphene were 76.83°C, 67.18°C, 

66.68°C, and 56.84°C. The steady-state temperature 

fluctuations for different filler ratios and heat input of 

acetone and graphene with increasing heat input are shown 

in Fig. 4. Upon examining all possible fluid combinations, 

it became evident that with an escalation in the heat load, 

there was a proportional rise in the temperature difference 

between the evaporator and condenser sections. 
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Figure 4. Difference in temperature for acetone and graphene based nano fluid at different filler ratio and heat load       conditions 
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4.2. Influence of fill ratio on thermal resistance of acetone 

and graphene based nano fluid  

The thermal behavior of a Pulsating Heat Pipe (PHP) can 

be evaluated by analyzing its thermal resistance and heat 

transfer coefficient. The determination of a PHP's thermal 

resistance involves 

         (1)  

Fig. 5 shows a graphical representation of thermal 

resistance [24, 25, 26] and heat input corresponding to 

different filler ratios of PHP for acetone and graphene. The 

figure shows that the overall thermal resistance of the heat 

pipe decreases as the concentration of the nano-fluid 

increases along with the heat load. As the heat load 

increases, the nanoparticles enable better mixing of the fluid 

and contribute to improved heat dissipation, thereby 

reducing thermal resistance. The experimental results show 

that the lowest overall thermal resistance was achieved at 

1.9392 and 1.666 0C/W for acetone and graphene filler 

content of 70% and further decreased to 1.4412 0C/W for a 

filler content of 80%. To ensure the accuracy and reliability 

of the newly introduced equipment and methods, the 

experiments were carried out three times. It is noteworthy 

that for graphene with a filler content of 80% and 40 W, a 

significant reduction in thermal resistance of 1.4210 C/W 

compared to acetone with a filler content of 80% and 40 W, 

a significant reduction in thermal resistance of 1.44120 C 

/W is recorded. W can be seen (Equation 1). This inherently 

high thermal conductivity allows graphene-based 

nanofluids to transfer heat more effectively than acetone, a 

common organic solvent with lower thermal conductivity. 

Although the filler content of graphene is slightly lower 

(70%) compared to acetone (80%), the specific properties 

of graphene nanoparticles in this concentration range can 

lead to better heat transfer performance. Graphene 

nanoparticles could enable multiple heat transfer 

mechanisms such as phonon transport and enhanced 

convection, contributing to a more significant reduction in 

thermal resistance compared to acetone. Consequently, a 

decrease in thermal resistance can be observed with 

increasing filler content, which is particularly noticeable at 

higher filler contents and a heat input of 40 W, as shown in 

Fig. 5.  

4.3. Influence of fill ratio on heat transfer coefficient for 

acetone and graphene based nano fluid 

The convective heat transfer coefficient of PHP is given 

by 

𝒉 =  
𝑸

𝑨(𝑻𝑬−𝑻𝑪)
 𝑾/𝒎𝟐𝑪                                     (2)  

In Fig. 6, the heat transfer coefficient variation at steady 

state is depicted for Acetone and Graphene across various 

heat loads, spanning a fill ratio range of 50% to 70%. The 

information indicates a significantly greater heat transfer 

coefficient for Graphene in contrast to Acetone. This 

divergence is attributed to the reduced temperature 

differential between the evaporator and condenser in the 

Graphene scenario, resulting in an increased heat transfer 

coefficient. Notably, as the heat input increases, there is a 

corresponding elevation in the heat transfer coefficient (Eq. 

2), reaching 220 W/m²°C for acetone and 224.1 W/m²°C for 

graphene, as depicted in Fig. 6. Notably, graphene exhibits 

superior heat transfer coefficient readings when compared 

to acetone. 

