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Abstract 

 This paper presents analytical formulations and solutions for the bending behavior of simply supported 

functionally graded plates (FGPs) using Higher Order Shear Deformation Theory (HSDT) without enforcing zero transverse 

shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors. Material properties of 

the plate are assumed to vary in the thickness direction according to a power law distribution interns of the volume fractions 

of the constituents. The governing equations of motion and boundary conditions are derived using the principle of virtual 

work. Solutions are obtained for FGPs in closed-form using Navier’s technique. The results of deflections and stresses are 

presented for simply supported boundary conditions. The present numerical results are compared with the available solutions 

in the literature for deflections and stresses, from which it can be concluded that the proposed theory results are very close 

agreement to the published ones. After validating the present theory results for FGM plates, the effect of side-to-thickness 

ratio, aspect ratio, modulus ratio, the volume fraction exponent,and through-the-thickness  on the deflections and stresses are 

studied. The shear deformation effect and inhomogeneities played a greater role in estimating the deflctions and stress 

distribution in the functionally graded material plates. 
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1. Introduction 

Laminated Composite materials are particularly 

attractive to aviation and aerospace applications because of 

their exceptional strength and stiffness-to-density ratios 

and superior physical properties. However, the sudden 

change in material properties across the interface between 

discrete materials can result in large interlaminar stresses 

leading to delamination. Furthermore, large plastic 

deformations at the interfaces may trigger the initiation 

and propagation of cracks in the material [1]. One way to 

overcome these adverse effects is to employ functionally 

graded materials in which the material properties are 

continually varied through the thickness direction by 

mixing two different materials. This is achieved by 

gradually changing the volume fraction of the constituent 

materials usually in the thickness direction only.  

In the past, researchers on plates have received great 

attention and a variety of plate theories have been 

proposed to study the mechanical behavior of FGM plates. 

In particular, knowledge pertaining to static analysis is 

essential for optimal design of structures. For example, our 

numerical results clearly show that one could achieve an 

optimal design for FGM plates with a suitable power law 

index “n”. It is useful to present some developments in 

plate theory. The Classical Laminate Plate Theory (CLPT) 

[2], which is an extension of the Classical Plate Theory 

(CPT), provides acceptable results only for the analysis of 

thin plates and neglects the transverse shear effects. 

However, for moderately thick plates, CPT underpredicts 

deflections and overpredicts buckling loads and natural 

frequencies. The First-order Shear Deformation Theories 

(FSDTs) are based on Reissner's [3] and Mindlin's [4] 

accounts for the transverse shear deformation effect by 

means of a linear variation of in-plane displacements and 

stresses through the thickness of the plate, but requires a 

correction factor to satisfy the free transverse shear stress 

conditions on the top and bottom surfaces of the plate. 

Although, the FSDT provides a sufficiently accurate 

description of response for thin to moderately thick plates, 

it is not convenient to use due to difficulty with 

determination of the correct value of shear correction 

factor [5]. In order to overcome the limitations  of FSDT, 

many HSDTs were developed; they involved higher order 

terms in Taylors expansions of the displacements in the 
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thickness coordinate, notable among them are Reddy [6], 

Zenkour [7-9], Kant and Co-workers [10-15], 

Kadkhodayan [16], Matsunaga [17,18], Xiang [19] and 

Ferreira [20]. A good literature review of these theories is 

available in Refs. [21-23]. Neves et al. [20, 24] derived a 

Higher-order Shear Deformation Theory (HSDT) for 

modeling of functionally graded material plates and 

focused on the thickness stretching issue on the static, free 

vibration, and buckling analysis of FGM plates by a 

meshless technique. They used the virtual work principle 

of displacements under Carrera’s Unified Formulation 

(CUF) to obtain the governing equations and boundary 

conditions. The bending and Eigen problems are solved by 

collocation with radial basis functions. Mechab et al. [25] 

developed a two-variable refined plate theory to the 

bending analysis of functionally graded plates. Mantari 

and Soares [26] used the new trigonometric higher order 

shear deformation theory with stretching effect to develop 

the analytical solutions for static analysis of functionally 

graded materials. They employed the virtual work 

principle to derive the governing equations of motion and 

boundary conditions. The bi-sinusoidal load in the 

transverse direction is applied to the simply supported 

FGM plate to obtain the Navier-type solution. 

