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Abstract 

In this study, two different gene expression programming models were applied to predict surface roughness of end 

milling. The differences between the two models were the number of genes, chromosomes, head size, and the linking 

function. To construct the models, 84 pair input-target data were collected by the experimental procedure, randomly parted 

into 60 and 24 data sets and then were trained and tested respectively by the suggested models. The spindle speed, cutting 

feed and depth of cut were the independent input parameters. According to these input parameters, the roughness of the 

surface in the end-milling process at different cutting conditions was predicted. The training and testing results in the gene 

expression programming models have presented an acceptable potential for predicting roughness values of end-milling in the 

considered range. 
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1. Introduction 

Surface roughness is one of the most common element 

measurements in the machining processes. Surface 

roughness is tangible parameter to quantify the quality of 

the machined surfaces. In machining processes, surface 

roughness is needed to be as low as possible. Modeling 

techniques for the prediction of surface roughness (Ra) can 

be categorized into three groups which are analytical 

models, experimental models and Artificial Intelligence 

(AI)-based models [1]. Analytical and experimental 

models can be developed by using predictable approaches 

such as the statistical regression technique. On the other 

hand, AI-based models are established using non-

conventional methodologies such as Fuzzy Logic, 

Artificial Neural Network, Genetic programming, and gene 

expression programming (GP) [1]. 

Different fuzzy logic and artificial neural network 

schemes have been broadly used for the selection of the 

working conditions in machining processes [2-10]. Gene 

expression programming gained broad consideration due 

to its capability to model nonlinear relationships for input-

output mappings. Several studies have employed gene 

expression programming models for building industry 

problems. Aldas et al. [11] developed a genetic operation 

tree to study the effect of machining parameters and 

reinforcement content on thrust force during drilling of 

hybrid composites. Sener and Kurtarn [12] employed a 

genetic algorithm to optimize process parameters for 

rectangular cup deep drawing. Yeh and Lien [13] 

developed a genetic operation tree to predict concrete 

strength. Vijaykumar et al. [14] applied gene expression 

programming to control the parameter of bidirectional 

CFRP composite pip.  

In the present study, surface roughness as a 

performance indicator of end milling at different variations 

of spindle speed (N), cutting feed (F) and depth of cut (D) 

has been modeled by Gene expression programming. A 

total number of 84 data were collected from the 

experimental procedures, trained and tested using gene 

expression programming. The obtained results were 

compared by experimental ones to test the power of 

genetic programming for forecasting the surface roughness 

in the end milling process. 

2. Experimental Procedure 

The experiment used a Bridgeport end-milling 

machine. Eight 3/4'' four-flute HSS cutting tools were 

used. Dry machining has been employed. The experiment 

was performed on aluminum work pieces [2]. Figure 1 

shows the experiment setup. The cutting parameters were 

set as: four levels of spindle speed (750, 1000, 1250, 1500 

rpm), seven levels of feed rate (150, 225, 300, 375, 450, 

525, 600 mm/min), and three levels of depth of cut (0.25, 

0.75, 1.25 mm). In this experimental study, the roughness 

measurements for surfaces were repeated three times using 

micro-meters. The measured surface roughness was the 

response variable. The surface roughness data were 
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collected randomly for each of the 84 machining 

conditions defined by the levels of independent variables. 

Among 84 collected experimental sets, 60 sets were 

randomly chosen as a training set for the genetic 

programming models (Table 1) and the remaining 24 sets 

were used as testing the generalization capability of the 

proposed models (Table 2). 

3. Genetic Programming and Gene Expression 

Programming Theory 

Genetic programming (GP) is proposed by Koza [15]. 

It is a generalization of genetic algorithms (GAs) [16]. 

Genetic programming attempts to use computer programs 

as its data representation. Similarly, to GA, GP needs only 

the problem to be defined. Then, the program searches for 

a solution in a problem-independent manner [16]. Genetic 

programming breeds computer programs to solve problems 

by implementing the following three steps: 

1. Create an initial population of random compositions of 

the functions and terminals of the problem. 

2. Execute iteratively the following sub steps until the 

termination criterion has been satisfied:  

 Execute each program in the population and allocate 

the fitness value using the fitness measure. 

