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Abstract 

This paper introduces an adaptive disturbance estimation and compensation approach for delta parallel robots using three 
methods. The first method is based on the adaptive Kalman filter (AKF), the second method uses the Low pass filtered robot 
dynamic model (LFDM) while the third method is acceleration measurement based (AMB) method which utilizes the 
measured moving platform acceleration directly into the robot dynamical model. The considered disturbance is joint friction, 
uncertainty and unmodeled dynamics, their effects are represented as lumped disturbance torque vector. The estimation 
performance is evaluated using the mean square error (MSE) as a performance measure. To control the robot, the nonlinear 
robot model is linearized using feedback linearization through the estimated disturbance which is adaptively scaled using an 
adaptive tuning gain to overcome the limitations of the transient response of the estimated disturbance. The tuning is 
governed by a simple developed sliding surface depending on the error between the desired and actual joint angles. The tuned 
disturbance is added directly to the classical proportional–derivative (PD) controller output control signal for disturbance 
compensation and trajectory tracking.  Based on the results, a comparison among the three methods is studied. The 
comparison shows that the AKF method is the most accurate that tracks the desired trajectory in the presence of disturbance 
and noise. The other methods are not recommended. 
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1. Introduction 

Parallel manipulator usage has been increased 
dramatically in industrial applications and attracted the 
academicians to conduct researches on design and control 
of these robots. Comparing this type of robots with serial 
robots, they have advantages in terms of light weight, high 
accuracy and repeatability, high stiffness, easy inverse 
kinematics computing, force distribution and short cycle 
times. Therefore, this type of robots is used in many 
applications that require high speed and acceleration, 
repeated work and accuracy such as: pick and place [1, 2], 
intelligent sorting systems [2, 3], 3D printing [4], food 
manufacturing systems [5], hybrid robot interaction [6] 
and many others [7, 8]. However, compared with serial 
robots, the computation of parallel robots forward 
kinematics is complicated and the dynamic model is 
challenging which complicates the implementation of 
some control algorithms such as inverse dynamic control 
and classical Proportional- integral derivative (PID) 
controllers [9].  More precisely, the dynamical model of 
the three degrees of freedom DoF Delta robot is composed 
of three dynamic nonlinear equations with three restriction 
equations. 

Several classical control approaches were applied to 
match the desired performance and trajectory tracking [10-
14]. The computed torque controllers require the full robot 
dynamic model. The unmodeled dynamics, joint friction, 
disturbances and model uncertainty deteriorate the 

controller performance [15]. PD and PID controllers are 
used to control delta robots [16]. The design principle 
neglects the coupling effects, thus the response is affected 
by the disturbance due to the structure of the robot and 
requires improving the tracking errors for robust and 
smooth response [17]. Joint friction has significant 
importance in terms of steady state error, limit cycles and 
poor dynamic response [18, 19]. Although friction has 
been represented by mathematical models [20-23], it is 
environment and load dependent. This increased the 
challenge to develop control approaches for joint friction 
compensation [24-28]. The structure of the Delta robot 
increases the difficulty to have an adaptive and a robust 
response. This paper will consider the unmodeled 
nonlinear coupled dynamics, model uncertainty and joint 
friction as lumped disturbance torque vector to be 
estimated and compensated.  

Disturbance observers were used for disturbance 
estimation and compensation for robotic manipulators [29, 
30]. These observers require knowledge of how to tune the 
observer gain. The active disturbance rejection control 
(ADRC) with linear disturbance observation and linear 
feedback control techniques are used for trajectory 
tracking tasks in parallel robots [9]. The estimation in the 
ADRC depends on the extended state observer [31]. This 
observer is regularly of high gain and requires a tuning 
process that avoids undesired high gain effects, such as 
peaking [32], instabilities or noisy estimations [33]. To 
overcome this limitation, an adaptive observer is used with 
a varying gain to form an adaptive active disturbance 
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rejection for robust trajectory tracking [34]. Many of the 
adaptive controllers of manipulators with dynamic 
uncertainty are Lyapunov -based [35, 36]. Lyapunov-based 
controllers focus more on stability and less on performance 
and require parameter tuning which is difficult. Recent 
nonlinear PD with sliding mode control was reported in 
[37]. However, sliding mode controller’s major problem is 
chattering. The research on adaptive control of delta robot 
is still ongoing [38] to restrain model uncertainties 
problems. For a detailed comparison refer to [39]. 