Birman and Byrd [28] presented a review of the 

principle developments in FGMs on the recent work 

published since 2000 in diverse areas relevant to various 

aspects of the theory and applications of FGM that include 

homogenization of particulate FGM, heat transfer issues, 

stress, stability and dynamic analyses, testing, 

manufacturing and design, applications, and fracture.  

Reddy [29] developed analytical solutions and finite 

element models based on third order shear deformation 

plate theory to analyze the isotropic functionally graded 

rectangular plates accounting for the thermo-mechanical 

coupling, time dependency, and the von Kármán-type 

geometric non-linearity. He assumed that the material 

properties vary according to power-law distribution in 

terms of volume fractions of the constituents. 

Cheng and Batra [30-32] used a third order shear 

deformation plate theory to establish the relationships 

between its deflections predicted by third order and higher 

order shear deformation theories and that given by the 

classical Kirchhoff plate theory. They also used the third 

order theory to study the buckling and steady state 

vibrations of a simply supported functionally gradient 

isotropic polygonal plate resting on a Winkler Pasternak 

elastic foundation and subjected to uniform in-plane 

hydrostatic loads. They assumed that the Young's modulus 

and the Poisson ratio of the material of the plate vary only 

in the thickness direction and also considered the rotary 

inertia effects. The same authors used asymptotic 

expansion method to study three-dimensional mechanical 

deformations of an isotropic linear thermo-elastic elliptic 

plate, and the deformations due to thermal loads are 

straightforwardly found. 

Gasik et al. [33] optimized the symmetric FGM plates 

and disks during sintering, using computer simulation to 

minimize the functionally graded material distortion, to 

avoid cracks and to generate an optimum residual stress 

distribution considering the processing parameters such as 

green density, particle size and composition profiles.  

Batra and Love [34] studied the initiation and 

propagation of adiabatic shear bands in FGMs deformed at 

high strain rates in plane-strain tension. 

Qian et al. [35] used meshless local Petrov–Galerkin 

(MLPG) Method to analyze plane strain static 

thermoelastic deformations of a simply supported 

functionally graded (FG) plate. They concluded that the 

number of nodes required to obtain an accurate solution 

for a FG plate is considerably more than that needed for a 

homogeneous plate.  

Gilhooley et al. [36] used a meshless local Petrov–

Galerkin (MLPG) method, and a Higher-Order Shear and 

Normal Deformable Plate Theory (HOSNDPT) to analyze 

infinitesimal deformations of a functionally graded thick 

elastic plate. They employed multiquadrics and thin plate 

spline radial basis functions for constructing the trail 

solutions, while a fourth-order spline function is used as 

the weight/test function over a local sub domain. They 

used Mori–Tanaka homogenization technique to compute 

the effective material properties. 

Talha and Singh [37] developed the theoretical 

formulations based on higher order shear deformation 

theory with a considerable amendment in the transverse 

displacement using the finite element method to analyze 

the thermo-mechanical deformation behavior of shear 

deformable FGM plates. 

Daouadji et al. [38] presented a theoretical formulation, 

Navier’s solutions of rectangular plates based on a new 

higher order shear deformation model to study the static 

response of FG plates enforcing traction-free boundary 

conditions on plate surfaces. They also studied the effect 

of ceramic volume fraction, volume fractions profiles, 

aspect ratios, and length to thickness ratios on the static 

response of FG plates.  

Xiang and Kang [39] used nth-order shear deformation 

theory and meshless global collocation method based on 

the thin plate spline radial basis function to the bending 

analysis of functionally graded plates.  

Most of the above theories do not account for 

transverse shear stresses on the top and bottom surfaces of 

the plate. This should be considered in modeling of the 

FGPs, because of the transverse shear stresses  and strains 

are not zero, when the FGPs used in aerospace structures 

may be subjected to transverse load/pressure on either side 

of the plate.  

In the present paper, analytical formulations and 

solutions for the static analysis of Functionally Graded 

Plates (FGPs) using Higher-Order Shear Deformation 

Theory (HSDT) are developed without enforcing zero 

transverse shear stress on the top and bottom surfaces of 

the plate. This does not require shear correction factors. 

