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Abstract 

The present study analyzes the problem of the fully developed natural convection magneto-hydrodynamics micropolar 

fluid flow of heat and mass transfer in a vertical channel. Asymmetric temperature and convection boundary conditions are 

applied to the walls of the channel. The cases of double diffusion and Soret-induced connections are both considered. 

Solutions of the coupled non-linear governing equations are obtained for different values of the buoyancy ratio and various 

material parameters of the micropolar fluid and magnetic parameters, viscous dissipation. The resulting non-dimensional 

boundary value problem is solved by the Galerken Finite element method using MATLAB Software. The influence of the 

governing parameters on the fluid flow as well as heat and solute transfers is demonstrated as significant. 
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Nomenclature 

B micro-inertia parameter 

g gravitational acceleration 

Gr grashof number 

H' distance between the plates  

j micro inertia per unit mass 

K vortex viscosity parameter 

M magnetic Parameter 

N dimensionless angular velocity 

n dimensionless micro-gyration parameter 

RT wall temperature 

RS wall concentration 

Ec Eckert number 

Nu Nusselt Number 

 Skin friction coefficient 

Greek symbols 

 dynamic viscosity 

 buoyancy ratio 

 density of fluid 

 

 

 spin-gradient viscosity 

 vortex viscosity 

Subscripts 

S dimensionless Concentration 

T dimensionless temperature 

u dimensionless velocity in x direction 

x dimensionless coordinate axis 

y dimensionless coordinate axis 

0 reference state 

c refers to critical conditions 

Superscript 

 
refers to dimensional variable 

1. Introduction 

The micropolar fluid model introduced by Eringen [1] 

exhibits some microscopic effects arising from the local 

structure and micro motion of the fluid elements. Further, 

the micropolar fluid can sustain couple stresses and 

include classical Newtonian fluid as a special case. The 

model of micropolar fluid represents fluids consisting of 
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rigid, randomly oriented (or spherical) particles suspended 

in a viscous medium where the deformation of the 

particles is ignored. Micropolar fluids have been shown to 

accurately simulate the flow characteristics of polymeric 

additives, geomorphological sediments, colloidal 

suspensions, hematological suspensions, liquid crystals, 

lubricants, etc. The theory of micropolar fluids, introduced 

by Eringen [2; 3] in order to deal with the characteristics 

of fluids with suspended particles, has received a 

considerable interest in recent years. Also, as demonstrated 

by Papautsky et al. [4], Eringen’s model successfully 

predicts the characteristics of flow in microchannels. An 

excellent review of the various applications of micropolar 

fluid mechanics was presented by Ariman et al. [5]. The 

mathematical theory of equations of micropolar fluids and 

the applications of these fluids in the theory of lubrication 

and porous media are presented by Lukaszewicz [6]. The 

heat and mass transfer in micropolar fluids is also 

important in the context of chemical engineering, 

aerospace engineering and also industrial manufacturing 

processes.  

The first study of the fully developed free convection 

of a micropolar fluid in a vertical channel was presented 

by Chamkha et al. [7]. This problem was extended by 

Kumar et al.  [8] to consider the case of a channel with one 

region filled with micropolar fluid and the other region 

with a Newtonian fluid. It was found that the effects of the 

micropolar fluid material parameters suppress the fluid 

velocity but enhance the microrotation velocity. An 

analytical solution predicting the characteristics of fluid 

flow as well as heat and mass transfer was derived. It was 

reported that an increase of the vortex viscosity parameter 

tends to decrease the fluid velocity in the vertical channel. 

The same problem was later reconsidered by Bataineh et 

al. [9]. The problem of the fully developed natural 

convection heat and mass transfer of a micropolar fluid 

between porous vertical plates with asymmetric wall 

temperatures and concentrations was investigated by 

Abdulaziz et al. [10]. However, it is well known that 

convection, in a binary mixture, can also be induced by 

Soret effects. For this situation the species gradients result 

from the imposition of a temperature gradient in an 

otherwise uniform-concentration mixture. Two kinds of 

problems have been considered in the literature concerning 

the convection of a binary mixture filling a horizontal 

porous layer. The first kind of problems, called double 

diffusion, considers flows induced by the buoyancy forces 

resulting from the imposition of both thermal and solutal 

boundary conditions on the layer. Early investigations on 

double-diffusive natural convection in porous media 

primarily focused on the problem of convective instability 

in a horizontal layer (Nield [11], Taunton et al. [12], 

Poulikakos [13]). 