This paper introduces an online adaptive disturbance 
estimation and compensation using three methods and 
compares among them. The first estimation method uses 
the adaptive Kalman filter AKF [40, 41] to estimate this 
disturbance. The structure of the AKF is recursive and 
considers the noise due to uncertainty and measurement 
noise and projects their effect on the filter gain. This gain 
is tuned adaptively depending on the estimation error. This 
filter is adaptive, i.e. it is unnecessary to know the 
statistics of the noise since it has two tuned updating rules 
for the noise covariance according to the estimation 
performance. The second method adopts the filtered 
dynamic model approach. The dynamic model of the robot 
contains the joint angular acceleration which is 
unmeasured or hard to be measured directly. This 
challenge is solved by filtering the dynamic model of the 
robot. The result of this method is a filtered version of the 
disturbance. This method is called low-pass filtered 
dynamic model LFDM. The third method is acceleration 
measurement based method AMB. This method assumes 
the availability of a three axes-accelerometer attached to 
the moving platform of the robot to measure its 
acceleration, then this measured acceleration is utilized in 
the robot model to estimate the disturbance.  

The estimated disturbance will have transient response 
and overshoot. This will reduce the tracking performance 
of the controller. Therefore, to overcome this transient 
response, namely the overshoot, the estimated disturbance 
is adaptively tuned. A simple adaptive tuning gain surface 
is developed depending on the error between the actual 
and desired joint angles. This gain scales the estimated 
disturbance adaptively. In the steady state, the tuning gain 
effectiveness is decreased dramatically i.e. has a value of 
one or close to one. The tuned disturbance is added to the 
control signal of the classical PD controller to study the 
tracking trajectory performance. The proposed control 
approach shows that the adaptive disturbance estimation 
using AKF along with the PD controller result in smooth 
tracking of the desired trajectory.  

The rest of the paper is organized as follows: Section  2 
introduces the mathematical modeling of robot model, the 
problem statement is in section 3. Section 4 shows the 
disturbance estimation methods, Section 5 shows the 
control approach and Section 6 discusses the results. The 
paper is concluded in Section 7. 

2. Mathematical modeling of the 3-DoF Delta robot  

The Delta robot considered here is a 3- DoF robot 
which consists of three closed-loop kinematic chains, each 
chain represents parallelogram to ensure the constant 
orientation between the fixed platform and the moving 
platform in the task space as in Figure 1. The delta robot is 
equipped with three identical actuators fixed on the fixed 
platform which has the Newtonian frame O. The radius of 
the fixed platform is f. The moving platform has radius r 

with a frame E parallel to O. The parameters of the robot 
are listed in Table 1. 

 
Figure 1. Delta robot 

Table 1. Robot parameters 

Description 
Sym

bol 
Unit 

Length of  link a aL  m 

Length of  link b bL  m 

Radius of the fixed platform f  m 

Radius of the moving platform r m 

Mass of link a am  Kg 

Mass of  link b bm  Kg 

Mass of the moving platform pm  Kg 

Gravity acceleration g
 

9.8
2/m s  

Elbow mass em
  

Kg 

Actuator inertia mI
  

Kg.m2 

Gear ratio constant Gk
  

- 

The Delta robot dynamic model is described by a  set 
of differential equations as  

( ) ( , ) ( )M C G   θ θ θ θ θ θ τ τ
F

    ,           (1)  

where   3
1 2 3

T   θ   is the set of actuated 

joint vector. θ  is measured using joint encoders attached 

to the joint actuators. 3 3M   is the positive definite 

inertia matrix,   3,C θ θ θ    vector represents the 

Coriolis and centrifugal torques,   3G θ   contains the 

gravitational terms acting on the robot. 3Fτ   is the 

joint frictional vector and 3τ   is the generalized joint 
control vector. Also, the above terms include the moving 
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plate position 
T

x y zp p p   p in 3  , the position 

vector starts from the origin of the frame O to the origin of 
the frame E. Then, the matrices ,M C   and G  are given 

as follow [42] 

  2 2
3

2

3 3
T a

p b G m a e b

m
M m m J J k L m m I

         
  

I

 ,  T
p bC J m m J   , 

where qI  is the identity matrix of size q  , J  and J  

are the Jacobian and its time derivative respectively. 