The plate material is graded through the thickness 

direction. The plate’s governing equations and its 

boundary conditions are derived by employing the 

principle of virtual work. Navier-type analytical solution is 

obtained for plates subjected to transverse sinusoidal load 

for simply supported boundary conditions. The present 

numerical results are compared with the available 

solutions in the literature for deflections and stresses, from 

which it can be concluded that the proposed theory results 

are very close agreement to the published ones. After 

validating the present theory results for FGM plates, the 

effect of side-to-thickness ratio, aspect ratio, modulus 
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ratio, the volume fraction exponent,and through-the-

thickness  on the deflections and stresses are studied. The 

shear deformation effect and inhomogeneities played a 

greater role in estimating the deflctions and stress 

distribution in the functionally graded material plates. 

2. Theoretical Formulation 

In formulating the higher-order shear deformation 

theory, a rectangular plate of length a, width b and 

thickness h is considered, that composed of functionally 

graded material through the thickness. Figure 1 shows the 

functionally graded material plate with the rectangular 

Cartesian coordinate system x, y and z. The material 

properties are assumed to be varied in the thickness 

direction only and the bright and dark areas correspond to 

ceramic and metal particles respectively. On the top 

surface (z=+h/2), the plate is composed of full ceramic and 

graded to the bottom surface (z=-h/2) that composed of 

full metal. The reference surface is the middle surface of 

the plate (z=0). The functionally graded material plate 

properties are assumed to be the function of the volume 

fraction of constituent materials. The functional 

relationship between the material property and the 

thickness coordinates is assumed to be [9, 29,40]: 

bbt P +
2

1
)P-(P =P(z)

n

h

z








                               (1) 

where P denoted\s the effective material property, Pt, 

and Pb denotes the property on the top and bottom surface 

of the plate, respectively, and n is the material variation 

parameter that dictates the material variation profile 

through the thickness. The effective material properties of 

the plate, including Young’s modulus, E, density, ρ, and 

shear modulus, G, vary according to Eq. (1), and poisons 

ratio (υ) is assumed to be constant. 

 
Figure 1.Functionally graded plate and coordinates 

2.1. Displacement Models 

In order to approximate 3D plate problem to a 2D one, 

the displacement components u (x, y, z, t), v (x, y, z, t) and 

w (x, y, z, t) at any point in the plate are expanded in terms 

of the thickness coordinate. The elasticity solution 

indicates that the transverse shear stress varies 

parabolically through the plate thickness. This requires the 

use of a displacement field, in which the in-plane 

displacements are expanded as cubic functions of the 

thickness coordinate. In addition, the transverse normal 

strain may vary nonlinearly through the plate thickness. A 

higher-order shear deformation for composite laminated 

plates was developed by Pandya and Kant [41]. This paper 

extends this theory to functionally graded material plates. 

The displacement field is described in the following 

equations:  
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Where uo, vo, wo, denote the displacements of a point 

(x, y) on the mid plane. 

x, y are rotations of the normal to the mid plane about 

y and x-axes  

 u0
*, v0

*, x
*, y

* are the higher order deformation terms 

defined at the mid plane.  

By substitution of displacement relations from Eq. (2) 

into the strain displacement equations of the classical 

theory of elasticity the following relations are obtained: 
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2.2. Elastic Stress-Strain Relations 

The elastic stress-strain relations depend on which 

assumption of εz=0. In the case of functionally graded 

materials the constitutive equations can be written as: 
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Where    = (x, y, xy, yz, xz)
t are the stresses 

  = ( x,  y, xy, yz, xz)
t are the strains with 

respect to the axes 

Qij’s are the plane stress reduced elastic coefficients in 

the plate axes that vary through the plate thickness given 

by: 
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Where Ec is the modulus of Elasticity of the ceramic 

material and Em is the modulus of elasticity of the metal. 

2.3. Governing Equations of Motion  

The work, done by actual forces in moving through 

virtual displacements that are consistent with the 

geometric constraints of a body, is set to zero to obtain the 

equation of motion; this is known as energy principle. It is 

useful for: (a) deriving governing equations and the 

boundary conditions, and (b) obtaining approximate 

solutions by virtual methods.  

Energy principles provide alternative means to obtain 

the governing equations and their solutions. In the present 

study, the principle of virtual work is used to derive the 

equations of motion for functionally graded material 

plates.    