The second kind of problems considers thermal 

convection in a binary fluid driven by Soret effects. For 

this situation the species gradients are not due to the 

imposition of solutal boundary conditions as in the case of 

double diffusion. Rather, they result from the imposition of 

a temperature gradient in an otherwise uniform-

concentration mixture. Brand and Steinberg [14; 15] 

investigated the influence of Soret-induced solutal 

buoyancy forces on the convective instability of a fluid 

mixture in a porous medium heated isothermally. The first 

study of Soret-induced convection was described by 

Bergman et al. [16], while considering natural convection 

in a cavity filled with a binary fluid. This flow 

configuration has also been investigated by R. Krishnan et 

al. [17]. As pointed out recently by Rawat et al. [18], the 

study of heat and mass transfer in micropolar fluids is of 

importance in the fields of chemical engineering, 

aerospace engineering and also industrial manufacturing 

effects processes. Sunil et al. [19] studied the effect of 

rotation on double-diffusive convection in a magnetized 

ferro fluid with internal angular momentum; A. A. Bakr et 

al. [20] studied the double-diffusive convection-radiation 

interaction on unsteady MHD micropolar fluid flow over a 

vertical moving porous plate with heat generation and 

Soret effects. R. A. Mohamed [21]) also analyzed double-

diffusive convection-radiation interaction on unsteady 

MHD   flow over a vertical moving porous plate with heat 

generation and Soret  effects, A. Bahloul et al. [22] studied 

double-diffusive and Soret induced convection in a 

shallow horizontal porous layer. Z. Alloui et al. [23] 

double-diffusive and Soret induced convection of a 

micropolar fluid in a vertical channel. N. Nithyadevi et al. 

[24] have studied double-diffusive natural convection in a 

partially heated enclosure with Soret  and Dufour effects, 

Ziya Uddin et al. [25]  have studied MHD heat and mass 

transfer free convection flow near the lower stagnation 

point of an isothermal cylinder imbedded in porous 

domain with the presence of radiation, A. Pantokratoras 

[26] has studied the effect of viscous dissipation in natural 

convection along a heated vertical plate, A. K. H. Kabir et 

al. [27]  discovered the effects of viscous dissipation on 

MHD natural convection flow along a vertical wavy 

surface with heat generation. Osama Abu-Zeid [28] 

studied viscous and Joule heating effects over an 

isothermal cone in saturated porous media. Fully 

developed natural convection heat and mass transfer of a 

micropolar fluid in a vertical channel with asymmetric 

wall temperatures and concentrations was studied by C.Y. 

Cheng [29]. B. S. Malga et al. [30] have studied the finite 

element analysis for unsteady MHD heat and mass transfer 

free convection flow of polar fluids past a vertical moving 

porous plate in a porous medium with heat generation and 

thermal diffusion. Effect of viscous dissipation in natural 

convection was studied by Gebhart [31]. The present paper 

is the extension work of Z. Alloui et al. [23] by 

considering MHD free convection also convection induced 

by the viscous dissipation effects on fully developed 

natural convection of heat and mass transfer of a 

micropolar fluid in a vertical channel. 

 
Figure (a). T h e flow configuration and the coordinate 

system.
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2. Mathematical Model 

 

We consider a steady fully developed laminar natural 

convection flow of a micropolar fluid between two infinite 

vertical plates (see Fig. (a)). The vertical plates are 

separated by a distance H′. The convection current is 

induced by both the temperature and concentration 

gradients. The flow is assumed to be in the x′ direction, 

which is taken to be vertically upward along the channel 

walls, while the y′-axis is normal to the plates. The fluid is 

assumed to satisfy the Boussinesq approximation, with 

constant properties except for the density variations in the 

buoyancy force term.  