   
1

2

3

0 cos

0 cos

cos

T
p bG J m m mg

g


  



    
           
        

, 

where
2

3a e bm m m m    and 

1 2

2 3a e b

a

m m m
L

m


 
   

Link a1 in chain one is rotated an angle of zero around 
the oz  axis in frame O , link a2 in chain two is rotated an 

angle of 120o and link a3 in chain three is rotated an angle 
of 240o . The Jacobian J is found by finding a closed loop 
position vector for each of the three chains and mapping 
the joint space variables to the Cartesian space variables. 
Since the length of link b is constant, this leads to three 
constraint equations.  

3. Problem statement  

In the ideal case where there is no external disturbance, 
the joint friction and the dynamic model are known, 
feedback linearization with PD controller will achieve the 
desired transient and steady state response for a 
manipulator by using simple linear pole placement 
techniques [39].  Unfortunately, in real systems 
disturbances and unmodeled dynamics exist. Further, the 
system parameters are not often precisely known. This 
paper considers the disturbance source from the 
uncertainty in the dynamic model inertia matrix ( )M θ , 

( , )C θ θ , ( )G θ  and τ
F

. That means, it is assumed that 

the inertia matrix ( )M θ consists of two matrices; the 

constant diagonal matrix that represents the inertia of the 
robot upper links with the motor inertia I  and the 

uncertainty in the inertia matrix ( )M θ , i.e. 

( ) ( )M M θ I θ . In addition, call the terms with 

uncertainty part as lumped nonlinear disturbance ζ , then 

Eq (1) can be rewritten as 

 Iθ ζ τ  ,                                                  (2) 

where ζ  is given by 

( , ) ( ) ( )C G M   ζ θ θ θ θ τ θ θ
F

    ,           (3) 

and must be estimated and used in the control law for 
disturbance compensation.  

Equation (2) can be written in state space form by 
choosing the actuated motors angular displacements and 
velocities as states: 

  1 6 1 2 3 1 2 3

TT
x x          x     



3 3 3 33 3 3

3 3 3 3
1 1

0 00

0 0

d
A B F

I  

 
 

    
      

        I I
x x u ζ

 
 ,           (4) 

where x   is the state vector, 0q   is zero matrix of 

size q   and u τ . The measurement vector can be 

represented as 

 3 3 30

H

y I  x                                             (5) 

4. Disturbance estimation 

It is possible to estimate the lumped disturbance vector 
using several methods: AKF, LFDM and AMB methods. 
The estimation depends on the knowledge of the applied 
control torque at the joint. The model in Eq (2) is rewritten 
in other representations suitable for each estimation 
method. 

AKF method   
The AKF is an adaptive observer for linear systems, it 

is used to estimate the disturbance by augmenting the 
disturbance with the states as an extended state, 
accordingly, Eq (4) is rewritten in the form 

3 6 3 3 3 30 0 0
dA F B

  

      
       

      

x x
u

ζ ζ


  ,           (6) 

The measurement vector consists of the active joint 
angles that are measured using joint encoders attached to 
the joint actuators. In addition to that, differentiating the 
angular position numerically using backward Euler 

formula gives valuable information. Hence θ  is 
considered as pseudo measured. Discretizing Eq (6) using 
backward Euler formula yields  

 
 

 
     

 
   

1
1

1d d

new

k k
A B u k k

k k

k
z H k

k





    
         
 

  
 

x x

ζ ζ

x

ζ

,      (7) 

where  

3 3 3 3 3 3
1 1,

3 3 3 3

3 33 3 3 3 3

d d

I TI

A I T I B T

I

       
         

          

0 0

0 I I

00 0

,(8) 