 

 
 

Figure 5. Effect of fill ratio on thermal resistance for acetone and graphene-based nano fluid. 
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5. Artificial Neural Network 

Artificial Neural Networks (ANNs) utilizing Radial 

Basis Function (RBF) represent a machine learning model 

that amalgamates principles from both neural networks and 

radial basis functions. A radial basis function is a 

mathematical function that maps the distance between its 

input and a center point in a high-dimensional space. It is 

commonly used in interpolation and approximation tasks. In 

the context of ANNs, RBFs are used as activation functions 

within the hidden layers. A neural network that employs 

Radial Basis Function (RBF) typically consists of three 

layers: the input layer, hidden layer, and output layer. Each 

neuron in the input layer corresponds to a feature present in 

the input data (see Fig. 7 for reference). The hidden layer 

uses RBFs as activation functions. Each neuron in this layer 

is associated with a centre point in the input space. The RBF 

neurons compute the distance between the input data and 

their respective centers, then apply a radial basis function to 

this distance to produce an activation value. The output 

layer produces the final predictions or classifications based 

on the activations from the hidden layer. RBF-based neural 

networks have certain advantages, such as good 

generalization capabilities and the ability to approximate 

complex functions. They can also handle noisy data to some 

extent. However, there are challenges, such as determining 

the optimal number of RBF neurons and centres, which can 

impact model performance. RBF-based neural networks 

combine the radial basis function concept with neural 

network architecture to create a model that can effectively 

approximate functions and make predictions. 

During the training process, the input parameters, as 

illustrated in Fig. 7, are fed into the neural network.  

In Equation 3, as outlined in references [21, 22], the 

multiplication of input parameters (Mi) and a weight 

function (Wij) is totaled at the node junction, followed by 

the addition of the neuron's bias (bj). In this particular study, 

the input variables include the filler ratio, time duration, and 

heat input. Meanwhile, the output parameters being 

examined are temperature rise, heat transfer coefficient, and 

thermal resistance, as shown in Fig. 8. 

 
Figure 6. Effect of fill ratio on heat transfer coefficient for acetone and graphene  based nano fluid 

 

 

 

Figure 7. Generalized structure of artificial neurons 
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                      (3) 

The input data undergoes training through various 

learning algorithms, with Radial Basis Function (RBF) 

being a notably swifter choice compared to alternative 

algorithms [23]. The analysis involving artificial neural 

networks was carried out using Matlab software. The 

commonly employed activation function is the logsig 

function, which yields values within the range of -1 to +1 

(as depicted in Equation 2), and it is expressed as: 

X= 1/1+e-x                                                                                                                        (4) 

The current research involves the utilization of three 

input variables to comprehensively analyze specific thermal 

properties. These variables encompass the temperature 

difference between the evaporator and condenser, the heat 

transfer coefficient, and the thermal resistance. The 

investigation process entailed the extraction of 

approximately 2000 distinct data sets from experimental 

trials. This extensive dataset was derived by systematically 

varying filler ratios (ranging from 50% to 80%), heat loads 

(ranging from 25W to 40W), and time intervals in seconds. 

This meticulous data collection approach allowed for a 

detailed assessment of the thermal characteristics exhibited 

by the studied nanofluids. 

In the training process, input data is initially fed into the 

neural network and accumulated within the initial layer of 

nodes. The results from this first layer are then consolidated 

in the second layer, and this iterative process persists until 

the final output is generated from the neural network (refer 

to Fig. 8). Following this, the generated output is compared 

to the intended target output, and the resulting error is 

computed. To rectify this error, the weights within the 

network are adjusted in a backward propagation manner. 

However, it's worth noting a limitation of this weight 

adjustment equation: weights on a particular node cannot be 

identical to those on another node within the same layer 

because they would undergo identical adjustments during 

the training process. If all the weights within the neural 

network were initially set to zero, these weights would 

undergo identical adjustments across each layer. 

Mathematically speaking, this scenario would be equivalent 

to having just one node within each layer. This underscores 

the critical importance of initializing the weights in a multi-

layer neural network with random values. Another rationale 

for this random initialization is to thoroughly explore the 

weight space, which does not behave like a quadratic 

function, unlike the linear perceptron. Utilizing randomly 

initialized weights adds complexity to accurately 

forecasting the initial performance of the control system. 

 

Figure 8. Developed neural network model for three different input parameters with three output. 

 
Figure 9. Mean square error for graphene nano fluid  for 2000 data 

 sets for acetone. 