The governing equations of displacement model in Eq. 

(2) will be derived using the dynamic version of the 

principle of virtual displacements [42], i.e.:  
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    Where  U = virtual strain energy  

 V = virtual work done by applied forces  

 K = virtual kinetic energy   

 U + V = total potential energy.  

The virtual strain energy, work done and kinetic energy 

are given by: 
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Where 

  q = distributed load over the surface of the plate. 

 0 = density of plate material  

Substituting for U, V and K in the virtual work 

statement in Eq. (6) and integrating through the thickness, 

integrating by parts and collecting the coefficients of 
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the following equations of motion are obtained: 
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Where the force and moment resultants are defined as: 
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And the transverse force resultants and the inertias are 

given by: 
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The resultants in Equations (11)-(13) can be related to 

the total strains in Eq. (4) by the following matrix: 
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Where,  
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The matrices [A], [B], [D], and [Ds] are the plate 

stiffness whose elements can be calculated using Eq. (4), 

and Eq. (11)-(13). 

3. Analytical Solutions 

Rectangular plates are generally classified by referring 

to the type of support used. We are here concerned with 

the analytical solutions of the Eq. (10) - (15) for simply 

supported FG plates. Exact solutions of the partial 

differential Eq. (10) an arbitrary domain and for general 

boundary conditions are difficult. Although, the Navier-

type solutions can be used to validate the present higher 

order theory, more general boundary conditions will 

require solution strategies involving, e.g., boundary 

discontinuous double Fourier series approach. 

Solution functions that completely satisfy the boundary 

conditions in the Equations below are assumed as follows: 
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Where  

 = 

a

m
and  = 

b

n
 

The Mechanical load is expanded in double Fourier 

sine series as: 
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Substituting Eq. (16a) - (16i) into Eq. (10) and 

collecting the coefficients we obtain: 
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For any fixed value of m and n. Solutions of the Eq. (18)  

are obtained for each m,n =1,2….as Umn, Vmn, Wmn, 

 Xmn,Ymn. 

 The coefficients Umn, Vmn, Wmn, Xmn, Ymn, 

**** ,,, mnmnmnmn YXVU
 which are used to  

compute 
xooo wvu ,,,

, 
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,,,, yxooy vu 

 . 

4. Results and Discussion 

4.1. Comparative Studies 

In this section, numerical examples are presented and 

discussed to verify the accuracy of the present higher-order 

shear deformation theory in predicting the deflections and 

stresses of a simply supported functionally graded material 

plate. For numerical results, an Al/Al2O3 Plate is 

considered and graded from aluminum (as metal) at the 

bottom to alumina (as ceramic) at the top surface of the 

plate. The material properties adopted here are:  

Aluminium Young’s modulus (Em): 70GPa, 

density(ρm)= 2702 kg/m3, and Poisson’s ratio (υ): 0.3 

Alumina Young’s modulus (Ec): 380GPa, density (ρc)= 

3800kg/m3, and Poisson’s ratio (υ): 0.3 

For convenience, the transverse displacement, in-plane 

and the transverse shear stresses are presented in 

nondimensionalized form as: 
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In Table 1, we present results for in-plane longitudinal, 

normal stresses and transverse displacements for various 

material variation parameter “n” of the power law and for 

side-to-thickness ratios (a/h) is 10. The present results are 

compared with the Zenkour [9], Reddy [6], Touraiter [27] 

and Mechab [25]. 

The results from present higher-order shear 

deformation theory considering εz=0 are in good 

agreement with those from Touraiter [27] and Mechab [25] 

who also consider εz=0. It can also be seen that the effect 

of the exponent “n” of the power law on the dimensionless 

deflections and stresses of an FGM plate is being 

demonstrated in the results presented in Table 1. From 

Table 1, it is important to observe that as the plate 

becomes more and more metallic, the difference increases 

for maximum center deflection and maximum normal 

stress (
x ), while it decreases for normal stress (

y ). 

Also, it is noticed that the stresses for a fully ceramic plate 

are the same as that for a fully metal plate. This may be 

because of the fact that the plate is fully homogeneous at 

the top and bottom surface and the nondimensionalized 

stresses do not depend on the value of the modulus of 

elasticity. 