 6 6 30newH I   is the output matrix, T is the 

sampling time and k  is the time index. 9  and 
6v  are the zero mean Gaussian process and 

measurement noises with covariance matrices Q and R  

respectively, i.e.  0,N Q   and  0,v N R .  The 

covariance matrices Q   and R  are unknown and have an 

important effect on Kalman filter estimates. If the given 
value of Q  is much smaller than the true value, then the 

result is biased estimated states x̂  and ζ̂ .  On the other 

hand, if the given value of Q  is much larger than the true 

value, then the estimated states x̂  and ζ̂ will oscillate 

around the true value. The advantage of the AKF [40] is 
that it does not need the values of the noise covariance 
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matrices, just initial values of them are required. Then by 
its recursive structure, it updates the covariance matrices 
based on the innovation e  between the predicted states 
and the measured vector. This error is used to update and 
correct the predicted states through Kalman gain which 
takes into the consideration the uncertainty in the model 
through the covariance matrices. The output of this filter 

are the estimated states x̂  and ζ̂ . The following 

assumptions are considered:  
 Assumption 1: The process and measurement noises 

are assumed to be independent and mutually 
uncorrelated.  

 Assumption 2: The inputs are considered to be 
piecewise constant over the sampling time interval T. 
The AKF requires positive constants RN

 
and QN , 

initial values of matrices 0R  and 0Q , and an initial value 

of the estimation error covariance matrix P0. The AKF 
algorithm is shown between Eqs (9) and (23) respectively. 

0 0 0 0 0 0ˆInitial values , , , , , , 0 , 0R QP Qe x N N R  
 

 
 

 
 

 
ˆˆ 1

ˆˆ 1
d d

kk
A B u k

kk





   
    

     

xx

ζζ
,            (9) 

     1 1T

ddP A P Qk k A k    ,                         (10) 

   
 
 

ˆ

ˆnew

k
e k z k H

k





 
   

  

x

ζ
,                         (11) 

1 2

11
, QR

R Q

NN

N N
 


  ,                         (12) 

     1

1
1

R

e k e k e k
N

   ,                         (13)

           

  

1

1

1

T

R

T
new new k

R

R k e k e k e k e k
N

H P H
N



   



  (14)

     1 1R k R k R k   ,                         (15)

         1T T
new new newK k P k H H P k H R k

   , (16)

 
 

 
 

   
ˆ ˆ

ˆ ˆ

k k
K k e k

k k

  
          

x x

ζ ζ
,                                         (17)

      newP k I K k H P k  ,                         (18)

 
 
 

 
 

ˆ ˆ
ˆ

ˆ ˆ

k k
k

k k






  
    

     

x x

ζ ζ
,                                    (19)

     2

1
ˆ1

Q

k k k
N

      ,                         (20) 

      

         

1

1
ˆ ˆ

1

T

dd
Q

T

Q

A PQ k P k k A
N

k k k k
N

   

  

  


, (21) 

     2 1Q k Q k Q k   ,                         (22) 

    
    

1 ,

1

Q k diag Q k

R k diag R k

 

 
.                            (23) 

where  . 
and  .  stand for the prior and posterior 

estimates, respectively. K is the Kalman gain. 6z  is 
the measurement vector and ̂ is the state error. 

Implementation note: for a noisy system, it is much 
better to give more weight to the previous known values 

    1 , 1R k Q k  than the current noisy reading, and 

this is achieved by selecting big RN  and/or QN  . In the 

same context, small  RN  and/or QN  give more weight to 

the current reading  ,k kR Q  for less noisy readings.  

Low pass filtered dynamic model method LFDM 
The robot model in Eq (2) can be rewritten as 

 ζ τ Iθ  ,                                                         (24) 

The right hand-side of Eq (24) can be computed if the 

angular acceleration θ is known. However, in most cases 
this acceleration is unmeasured. The filtered dynamic 
model [26, 43, 44] avoids the explicit calculation of this 
acceleration by filtering both sides of Eq (24) using a 
proper stable filter. For this 3-DoF robot, three first order 
filters with three constants i for i=1,2,3 are used. The 

transfer function of each filter  i s  and the 

corresponding impulse response  iz t  are written as 

  1
i i

i

s
s







 ,                                         (25) 

and 

    1 it
i i iz t s e      ,                         (26) 

respectively, where  1 .  is the Laplace inverse 

transform and s  refers to Laplace transform. Then the 
impulse response for the 3-DoF robot is 

 
1

2

3

1

2

3

0 0

0 0

0 0

t

t

t

e

t e

e


















 
   
  

z  .         (27) 

Since the multiplication in the frequency domain is 
equivalent to the convolution in time domain, then the 
filtered version of Eq (24) is  

     
0 0 0

t t t

t d t d t d           ζ τ I θz z z  (28) 

Remembering that I is constant matrix, then 0I . 