 
Figure 10. Mean square error for acetone nanofluid for 2000 data  

sets for graphene. 
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Table 2. Weights and bias of the optimum model (3-4-3) for 

Graphene 

Weights between the input and hidden layers (W4*3)  

[67.0641 162.3513 -0.26999;  -15.014 -13.8699 0.15233; 

 -5.417 9.1206 -2.3186;  771.3941 -1551.1992 -3.4062] 

Bias in hidden layer (B3*4)  

[-511.0517 -442.1775 259.1736 121.3737;  8.6674 -264.5794 

2.7325 9.5022;  1.9816 -183.7483 -271.1802 -209.6791] 

Weights to output layer (W1*5)  

[-122.6734; 2.3376;  -3.9621;   -2.3397] 

Bias in output layer (B3*3)  

[-27.182;  253.602;  213.23] 

Table 3. Weights and bias of the optimum model (3-4-3) for 

acetone 

Weights between the input and hidden layers (W4*3)  

[-0.17966 -0.67108 -0.34595;  -0.089199 -0.40247 -0.29606; 

 -0.59899 1.6465 -0.12641; 0.4061 -3.2633 -10.4791] 

Bias in hidden layer (B3*4)  

[3.0488 -37.6016 19.7259 -0.22799;  -14.3555 201.7166 -

111.0656 -0.16134;  -0.66344 -0.376 -1.5321 -0.53866] 

Weights to output layer (W4*1)  
[1.2418;  2.4402;  5.2771;  11.616] 

Bias in output layer (B3*3)  

[14.777;  -76.7747;  -1.8077] 

 

 

Figure 11. Regression analysis for training and testing for all combinations considered for graphene. 

The effectiveness of the ANN in fitting experimental 

data is presented in a 3x3 matrix, which can be found in 

Tables 2 and 3. This matrix likely displays how well the 

ANN's predictions match the experimental data across 

different scenarios or parameters.  The matrix shows the 

deviation between the magnitudes of the variables. This 

refers to the differences between the predicted values by the 

ANN and the actual experimental values.  Most deviations 

are between zero to one, indicating that the ANN's 

predictions are generally close to the actual experimental 

values. A small portion of the data shows significant 

deviation, which means in some cases, the ANN’s 

predictions were less accurate. A decrease in MSE with 

different neuron counts indicates that adjusting the number 

of neurons in the ANN can improve its accuracy. The 

correlation coefficients for acetone and graphene are 

presented in Figs 11 and 12, with the corresponding mean 

square error given in Table 4. The correlation coefficient 

measures the strength and direction of the linear relationship 

between the model’s predictions and actual data for acetone 

and graphene.   

The effectiveness of the Artificial Neural Network's 

(ANN) fit to the experimental data is depicted in the 3 cross 

3 matrix (Table, 2 and 3). It illustrates the deviation between 

the variable’s magnitudes, wherein many clusters are 

around zero to one, and only a small fraction deviates 
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significantly from this central point. The decrease in Mean 

Squared Error (MSE) as neuron count varies highlights one 

of the measurable outcomes, revealing the network's 

performance across different neuron quantities. The desired 

performance benchmark of 5 × 10−5 for the ANN has been 

successfully reached. A graphical representation of the 

network's performance is presented in Fig. 9 and 10 

respectively. Finally, the coefficient correlation of acetone 

and graphene (Fig. 11 and 12) with mean square error is 

given in table 4. 

To evaluate the deviation rate of the development model 

with the experimentation is based on these three 

performance parameters such as VAF, RMSE and MAPE. 

To assess the predictive capabilities of the models, 

performance predictions were defined using metrics such as 

VAF, RMSE, and MAPE. The respective equations for 

evaluating the predictive performance are presented in 

Equations 5, 6, and 7 [21]. RBNN Predicted R2 values for 

acetone and graphene of these models during training, 

testing and validation is given in table 4. 

                    (5) 

  𝑅𝑀𝑆𝐸 = √
1

N
∑ (y − y′)2N

i=1                                         (6) 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖−𝑃𝑖

𝐴𝑖
| × 100

𝑁

𝑖=1
                          (7) 

Comparison of the predicted data with experimental data 

of optimum RBFNN models with 3-5-3 for acetone and 

graphene was determined. Hence based on the observation 

the deviation between the measured value with RBFNN 

mode was less than 5% of the total number of data sets. 

Finally, RBFNN model shows the better performance to 

predict the temperature rise, heat transfer coefficient and 

thermal resistance in OHP with acetone and graphene 

respectively. The detail of probability lots for all the 

combinations of temperature differences, heat transfer rate 

and thermal resistance is shown in Figs 13 to 18 

respectively. 