Table 2 compares the deflections and transverse shear 

stresses in a square FG plate subjected to sinusoidal 

distributed load. For convenience, the transverse 

displacement, and the transverse shear stresses in Table 2  

are presented in a nondimensionalized form as: 
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It can be seen that the deflections and stresses are in 

good agreementg with the higher order shear deformation 

theory [18] and refined plate theory [25]. This allows us to 

conclude that the developed higher order shear 

deformation theory is good for modelling of simply 

supported FGM plates. Results in Table 1 and Table 2 

should serve as benchmark results for future comparisons. 
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Table 1: Comparison of Non-dimensional Central deflections and stresses in a square FG-plate subjected to sinusoidal distributed load, a/h=10. 

n Source w  x  y  xy  yz  xz  

Ceramic Ref.[9] 0.2960 1.995500 1.312100 0.706500 0.213200 0.246200 

 

Ref.[6] 0.29423 1.989150 1.310350 0.705570 0.190510 0.237780 

 

Ref.[27] 0.2960 1.995500 1.312100 0.706500 0.213200 0.246200 

 

Ref.[25] 0.2961 1.994300 1.312400 0.706700 0.212100 0.238600 

 

Present 0.2961  1.99426  1.31238 0.706667 0.211994 0.238413 

0.2 Ref.[6] 0.33767 2.126710 1.309580 0.667570 0.180450 0.225320 

 

Present 0.3599 2.259090  1.38728 0.720591 0.225440 0.242348 

0.5 Ref.[6] 0.4407 2.610510 1.471470 0.666680 0.190710 0.238170 

 

Present 0.4537  2.61874  1.45902 0.691134 0.240484 0.243518 

1 Ref.[9] 0.5889 3.087000 1.489400 0.611000 0.262200 0.246200 

 

Ref.[6] 0.58895 3.085010 1.489800 0.611110 0.190710 0.238170 

 

Ref.[27] 0.5889 3.087000 1.489400 0.611000 0.262200 0.246200 

 

Ref.[25] 0.5890 3.085000 1.489800 0.611100 0.260800 0.238600 

 

Present 0.5890  3.08782  1.49034 0.610704 0.254721 0.238405 

2 Ref.[9] 0.7573 3.609400 1.395400 0.544100 0.276300 0.226500 

 

Ref.[6] 0.75747 3.606640 1.395750 0.544340 0.180700 0.225680 

 

Ref.[27] 0.7573 3.609400 1.395400 0.544100 0.276300 0.226500 

 

Ref.[25] 0.7573 3.606700 1.396000 0.544200 0.273700 0.218600 

 

Present 0.7578  3.61635  1.39638 0.543421 0.263908 0.222026 

3 Ref.[27] 0.8377 3.874200 1.274800 0.552500 0.271500 0.210700 

 

Ref.[25] 0.8375 3.870900 1.275600 0.552600 0.267700 0.202400 

 

Present 0.8383  3.88527  1.27495 0.551783 0.260625 0.208393 

4 Ref.[27] 0.8819 4.069300 1.178300 0.566700 0.258000 0.202900 

 

Ref.[25] 0.8816 4.065500 1.179400 0.566900 0.253700 0.194400 

 

Present 0.8823  4.08134  1.17786 0.566122 0.250169 0.201285 

5 Ref.[9] 0.91180 4.248800 1.102900 0.575500 0.242900 0.201700 

 

Ref.[6] 0.90951 4.242930 1.105390 0.573680 0.173070 0.216090 

 

Ref.[27] 0.9118 4.248800 1.102900 0.575500 0.242900 0.201700 

 

Ref.[25] 0.9112 4.244700 1.104100 0.575700 0.238500 0.193000 

 

Present 0.9121  4.25983  1.1022 0.574958 0.237709 0.199975 

6 Ref.[27] 0.9356 4.424400 1.041700 0.580300 0.229600 0.204100 

 

Ref.[25] 0.9352 4.420100 1.042800 0.580600 0.225500 0.195400 

 

Present 0.9357  4.43346  1.04095 0.579958 0.226524 0.202127 

7 Ref.[27] 0.9562 4.597100 0.990300 0.583400 0.219400 0.208100 

 