Further at time 0t  , the initial condition  0 0θ  and 

the impulse response is the diagonal matrix 
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   1 2 30 , ,diag    z σ . Having that, the term 

 
0

t

t d  θz I   will be  

   
0 0

t t

t d t d       θ θ I θz I σI z              (29) 

where z  is the derivative of the filter response  

   31 22 2 2
1 2 3, , tt tt diag e e e       z  ,         (30) 

or in Laplace domain 

    2 2 1
it

i i i
i

z t e
s

 


   


  . 

Using the above equations, the filtered model is 

    

 

0 0

0

t t

t

t d t d

t d

   

 

    

 

 



ζ Iθ τ

Iθ

z σ z

z




           (31) 

The left hand side of Eq (31) is the resulted filtered 
version of the disturbance using the filter in Eq (25). The 
right hand side is filtered using either Eq (25) or Eq (30). 
The cut-off frequency of the first order filter depends on 
the highest basic frequency in the measurements. It is user 
defined. 

Acceleration measurement-based estimation method 
AMB 

This method considers the existence of a three axes-
accelerometer at the moving platform. Thus, the 
acceleration vector  a p v   is considered being 

measured and can be expressed as 

J J a θ θ  .                                                         (32) 
Then the robot model in Eq (2) along with Eq (32) lead 

to estimate the disturbance as  

 1J J  ζ τ I a θ .                                         (33) 

This method depends directly on the measured angular 
velocity. 

5. Control approach 

The controller has two parts. The first part of the 
presented control architecture is a stabilizing and robust 
tracking mechanism using a PD controller that is designed 
to track the reference trajectory. The second part is the 
adaptive disturbance compensation. 

PD controller 
In the ideal case, consider that the estimated lumped 

disturbance vector ζ̂ converged to the true value of ζ , i.e. 

ˆ 0 ζ ζ . Then for the model Eq (2), after some 

mathematical manipulation, the error dynamics is given as 
0d pk k  e e e                                            (34) 

Where d e θ θ , dθ is the desired trajectory, pk  and 

dk  are the positive gains of the PD controller which can 

be determined using pole placement techniques. 
Adaptive disturbance compensation 
The estimated disturbance is used to achieve the 

feedback linearization adaptively so that linear controllers 
are applied. The estimated disturbance is added directly to 
the PD controller output. However, in the transient 

response, the estimated disturbance ζ̂  suffers from the 

overshoot which affects the robot response adversely. 

Therefore, a tuning gain  1 2 3, ,diag     is 

introduced to scale ζ̂  adaptively. The gain range is 

(0,1]   .  

Define the maximum value of the error e  as  

1 2 3m m m m

T
   e e e e  and the positive constant  

1 2 3

T

t t t tk k k k    . Both me  and tk  are user defined. 

For simplicity, only the scalar case is considered. It is 

desired that the gain   scales ζ̂  in the transient response 

when is has the overshoot. While at the steady state, the 
value of    is one or close to one. The design of   is 
based on e , when the error e  is big, then majority of the 
effort is given to the PD controller; this is accomplished by 
decreasing the gain   . On the other hand, when the error 
e  decreases,   increases to its maximum value of unity. 

As shown in Figure 2, when the error me e  specially at 

the initial run of the estimator,   value will be tk i.e. 

tk  . Once the error converges,   value will be close 

to one, i.e.  1  , hence the same estimated disturbance 

ζ̂  is added to the PD controller output. The mathematical 

representation of the tuning gain for the three joints is 
given by 
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and the corresponding tuned disturbance is ˆζ  . The 

overall control approach is shown in Figure 3. 