The density variation with temperature and 

concentration is described by the state equation 

    oCoTo CCTT   1  

where o  is the fluid mixture density at temperature  

oTT   and mass fraction  oCC  , and T  and βC 

are the thermal and the concentration expansion 

coefficients, respectively. In the present investigation the 

viscous dissipation effects studied and the Dufour effect is 

neglected since it is well known that the modification of 

the heat flow due to the concentration gradient is of 

importance in gases but negligible in liquids. Equations 

(1)-(4) are Z. Alloui et al. [23]) under these assumptions, 

the governing equations can be written as:  

 

 

     uBCCTTg

yd

Nd

yd

ud

oocoTo













2

2

2




(1) 

02
2

2



















yd

ud
N

jyd

Nd

j


                       (2) 

0

2

2

2



















yd

ud

cyd

Td

po


                                   (3) 

0
2

2






yd

Cd
                                                                  (4)                                                  

where u  is the velocity component along the x′ 

direction, and g is the acceleration due to gravity. Further, 
Nj ,,, and  are respectively the dynamic 

viscosity, vortex viscosity, micro-inertia density, angular 

velocity and spin gradient viscosity. Following Chamkha 

et al. [7] it is assumed that  has the form 

pCj)2/(   is the specific heat at constant 

pressure,  ν is the kinematic viscosity 

o


    

The appropriate boundary conditions, applied on the 

walls of the vertical channel, are:
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where 0 ≤ n ≤ 1 is a boundary parameter that 

indicates the degree to which the microelements are 

free to rotate near the channel walls. The case n = 0 

represents concentrated particle flows in which the 

microelements close to the wall are unable to rotate 

S.K. Jena et al. [32]. Finally, according to Peddieson 

[33] the case n = 1 is applicable to the modeling of 

turbulent boundary layer flows. D and D' are 

respectively the molecular diffusion coefficient and 

the thermodiffusion coefficient. 

The governing equations are non-dimensionalized by 

scaling length by H'  
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The dimensionless equations governing the present 

problem then read 

    MuST
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The corresponding boundary conditions in 

dimensionless form are  
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In the present formulation the particular case a = 0 

corresponds to double-diffusive convection for which the 

solutal buoyancy forces are induced by the imposition of a 

constant concentration such that S = 1 on y = 0 and  

SRS   on y = 1. On the other hand, a = 1 corresponds 

to the case of a binary fluid subject to the Soret effect. For 

this situation, it follows from Eqs. (11) and (12) that  

dS /dy = dT / dy on y = 0, 1. 

3. Method of Solution 

It can be shown that Eqs. (7) - (10), together with the 

boundary conditions Eqs. (11) - (12) possess the following 

finite element solution, obtained with the help of the 

MATLAB software. In order to reduce the above system 

of differential equations to a system of dimensionless 

form, we may represent the velocity and microrotation, 

temperature and concentration by applying the Galerkin 

finite element method for equation (7) over a typical two-

noded linear element )(),( kj yyye    is: 

 

hyyl
l

yy
N

l

yy
N

u

u
NNNNu

jk

j

k
k

j

k

j

kj



















,,

,,,,. 

 

 
0

1
2

2






















 dy

MuST

dy

dN
K

dy

ud
K

N
k

j

y

y

T



    (13) 

 

)(

01
2

2

ST
dy

dN
KRwhere

dyRMu
dy

ud
KN

k

j

y

y

T













 

The element equation given by 
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 We write the element equation for the elements 
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these element equations, we get 

 




































































































1

2

1

2
210

141

012

6

110

121

011
1

1

1

l
R

u

u

u
Ml

u

u

u

l

K

i

i

i

i

i

i

     (15) 

Now put row corresponding to the node i to zero, from 

equation (15) the difference schemes with l=h is  
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Using the Cranck-Nicolson method to the equation (16), 

we obtain: 
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Similarly, the equations (8), (9) and (10) are becoming as 

follows: 
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Here r = k / h2 where k, h is mesh sizes along y 

direction and x direction respectively. Index i refers to 

space and j refers to time. The mesh system consists of 

h=0.1 for velocity profiles and concentration profiles and 

k=0.1 has been considered for computations. In equations 

(8)-(10), taking i=1(1) n and using initial and boundary 

conditions (11) and (12), the following system of equation 

are obtained: 

.....3,2,1,  iBXA iii                              (21) 

Where Ai’s are matrices of order n and Xi and Bi's are 

column matrices having n-components. The solution of 

above system of equations are obtained using Thomas  

algorithm for velocity, angular velocity and temperature. 