Ref.[25] 0.9557 4.592800 0.991500 0.583600 0.215700 0.199400 

 

Present 0.9562  4.60395  0.98971 0.583103 0.217854 0.205747 

8 Ref.[27] 0.9750 4.766100 0.946600 0.585600 0.212100 0.212400 

 

Ref.[25] 0.9743 4.761900 0.947700 0.585800 0.208800 0.203700 

 

Present 0.9749  4.77066  0.946138 0.585446 0.211753 0.209630 
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n Source w  x  y  xy  yz  xz  

9 Ref.[27] 0.9925 4.930300 0.909200 0.587500 0.207200 0.216400 

 

Ref.[25] 0.9922 4.926100 0.910300 0.587800 0.204200 0.207800 

 

Present 0.9924  4.93267  0.908967 0.587472 0.207791 0.213196 

10 Ref.[27] 1.0089 5.089000 0.877500 0.589400 0.204100 0.219800 

 

Ref.[25] 1.0085 5.084900 0.878500 0.589600 0.201400 0.211400 

 

Present 1.0089  5.08932  0.87743 0.589390 0.205434 0.216235 

Metal Ref.[9] 1.60700 1.995500 1.312100 0.706500 0.213200 0.246200 

 

Ref.[6] 1.59724 1.989150 1.310350 0.705570 0.190510 0.237780 

 

Ref.[27] 1.6070 1.995500 1.312100 0.706500 0.213200 0.246200 

 

Ref.[25] 1.6074 1.994300 1.312400 0.706700 0.212100 0.238600 

  Present 1.6072  10.826  1.31238 0.706667 0.211994 0.238413 

 

Table 2: Comparison of Non-dimensional Central deflections and transverse shear stress in a square FG-plate subjected to sinusoidal 

distributed load 

a/h 

Power law index, 

n 

w  xz  

Ref.[18] Ref.[25] Present Ref.[18] Ref.[25] Present 

5 

0 20.98 21.46 21.4575 1.186 1.19 1.18735 

0.5 31.79 32.35 32.3549 1.209 1.217 1.21301 

1 41.39 41.8 41.816 1.184 1.19 1.18719 

4 65.12 65.06 65.2529 1.076 0.969 1.0005 

10 76.21 76.72 76.7671 1.078 1.053 1.07547 

10 

0 294.3 296.1 296.058 2.383 2.385 2.38413 

0.5 450.4 453.7 453.716 2.431 2.439 2.43518 

1 587.5 589 589.03 2.383 2.385 2.38405 

4 882.3 881.6 882.341 2.175 1.943 2.01285 

10 1007 1008.5 1008.92 2.167 2.113 2.16235 

4.2. Parametric Study 

4.2.1. Effect of Side-to-Thickness Ratio 

The variation of nondimensionalized displacements and 

stresses for various side to thickness ratios (a/h) and 

material variation parameter (n) for displacement model 

are shown in Figures 2 - 7. Figure 2 shows the variation of 

center deflection for various volume fraction exponents 

“n” and with different side-to-thickness ratios, 

respectively. It is observed that the deflection of FGM 

plate is between ceramic and metal and the deflection of 

metal rich plates is larger compared to ceramic rich plates, 

this is due to the fact that the modulus of elasticity of 

ceramic (Al2O3=380GPa) is higher than that of metal 

(Al:70GPa). Hence for FGM plates, the transverse 

deflection decreases as the volume fraction exponent, n, 

decreases, whereas it may be unchanged as the side-to-

thickness ratio increases. The normal stresses increases 

with the increase of side-to-thickness ratio and decreases 

with the decrease of volume fraction exponent which can 

be seen in Figure 3 and Figure 4. Figures 5 - 7 show the 

variation of nondimensionalized shear stress for various 

side-to-thickness ratios and with different power-law index 

values. It can be seen that the longitudinal shear stress 

( xy ) increases with the increase of side-to-thickness 

ratio’s and power-law index values. This is due to the 

decrease of the stiffness of the plate.  The transversal shear 

stresses may be unchanged as the side-to-thickness ratio 

increases. The shear deformation effect is to increase the 

deflections and decrease the normal stresses, longitudinal 

and transverse shear stresses, especially for a/h≤5. 