 
Figure 2. Disturbance tuning gain 

 
Figure 3. Adaptive feedback linearization and control of 

delta robot 

6. Experimental Simulation Results 

To evaluate the estimation and tracking performance, 
the true joint friction is required. However, since it is 
difficult to measure the friction, MATLAB environment is 
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used as an experimental platform to carry out simulations 
on the robot model. The experiments are carried on 3-DoF 
delta robot model as shown in Figure 1. The values of  the 
delta robot parameters are given in Table 2, for more 
details on the robot model refer to [45]. To be more 
realistic, Gaussian noise was added to both the measured 
acceleration and the pseudo measured angular velocity. 
This noise was generated using MATLAB Simulink 
Gaussian noise generator with zero mean and variance 
0.001. The sampling time of this simulation T=0.001s. The 
original nonlinear model of the robot is used throughout 
the simulation. 

The true joint friction is generated using the nonlinear 
model [23]. 

       tanh tanh tanh
1 2 3 4 5 6
        τ θ θ θ θ

F
     (36) 

where , 1, ,6i i    are positive constants and the 

static coefficient of friction can be approximated by 

1 4  . The stribeck effect is represented by 

    2 3tanh tanh θ θ  ,  4 5tanh  θ  and 6 θ  

represent the coulomb friction and the viscous dissipation 
respectively. Each of the active joints has the same 
adopted friction model. The values of the parameters 

, 1, ,6i i    are listed in Table 3  

Table 2. The values of the Delta robot parameters 

Parameter Value 

f 0.1 m 

r 0.055 m 

aL   0.18 m 

bL  0.435 m 

Mass of moving platform 0.196 kg 

Mass of elbow 0.024 kg 

Mass of link b 0.055 kg 

Mass of link a 0.190 kg 

Motor inertia 381.6 10 ;  

Motor gear ratio constant 0.01 

Before the estimation takes place, a traditional PD 
controller is used with the transfer function 

  p d

s
PD s k k N

s N
 


 ,                         (37) 

here 325pk I  3dk I  and N=100, these values 

were selected to obtain the best possible trajectory tracking 
response without disturbance compensation as depicted in  

Figure 4 which shows the error between the desired and 
the actual trajectories. 

Table 3. Friction model parameters for each joint 

Friction model 
constants 

Joint 1 Joint 2 Joint 3 

1  0.7 0.6 5 

2  10 10 10 

3  10 10 10 

4  0.6 0.5 0.4 

5  50 100 10 

6  0.9 0.9 0.9 

 
Figure 4. Trajectory response without disturbance compensation. 

6.1. Disturbance Estimation Performance 

The estimation is carried out simultaneously for all the 
active joints using the three methods. The AKF is 
recursive-based estimation and requires initializations 
which are listed in Table 4. The error initial values were 
set to zero. The state covariance errors were set to 100 
since the error between the estimated value and the true 
value is large at the beginning. The values of NR and NQ 
are set to be equal which is not necessary for all systems, 
they can have different values.  The LFDM requires the 
filter constant   which is selected to be 5 for all joints. 
Low values of the filter cut off frequency will deteriorate 
the dynamics of the estimated disturbance.  

In order to evaluate the estimation performance, the 
estimated results at this section were obtained without 
disturbance compensation. For the simulation purposes, 
the acceleration of the moving platform is computed using 
Eq (32).  

Table 4. AKF parameters and initializations 

Parameter Value Parameter Value 

 0R  60.1I    0e  6 10  

 0Q  90.001I    
610   

 0P  9100I   QN  610   

 ˆ 0x  6 10   0u  3 10  

 ˆ 0ζ  3 10    0  9 10  

The estimated disturbance vector ζ̂  at the three active 
joints using the three methods is depicted in Figure 5. The 
estimated disturbance using the AMB method has very 
high overshoot, and it converges to the true value faster 
than the LFDM. On the other hand, the AKF tracks the 
true value and has the best response among the three 
methods in terms of overshoot, convergence speed and 
tracking. Further, the AKF considers the noise either in the 
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process or in the measurement through the matrices Q and 
R and reflects them on the filter gain. At the same time, it 
tunes the filter gain adaptively according to the estimation 
performance. 

The AMB method suffers from very high 
overshoot. Further, it is very sensitive to the noise 
which may limit its use. As a performance measure, 
the mean square error (MSE) is used. The MSE is 
given by 

      2

1

1 ˆ
n

i

MSE j j j
n 

  ζ ζ  , (38) 

where n is the number of measurements and j=1,2,3 is 
the active joint index . Table 5 shows the MSE of ζ̂  for 
the three joints. Accordingly, the AKF has the best MSE, 

the AMB performance depends on the quality of the 
measurement.  