Table 4. Overall regression for all the combinations considered for 

acetone and graphene 

Random data 

Bayesian Regularization with radial basis function 

Coefficient of correlation (R) 

Total No. of data Graphene Acetone 

Training 1700 0.9765 0.9718 

Testing 300 0.9827 0.9731 

Overall 2000 0.9770 0.9712 

MSE 2000 1.0151 1.0641 

 
Figure 12. Regression analysis for training and testing for all combinations considered for acetone. 
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Figure 13. Probability plots of Te-Tc for acetone. 

 

Figure 14. Probability plots of heat transfer coefficient for acetone. 

 

Figure 15. Probability plots of thermal resistance for acetone. 
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Figure 16. Probability plots of Te-Tc for graphene. 

 

Figure 17. Probability plots of heat transfer coefficient for graphene 

 

Figure 18.  Probability plots of thermal resistance for graphene. 
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5.1. Error Analysis 

 

 
Figure 19.  Error analysis based on input and output variables  

for graphene. 

 

 
Figure 20.  Error analysis based on input and output variables f 

or acetone. 

Error analysis involves assessing the deviation or 

difference between the expected or desired output and the 

actual output obtained from a model, experiment, or 

simulation. It helps evaluate the accuracy and reliability of 

a model or experimental setup. In the present investigations 

zero error is shown at the testing and training section the 

Figs. 19 and 20 respectively. The maximum data for all the 

combinations considered is shown in the figure above. 

Overall, Figures 19 and 20 provide valuable information 

about the performance and reliability of models or 

experiments involving graphene and acetone, respectively, 

by evaluating the error associated with input and output 

variables.  

6. Conclusions 

In this study, an RBFNN (Radial Basis Function Neural 

Network) efficiently modeled temperature difference, heat 

transfer coefficient, and thermal resistance in graphene and 

acetone systems using three input parameters. Results 

indicate satisfactory modeling outcomes, and experimental 

datasets suggest that heat transfer coefficient increases with 

higher heat load across all combinations, while thermal 

resistance decreases with increased heat load. 

 Acetone used as a base fluid in the present investigations 

due to its high volatility is perfect for heat pipes, when 

heated, it swiftly evaporates, boosting the heat transfer 

coefficient and effectively removing heat from the hot 

end. Additionally, acetone's boiling point can be 

adjusted by altering pressure, enabling its use in systems 

across various temperature ranges. This versatility 

makes acetone suitable for both low and high-

temperature applications. 

 The heat transfer coefficient for the graphene, operating 

at heat loads of 25W, 30W, 35W and 40W, were recorded 

as 165.8, 189.6, 191.1 and 224.1 W/m2ºC, respectively. 

In contrast, the   heat transfer coefficient for the acetone, 

under equivalent heat loads, yielded values of136.09, 

156.44, 164.23 and 220.48 W/m2ºC. Notably, the HTC 

for the acetone nanofluid exhibited a clear reduction 

when compared to the graphene. 

 For graphene nanofluid at heat loads of 25W, 30W, 

35W, and 40W, the recorded thermal resistances were 

1.920, 1.679, 1.666, and 1.421 ºC/W, respectively. 

Meanwhile, acetone showed higher thermal resistances 

of 2.340, 2.035, 1.939, and 1.441 ºC/W under the same 

heat loads. This data highlights a significant reduction in 

thermal resistance for graphene compared to acetone. 

 The 3-5-3 neural model successfully predicted key 

parameters such as temperature difference, heat transfer 

coefficient, and thermal resistance, with mean squared 

errors (MSE) of 1.015 for graphene and 1.064 for 

acetone. It also achieved high R-squared values (R2) of 

0.977 for graphene and 0.973 for acetone. These results 

affirm that the RBFNN model's predictions are in close 

agreement with the experimental data, indicating its 

effectiveness in modeling the heat pipe's performance. 

NOMENCLATURE 

 HTC- Heat Transfer coefficient (W/m2oC)                               

 TR- Thermal resistance (0C/W) 

 Q- Heat Input (W)                                                                       

OHP –Oscillating heat pipe 

ANN- Artificial Neural Network                                            

MSE- Mean Squared Error 

Te -Evaporator Wall Temperature (ºC)                          

 Tc -Condenser Wall Temperature (ºC) 

As-Surface area of OHP (m2) t -Time (s) 
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