Also, numerical solutions for these equations are obtained 

by MATLAB program. In order to prove the convergence 

and stability of Galerkin finite element method, the same 

MATLAB-Program was run with slightly changed values 

of h and k, no significant change was observed in the 

values of STN ,,,   

4. Results and Discussion  

The numerical computations for the velocity u, angular 

velocity fields N for various governing parameters the 

buoyancy ratio φ, vortex viscosity parameter K, 

dimensionless microgyration n and constant a are 

illustrated in the graphs. Figure 1 illustrates  the influence 

of vortex viscosity parameter K  on the distribution of 

velocity u and microrotation N for n=0,a=0 and for φ=5  

in Fig.1(a) and  φ=-5 in Figure1(b). It is observed that with 

the increasing the value of K the intensity of convective 

velocity u is reduced as compared to the Newtonian fluid 

situation (K=0). In fact, it is found that as 0,  uK . 

The influence of parameter K on the microrotation N it is 

noticed that the variation with K of the value of N 

evaluated at the position half of the channel also presented 

in the graphs it can be seen that the intensity of N first 

increases with increase of K, the reverse phenomenon is 

observed later. 

Figure 1(b) shows the results obtained  from φ=-5 , i.e., 

when thermal and solutal buoyancy forces are opposing 

each other for this situation in case of double-diffusive 

convection indicates that the flow direction is downwards, 

since the solutal buoyancy forces predominant. The 

velocity profiles increases with the increase of K are 

observed from Figure 1(b). It is seen that for K=0 when 

N=0, since no rotation can be occur in the absence of 

micropolar elements (Newtonian fluid situation). 

Microrotation N decreases with the increase of K up to 

half of the channel whereas microrotation N flow direction 

is now downward and the reverse phenomenon is 

observed. 

The effect of buoyancy ratio φ velocity u, microrotation 

N exemplified in Figure 2 for the case a=0, n=0, K=5 in 

the absence of solute concentration effect i.e. when φ=0 

the flow is induced solely by the imposed temperature 

gradients. It is observed from this figure when  0 the 

thermal and solutal buoyancy forces act in the same 

direction and the flow is considered to aided thus the 

magnitude of the fluid of the fluid velocity and 

microrotation promoted in the vertical channel on the other 

hand when 0  the solutal and buoyancy forces acts in 

opposite direction as a result the flow direction is now 

reversed since it is governed by the predominant solutal 

effects. 

Figure 3 depicts the influence of micropolar parameter 

n velocity u, microrotation N profiles K=5, φ=10 and a=0, 

it can be seen from this figure, upon increase the value of 

n, the concentration of the solution becomes weaker such 

that the particles near the walls are free to rotate, which 

results in an enhancement of the flow. It is also seen that 

the velocity u increases with the increase of n. 

The effect of magnetic field parameter M on the velocity 

profiles u and mocrorotation N for K=5, φ=5 when a=0 is 

shown in Figure 4 (a) and K=5, φ=-5 when a=0 is shown 

in Figure 4 (b). Here it is observed that the velocity 

profiles decrease with an increase of M, microrotation 

profiles increase up to the center of the channel, the 

reverse phenomenon is observed in the other part of the 

channel. Figure 4 (b) indicates that the velocity flow 
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direction is now downward for φ=-5, since the solute 

buoyancy forces are free dominant. It can be seen that the 

velocity profiles u increase with an increase of M, The 

microrotation N decreases with the increase of M, up to 

the middle of the channel (flow direction is upward) and it 

increases with the increase of M, observed in the other part 

of the channel. 

 

             
Figure 1(a). Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=0 and φ=5. 

           
Figure 1(b). Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=0 and φ=-5. 

          
 Figure 2. Effects of buoyancy ratio φ on the velocity profiles u and the microrotation profiles N for K = 5, n = 0 and a = 0. 
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Figure 3. Effects of parameter n on the velocity profiles u and the microrotation profiles N for K =5,  φ = 10 and a = 0. 

           
Figure 4(a). Effects of parameter M on the velocity profiles u and the microrotation profiles N for K =5, φ=5 and a=0. 

            
Figure 4(b). Effects of parameter M on the velocity profiles u and the microrotation profiles N for K =5, φ=-5 and a=0. 