In terms of implementation and requirements, the AMB 
does not require any constants or initializations, the LFDM 
requires the filter constant. On the other hand, the AKF 
requires several initializations which are easy to be 
initialized and then will be tuned adaptively according to 
the filter performance. In terms of noise considerations, 
only the AKF considers the noise through the process and 
measurement noise covariance matrices.  

In terms of computational cost, the AKF has more cost 
than the other methods due to the algorithm structure. The 
LFDM has the lowest computational cost.  

 

Figure 5. Estimated disturbance a) 1̂  , b)  zoomed version of 1̂   , c) 2̂  , d)  zoomed version of 2̂   e) 3̂  and  f)  zoomed version of 

3̂   using the three methods 
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Table 5. MSE of the estimated disturbance using the three 
methods 

Joint AKF LFDM AMB  

Joint 1 0.0003 0.0004 0.0028  

Joint 2 0.0028 0.0042 0.0042  

Joint 3 0.0011 0.0034 0.0027  

6.2. Disturbance compensation performance and 
discussion 

The estimated disturbance ζ̂  is added directly to the 
control signal from the PD controller to form online 
disturbance estimation and compensation. Although the 
previous section shows the quality of the estimated 
disturbance, however, the transient estimation response 
affects the control law diversely. Therefore a tuning gain 
   is added as in Figure 3. The response of disturbance 
compensation based on the AKF is depicted in Figure 6. 
The moving plate starts from its home position to track the 
desired trajectory with an overshoot. This response is 
expected according to the estimated disturbance discussed 
before. Also, it is expected that this method is much better 
than the other methods.  

The gain   values are plotted in Figure 7. 

 m 1 1 1
Te   and  0.3 0.3 0.3

T

tk   are 

considered. As clear the gain for 1ζ̂ starts with value of 

0.87 in the period of the transient response of the estimated 
disturbance. This indicates that 87% of the estimated 

disturbance 1ζ̂ is passed to the control law. For 2ζ̂ , it has 

more overshoot than 1ζ̂ using the same estimator AKF, 

this explains the reason of the value of the gain to be 0.38. 
Then the gain converges to be close to one i.e. the same 
estimated disturbance is used with the control law.  

The LFDM method has steady state error under the 
same running conditions as shown in Figure 8. The tuned 
gain depicted in Figure 9 starts from a value of 0.35. This 
confirms the observation in Figure 5. As shown in Figure 
5, the LFDM deteriorates the dynamics of the signal, this 
is confirmed in Figure 9 as the gain converges to one with 
less oscillations compared with AKF.  

Lastly, the AMB method is not recommended 
according to Figure 10 and Figure 11. 

 

Figure 6. Trajectory tracking  with disturbance compensation 
using AKF 

7. Conclusion  

The main contribution of this paper is to implement an 
adaptive estimation-control approach to satisfy a 
predefined performance with tuning few parameters. The 
Disturbance deteriorates the tracking performance of the 
delta robot. This paper studied three methods of 
disturbance estimation by considering the lumped 
disturbance vector. The AKF method is the most accurate 
and has a fast convergence. This method is adaptive by the 
nature of the AKF and supports the adaptive trajectory 
tracking. The required initializations are randomly 
selected, and the filter updates the results adaptively. This 
AKF method is applicable to robots in general and not 
only to delta robot. The other methods cause tracking 
errors and are not recommended. Further, to overcome the 
initial estimation dynamics challenge on the control 
system and to enhance the control flexibility, an adaptive 
controller is used with the disturbance to form the adaptive 
disturbance compensation. As a result, the PD controller 
can perform well to get the desired performance. The 
proposed controller gives better results in terms of steady-
state error.  
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Figure 7. The tuning gain with disturbance compensation using 
AKF 

 
Figure 8. Trajectory tracking with disturbance compensation 
using LFDM 

 
Figure 9. The tuning gain with disturbance compensation using 
LFDM 

 
Figure 10. Trajectory response with disturbance compensation 
using AMB 

 
Figure 11. The tuning gain with disturbance compensation using 
AMB 
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