 Create a new population of computer programs by 

applying the following operations: Reproduction: (i) 

Copy an existing program to the new population, (ii) 

Crossover: Generate new offspring program(s) for the 

new population by remerging arbitrarily chosen parts of 

two existing programs and (iii) Mutation. Create one 

new offspring program for the new population by 

arbitrarily changing a randomly chosen part of one 

existing program. 

3. The program that is categorized by the method of result 

designation is selected as the result of the genetic 

programming system for the run. This result may be a 

solution (or approximate solution) to the problem [16]. 

A flowchart of a typical Genetic programming 

algorithm is revealed in Figure 2 [17]. The genetic 

programming approach progresses through the action 

of three basic genetic operators: reproduction, 

crossover, and mutation. In the reproduction stage, an 

approach must be implemented as to which programs 

should die. In the implementation, a small proportion of 

the trees with the worst fitness are killed. The 

population is then filled with the surviving trees 

according to accepted selection mechanisms, as 

explained by Sarıdemir [17]. Crossover swamps 

randomly selected parts of two trees to join good 

information from the parents and to develop the fitness 

of the next generation, as shown in Figure 3 [16].  

Mutation protects the model against premature 

convergence and develops the non-local properties of 

the search, as shown in Figure 4 [16]. Sometimes, one 

randomly selected node is interchanged by another one 

from the same set, except itself. 

In applying genetic programming with automatic 

function definition to solving a problem, five major 

preparatory steps are used. These steps involve 

determining terminal set, function set, fitness function, 

control parameter and termination criteria [18]. 

 

 

Figure 1. A schematic representation of an end-milling system 

[2]. 

Table1. Effect of machining parameters on the surface roughness 

(training set data set) [2]. 

No. N 

RPM 
 

(rpm) 

F 

(mm/min) 

D 

(mm) 

Ra 

(µm) 

No. N 

(rpm) 

F 

(mm/min) 

D 

(mm) 

Ra 

(µm) 

1 750 525 1.25 3.7 31 1000 600 0.25 4.1 

2 1250 300 1.25 2.4 32 1500 150 0.25 1.3 

3 1000 375 0.25 2.6 33 750 375 1.25 2.6 

4 750 600 1.25 4.4 34 1500 525 1.25 3 

5 750 300 0.75 2.6 35 1250 300 0.25 2.6 

6 1500 375 1.25 2.5 36 1000 300 0.25 3.1 

7 1250 450 1.25 2.3 37 1500 225 0.25 1.4 

8 1000 300 1.25 2.3 38 750 225 0.75 2.6 

9 750 150 1.25 1.9 39 750 150 0.75 1.7 

10 1500 600 0.75 2.6 40 750 525 0.75 4 

11 1500 450 0.25 3.2 41 1000 600 0.75 4 

12 1000 450 0.25 4 42 1250 150 1.25 1.7 

13 750 375 0.75 3.1 43 1000 375 0.75 2.6 

14 1250 600 0.25 3.8 44 1250 300 0.75 2.5 

15 1250 225 0.75 2.1 45 1000 225 0.75 2.4 

16 1000 150 1.25 1.6 46 1500 300 0.75 2.1 

17 1000 300 0.75 2.1 47 1000 525 0.75 3.9 

18 750 450 1.25 3.3 48 1250 225 0.25 2.1 

19 1500 600 0.25 3.2 49 1000 150 0.75 1.9 

20 1250 525 0.75 2.5 50 1250 375 0.75 2.5 

21 1500 450 1.25 2.6 51 1000 150 0.25 1.6 

22 750 600 0.75 4.5 52 1000 225 1.25 2.7 

23 1000 525 0.25 3.8 53 750 225 1.25 2.5 

24 750 300 1.25 2.4 54 1250 450 0.75 2.2 

25 1500 225 0.75 1.9 55 1500 300 0.25 2.3 

26 1250 150 0.25 1.2 56 750 450 0.25 4.8 

27 1250 525 1.25 2.5 57 1250 600 0.75 2.6 

28 1250 375 1.25 2.5 58 750 525 0.25 4.5 

29 1000 225 0.25 2.3 59 1250 225 1.25 2.4 

30 1000 450 0.75 3 60 1250 150 0.75 1.7 

Table 2. Effect of machining parameters on the surface roughness 

(testing set data set) [2]. 