 
Figure 2. Nondimensionalized displacement ( w ) as a function 

of side-to-thickness ratio (a/h) of an FGM plate for various values 

of power law index (n) 
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Figure  3. Nondimensionalized Normal stress ( x ) as a function 

of side-to-thickness ratio (a/h) of an FGM plate for various values 

of power law index (n)  

 
Figure  4. Nondimensionalized Normal stress ( y ) as a function 

of side-to-thickness ratio (a/h) of an FGM plate for various values 

of power law index (n)  

 

Figure 5: Nondimensionalized longitudinal shear stress (
xy ) as 

a function of side-to-thickness ratio (a/h) of an FGM plate for 

various values of power law index (n)  

 

Figure 6: Nondimensionalized transversal shear stress ( yz ) as a 

function of side-to-thickness ratio (a/h) of an FGM plate for 
various values of power law index (n)  

 

Figure 7: Nondimensionalized transversal shear stress ( xz ) as a 

function of side-to-thickness ratio (a/h) of an FGM plate for 

various values of power law index (n)  

4.2.2.  Effect of Aspect Ratio 

The effect of aspect ratios (a/b) and material variation 

parameter (n) for displacement model on 

nondimensionalized displacements and stresses are shown 

in Figures 8 - 13. From Figure 8 and Figure 9, it can be 

seen that the nondimensionalized center deflections and in-

plane longitudinal stress ( x ) decreases with the increase 

of aspect ratio and volume fraction exponent. The 

nondimensionalized displacements are higher for metallic 

plates and lower for ceramic plates. This is because of 

more stiffness for ceramics plates than metal plates. Also, 

it is found that the response of FGM plates is intermediate 

to that of the ceramic and metal homogeneous plates. The 

normal stress ( y ) and the longitudinal shear stress ( xy ) 

increases with the increase of aspect ratio up to 0.5 and 

then decreases, this can be observed in Figure 10 and 

Figure 11. It is due to the increase of elastic constants, Qij. 

It can be seen from Figure 12 that transversal shear stress 

( yz ) increases to a maximum when aspect ratio a/b=1 

and power-law index=1. Further it decreases with the 

increase of aspect ratio. Figure 13 shows the variation of 

nondimensionalized transversal shear stress ( xz ) with the 

aspect ratio for different power-law index values. It is 

observed that the transversal shear stress ( xz ) decreases 

with the increase of aspect ratio. From Figure 8 to Figure 

13, it can be seen that the effect of coupling increases as 

the aspect ratio increases. 

4.2.3. Effect of Modulus Ratio 

The effect of modulus ratios (Em/Ec) and material 

variation parameter (n) for displacement model is shown in 

Figures 14 - 19. Figure 14 and Figure 15 show the 

variation of center deflection and in-plane longitudinal 

stress ( x ) with the modulus ratios and volume fraction 

exponent. The deflections and in-plane longitudinal stress 

decreases with the increase of volume fraction exponent 

and modulus ratios. From the figures, it is seen that 

maximum center deflections decrease smoothly with the 

decrease of volume fraction exponent, n, and metal-

ceramic modulii ratio increases. This is because of the 

increase of the ratio of metal-ceramic modulii. The in-

plane-normal stress ( y ) and the shear stresses variation 

with volume fraction exponent is depicted in Figures 16 - 

19. The shear stresses, xy , xz  increase with the increase 
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of modulus ratio and maximum shear stress occurs at 

volume fraction exponent, n=0.2 and 0.5, respectively, 

while transverse shear stress, yz  decreases with increase 

of volume fraction exponent. 

 
Figure 8: Nondimensionalized displacement ( w ) as a function 

of aspect ratio (a/b) of an FGM plate for various values of power 

law index (n)  

 
Figure 9: Nondimensionalized Normal stress ( x ) as a function 

of aspect ratio (a/b) of an FGM plate for various values of power 

law index (n)  

 
Figure 10: Nondimensionalized Normal stress ( y ) as a 

function of aspect ratio (a/b) of an FGM plate for various values 
of power law index (n) 

 

Figure 11: Nondimensionalized longitudinal shear stress ( xy ) 

as a function of aspect ratio (a/b) of an FGM plate for various 

values of power law index (n)  