No. N 
(rpm) 

F 
(mm/min) 

D 
(mm) 

Ra 
(µm) 

No. N 
(rpm) 

F 
(mm/min) 

D 
(mm) 

Ra 
(µm) 

1 1000 450 1.25 2.1 13 1250 600 1.25 3.1 

2 1500 150 1.25 1.5 14 1250 375 0.25 2.7 

3 750 300 0.25 3 15 1000 600 1.25 2.1 

4 750 450 0.75 3.7 16 1500 300 1.25 2.4 

5 1000 375 1.25 2.6 17 1500 525 0.75 2.6 

6 750 225 0.25 2.1 18 1500 525 0.25 3.1 

7 1500 375 0.25 2.7 19 1500 600 1.25 3.2 

8 1250 525 0.25 3.1 20 750 150 0.25 1.6 

9 1500 450 0.75 2.3 21 1250 450 0.25 2.5 

10 750 600 0.25 4.7 22 1500 150 0.75 1.4 

11 1500 375 0.75 2.1 23 1000 525 1.25 1.5 

12 750 375 0.25 3.2 24 1500 225 1.25 1.8 
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Genetic programming (GP) has two principal elements 

such as the chromosomes and the expression trees (ETs). 

The chromosomes may be involved in one or more genes 

which refer to a mathematical expression. The 

mathematical code of a gene is identified in two different 

languages called Karva Language [16]; such as the 

language of the genes and the language of the expression 

trees (ETs). The genes have two main parts addressed as 

the head and the tail. The head comprises some 

mathematical operators, variables and constants (+, -, *, /, 

√, sin, cos, 1, a, b, c) which are used to encrypt a 

mathematical expression. The tail just comprises variables 

and constants (1, a, b, c) named as terminal symbols. 

Additional symbols are used if the terminal symbols in the 

head are insufficient to define a mathematical expression. 

A simple chromosome as a linear string with one gene is 

encrypted in Figure 5. Its ET and the corresponding 

mathematical equation are also shown in the same figure. 

The translation of ET to Karva Language is done by 

starting to read from left to right in the top line of the tree 

and from top to bottom. The arrangements of genes used in 

this method are like the arrangements of biological genes 

and have coding and non-coding parts. On the other hand, 

more complex mathematical equations are defined by more 

than one chromosome denoted to multigenic 

chromosomes. Joining the genes is done by combining 

functions such as addition, subtraction, multiplication, or 

division [18]. 

 

Figure 2. Genetic programming flowchart. 
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Figure 3. Example of genetic programming crossover 

 

Figure 4. Example of genetic programming mutation 

 

Figure 5. Chromosome with one gene and its expression tree and corresponding mathematical equation 
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4. Gene Expression Programming Structure and 

Parameters 

In this study the expression trees of two different 

genetic programming models which were termed GP-I and 

GP-II were constructed for Ra values of the end-milling 

process. In the GP-I and GP-II, the number of genes was 

six and seven (Sub-ETs), and linking function was 

addition and subtraction, respectively. In the training and 

testing of GP-I and GP-II models, N, F and D were 

considered as input data and Ra as independent output 

data. Among 84 experimental sets, 60 sets were arbitrarily 

selected as a training set for the GP-I and GP-II modeling 

and the remaining 24 sets were used as testing the 

generalization capacity of the proposed models. 

For the genetic programming-based formulations, the 

first is to select the fitness function. For this problem, 

firstly, the fitness, fi, of an individual program, i, is 

measured by Eq. (1): 

𝑓𝑖 = ∑ (𝑀 − |𝐶(𝑖,𝑗) − 𝑇𝑗|)
𝑐𝑡

𝑗=1
              (1) 

where M is the range of selection, C (i ,j ) is the value 

returned by the individual chromosome i for fitness case j 

(out of Ct fitness cases) and Tj is the target value for fitness 

case j . If the precision |C (i ,j) ‒Tj | is less than or equal to 

0.01, then the precision is equal to zero, and fi = fmax = 

CtM. In this case, M = 100 was used, therefore, fmax = 

1000. The benefit of this type of fitness functions is that 

the systems can find the best solution for itself. The second 

significant step makes up by selecting the set of terminals 

T and the set of functions F to generate the chromosomes. 

In this problem, the terminal set comprises clearly of the 

independent variable, i.e., T = {N, F and D}. The select of 

the proper function set is not so obvious, but an 

appropriate guess can always be done to include all the 

required functions. In this situation, four basic arithmetic 

operators (+, ‒, ,  / ) and some basic functions (Sqrt, x2 , 

x3, ln, sin, cos, Arctan, Exp) [19]. 

The third important step is to determine chromosomal 

tree, i.e., head length and number of genes. Genetic 

programming-based formulations firstly use single gene 

and lengths of 2 heads, and increase the number of genes 

and heads, one by one while running, and examined the 

training and testing performance for each formulation [19]. 

In this study, after several trials, for all the genetic 

programming-based formulations, number of genes and 

the length of the head designed as given in table 3. The 

fourth major step is to choose the linking function. For 

GP-I and GP-II models, addition and subtraction were 

created for linking functions, respectively.  

Finally, a combination of all genetic operators 

(mutation, transposition and crossover) was employed as 

set of genetic operators. At first, these parameters were 

well thought-out as the program defined values. Then they 

were increased step by step and the utmost performance 

network based on the R2 values was considered. 

Parameters of the training of the GP-I and GP-II approach 

models are given in Table 4. For the GP-I and GP-II 

approach models, chromosome 32 and 42 were observed 

to be the best of generation individuals forecasting surface 

roughness. Explicit formulations based on the GP-I and 

GP-II approach models for Ra were attained by: 

𝑅𝑎 = 𝑓(𝑁, 𝐹, 𝐷)                                                  (2) 

The related formulations could be found by the 

procedure shown in Figure 5. 

Table 3. Parameters of GP approach models 

Parameter definition GP-I GP-II 

Chromosomes 32 42 

Head size 8 10 

Number of genes 6 7 

Linking function addition subtraction 

Mutation rate 0.044 0.044 

Inversion rate 0.1 0.1 

One-point recombination rate 0.3 0.3 

Two-point recombination rate 0.3 0.3 

Gene recombination rate 0.1 0.1 

Gene transposition rate 0.1 0.1 0.1 

Constants per gene 5 5 

Weight of functions 7 7 

Lower bound 10 10 

Upper bound 10 10 

5. Results and Discussion 

In the present study, in order to assess the capabilities 

of genetic programming-based formulations, formulas 

given by some national building codes and the established 

regression-based formulation, R-square (R2), root-mean-

squared error (RMSE) and mean absolute percentage error 

(MAPE) were used as the criteria between the 

experimental and predicted values which are according to 

the equations (3) – (5), respectively [19]: 

𝑅2 =
(𝑛∑ 𝑡𝑖𝑜𝑖−∑𝑡𝑖∑𝑜𝑖)

2

(𝑛∑ 𝑡𝑖
2−(∑ 𝑡𝑖)

2
(𝑛∑𝑜𝑖

2−(∑𝑜𝑖)
2
)
              (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑡𝑖 − 𝑜𝑖)

2𝑛
𝑖=1                                (4) 

𝑀𝐴𝑃𝐸 =
1

𝑛
[
∑ |𝑡𝑖−𝑜𝑖|
𝑛
𝑖=1

∑ 𝑡𝑖
𝑛
𝑖=1

× 100]               (5) 

Where t is the experimental result, o is the obtained 

result by the formulations and n is the total of data. The 

related equations to GP-I and GP-II models are in 

accordance to equations (6) and (7), respectively: 

𝑅𝑎(GP−I) =
(sin(−1.36)+𝑙𝑛𝑁)+(𝑁3×𝑙𝑛2.88)

√𝐹
+

cos(𝐷+𝐹−8.93)

(tan−1 8.93−cos𝐷)(−6.05𝑁)
+

√𝐹

𝑙𝑛((𝑁 tan−1 0.34)(𝐷−𝐹)−9.92)
+

cos(((𝑁+𝐹)−584.27)(𝑁 cos−7.17))