 
Figure 12: Nondimensionalized transversal shear stress ( yz ) as 

a function of aspect ratio (a/b) of an FGM plate for various values 

of power law index (n)  

 

Figure 13: Nondimensionalized transversal shear stress ( xz ) as 

a function of aspect ratio (a/b) of an FGM plate for various values 

of power law index (n)  
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Figure 14: Nondimensionalized displacement ( w ) as a function 

of modulus ratio (Ec/Em) of an FGM plate for various values of 

power law index (n)  

Figure 15: Nondimensionalized Normal stress ( x ) as a 

function of modulus ratio (Ec/Em) of an FGM plate for various 

values of power law index (n)  

 
Figure 16: Nondimensionalized Normal stress ( y ) as a 

function of modulus ratio (Ec/Em) of an FGM plate for various 

values of power law index (n)  

Figure 17: Nondimensionalized longitudinal shear stress ( xy ) 

as a function of modulus ratio (Ec/Em) of an FGM plate for various 

values of power law index (n)  

 

Figure 18: Nondimensionalized transversal shear stress ( yz ) as 

a function of modulus ratio (Ec/Em) of an FGM plate for various 

values of power law index (n) for model 

 

Figure 19: Nondimensionalized transversal shear stress ( xz ) as 

a function of modulus ratio (Ec/Em) of an FGM plate for various 

values of power law index (n)  

4.2.4. Variation of Stresses in Through-the-Thickness 

Figures 20 - 24 show the variation of in-plane 

longitudinal stress ( x ), in-plane normal stress ( y ), 

longitudinal shear stress ( xy ) and transversal shear 

stresses ( yz
, xz ), respectively in the FGM plate under 

the sinusoidal load, for different values of power-law 

index values. As exhibited in Figure 20 and Figure 21, the 

in-plane longitudinal stress ( x ), in-plane normal stress 

( y ), are compressive throughout the plate up to 

z  0.157 and then become tensile afterwards. The 

maximum tensile stresses occur at the top surface of the 

plate and maximum compressive stresses occur at a point 

on the bottom of the plate. 

Figures 22 - 24 depict the through-the-thickness 

distributions of the shear stresses ( xy
 xy

, xy ) in the 

FGM plate under sinusoidal load for different volume 

fraction exponents. The distinction among the curves is 

obvious. As the strain gradients increase, the 

inhomogeneities play a greater role in stress distribution 

calculations. The through-the-thickness distributions are 

not parabolic and it is to be noticed that the maximum 

shear stress value occurs at z =0.2 for volume fraction 

exponent, n=2, not at the plate center as in the case of 

homogeneous case. 
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Figure 20: Variation of in-plane longitudinal stress ( x ) across 

the thickness of an FGM plate for different power-law index, n 
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Figure 21:Variation of in-plane normal stress ( y ) across the 

thickness of an FGM plate for different power-law index,n 
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Figure 24:Variation of transversal shear stress ( xz ) across the 

thickness of an FGM plate for different power-law index, n 
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Figure 22:Variation of longitudinal shear stress  ( xy ) across the 

thickness of an FGM plate for different power-law index, n 
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Figure 23:Variation of transversal shear stress ( yz ) across the 

thickness of an FGM plate for different power-law index, n 

Conclusions 

A higher-order shear deformation theory was 

successfully developed for static bending behavior of 

simply supported functionally graded plates without 

enforcing zero transverse shear stresses on the top and 

bottom surfaces of the plate. This eliminated the need of 

shear correction factors. The material properties are 

assumed to vary according to power law distribution. The 

governing equations and boundary conditions are derived 

by employing the principle of virtual work. The governing 

equations are solved using Navier’s type closed form 

solution, for FG plates subjected to sinusoidal load. 

Comparative studies are performed  to demonstrate the 

accuracy and efficiency of the present theory. The 

gradients or inhomogeneities in materials play a vital role 

in determining the bending response of functionally graded 

material plates. The variation of material properties in the 

thickness direction can eliminate interface problems and 

thus the stress distributions are smooth. The analytical 

formulations and solutions presented herein should be 

useful in further studies and should provide engineers with 

the capability for the design of functionally graded 

material plates for advanced technical applications. Also,  

the present findings will be a useful benchmark for 

evaluating the other future plate theories and numerical 

methods, such as the finite element and meshless methods. 
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