𝑙𝑛𝐷
+

𝑐𝑜𝑠((𝐹+4.42)(1.26𝑁))

(√4.42−4.42𝑁)(3.50)
− 1.68 + tan−1(√148.03 tan−1𝑁 + sin𝐹3)                         (6) 

𝑅𝑎(GP−II) =
((9.92−𝐹)𝑁)

2

2(𝐷−𝐹)
− √𝑁

3
− (√2𝐷 − 9.74

3
)(𝑙𝑛𝐹 − √𝐹

3
) − 𝑒𝑥𝑝

1

3(𝑠𝑖𝑛𝑁 + 𝑐𝑜𝑠(93.89𝑁)) − cos3 𝐹 −

(𝑐𝑜𝑠(7.35+𝐷))(𝐹−9.96)

(𝐷−9.96) √𝑁
3 − tan−1 ((((9.71 − 𝐹) − 841.23) + (𝐹/𝑁)) − 𝐷)                                                                             (7) 
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The experimental and the predicted are shown in Figure 

6.  R-square (R2), root-mean-squared error (RMSE) and 

mean absolute percentage error (MAPE) values were 

shown in Table 4 for the training and testing data. As 

shown in Figure 6, the results attained from the training 

and testing in GP-I and GP-II models are in good 

agreement with the experimental results. As seen in Figure 

6a, b and c, d the predicted results from models are 

compared to the experimental results for training, testing 

and validation sets, respectively. The training set results 

demonstrated that the proposed models have remarkably 

well learned the non-linear relationship between the input 

and the output variables with high correlation and 

reasonably low error values. Comparing the GP-I and GP-

II approach models’ prediction with the experimental 

results for the testing and training stages proves a high 

generality capacity of the proposed models and low error 

values. All these findings show a successful performance 

of the models for predicting surface roughness in end-

milling in training and testing stages. The result of testing 

phase in Figure 6 shows that the GP-I and GP-II models 

are capable of generalizing between input and output 

variables with reasonably good predictions. The 

performance of the GP-I and GP-II models is shown in 

Table 4. The best value of R2 and the minimum value of 

MAPE and RMSE are 0.923, 0.268 and 0.219, 

respectively, all for training set in GP-I model. The 

minimum value of R2 and the maximum value of MAPE 

and RMSE are 0.901, 0.339 and 0.471, respectively, all for 

testing set in GP-II model. The entire R2, MAPE and 

RMSE values show that the proposed GP-I and GP-II 

models are appropriate and can predict surface roughness 

values of end-milling very close to the experimental 

values. 
Table 4. Statistical calculations from GP-I and GP-II training and 

testing phases 

Statistics GP-I GP-II 

Training Testing Training Testing 

R2 0.923 0.920 0.909 0.901 

MAPE 0.268 0.314 0.296 0.339 

RMSE 0.219 0.411 0.249 0.471 

6. Conclusions 

This study reports original and efficient models for the 

formulation of surface roughness in the end-milling 

process. Two different GP-I and GP-II models were 

proposed to forecast the roughness values in the end-

milling process. The suggested models were based on 

experimental results. The number of genes in the proposed 

GP-I and GP-II models was 6 and 7, and the linking 

functions were addition and subtraction, respectively. All 

the results attained from the models exhibit excellent 

agreement with experimental results. The best value of R2 

and the minimum value of MAPE and RMSE are 0.923, 

0.268 and 0.219, respectively, all for training set in GP-I 

model. The minimum value of R2 and the maximum value 

of MAPE and RMSE are 0.901, 0.339 and 0.471, 

respectively, all for the testing set in GP-II model. It was 

found that GP can be a substitute approach for the 

assessment of the performance of end-milling process and 

can calculate their surface-roughness value with suitable 

input parameters. 

 

 

 

 
Figure 6. The results obtained from experimental studies and predicted (Model) by using the training and testing results of GP-I and GP-II 

models. Respectively, (a), (b) training and testing related to GP-I model; (c), (d) training and testing related to GP-II model  
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