Figures 5-10 show that the velocity profiles u and 

microrotation N for different values of flow parameter 

when a=1. The effect of magnetic parameter M on the 

velocity profiles u and mocrorotation N for K=5, φ=5 is 

shown in Figure 5 (a) and K=5, φ=-5 is shown in Figure 5 

(b), it remains the same when compared with a=0 in the 

present case a=1. The effect of vortex viscosity parameter 

K, on the velocity profiles u and microrotation N are 

shown in Figure 6 for both φ=5 and φ=-5 in the case of 

a=1, n=0, the effect of K is the same in both cases a=0 

and a=1, whereas in the present case (a=1) for φ=-5 from 

Figure 6 (b) it indicates that the flow direction is upward in 

the present case, whereas it is downward in case a=0. It is 

also noticed that the effect of K decreases the velocity 

profiles u, the microrotation N decreases up to half of the 

channel and decreases the other part of the channel, as 

observed with the effect of K; the reverse phenomenon is 

also observed in the present case (a=1) when compared to 

a=0. 
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The buoyancy ratio parameter φ effect on the velocity 

profiles u and microrotation N are shown in Figure 7. It is 

clear that the velocity profiles u increase with the increase 

of φ from 0 to 10, whereas they decrease from 0 to -10. 

However, up on increasing φ, considerably the flow 

pattern depends on the sign of the parameter up or down in 

the halves of the channel. It can also be seen that the 

microrotation profiles N decrease with the increase of φ 

from 0 to 10 and  increase with the decrease of φ from 0 to 

-10, in the first half of the channel, as indicated from the 

Figure7, and the reverse phenomenon is observed in the 

other half of the channel. 

Figure 8 illustrates the influence of micro-gyration 

parameter n on velocity u and microrotation N for φ=10, 

K=5, a=1. It is noticed that the velocity u increases with 

the increase of n. In the present case for a=1, the results 

indicate the intensity of convective flow u and that of the 

angular velocity N are minimum for n = 0. This particular 

value of n represents the case where the concentration of 

the microelements is sufficiently large that the particles 

close to the walls are unable to rotate. Upon increasing the 

value of n, the concentration of the solution becomes 

weaker such that the particles near the walls are free to 

rotate. Thus, as n is augmented the microrotation term is 

augmented, which induces an enhancement of the flow. 

Figures 9 (a) & (b) illustrate the volume flow rate Q 

with the buoyancy ration parameter φ, when K=1.5, for the 

various values of micro-gyration parameter n at a=0 and 

a=1 for the case of double-diffusive convection it is 

observed that when both the thermal and solutal buoyancy 

forces are aiding ( > 0), the flow direction is upward (Q > 

0). The reverse is true (Q < 0) when both the thermal and 

solutal buoyancy forces are opposing  0 . On the 

other hand, for the case of soret induced convection, the 

flow rate is found to be independent of the buoyancy ratio 

. This follows the fact that, for this situation, the quantity 

of the solute between the two vertical plates remains 

constant. The Soret effect acts merely to redistribute the 

concentration in the system, giving rise to local increase or 

decrease of the local velocity. However, the global flow 

rate remains constant. Also, as discussed above, upon 

increasing the value of n the intensity of the velocity field 

(and thus of the flow rate Q) is enhanced. 

The dimensionless total rate, E, at which heat is added 

to the fluid, is plotted in Figure 10 (a) and (b) as a function 

of the buoyancy ratio  and the micro-gyration parameter 

n, for the case K = 1.5. Figure 10 (a) shows that, in the 

case of double diffusive convection, for ( > 0),  

increasing  results in an augmentation of the strength of 

the convective motion such that E increases. For 

 0 , the results are similar but, since the flow 

direction is now downward, the value of E is negative. On 

the other hand, the results obtained for soret-induced 

convection, Figure 10 (b), are quite different. For this 

situation, the velocity profiles (not presented here) indicate 

that for  0   the flow is upward near the left hotter 

wall and downward near the right colder one. Thus, the 

total rate E, at which heat is added to the fluid, is promoted 

upon increasing  as a result of the increase of the flow 

intensity near the hotter wall. 

               
Figure 5(b). Effects of parameter M on the velocity profiles u and the microrotation profiles N for K =5, φ=-5 and a=1. 

          
Figure 6(a): Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=1 and φ=5. 
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Figure 6(b): Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=1 and φ=-5. 

         
Figure 7. Effects of buoyancy ratio φ on the velocity profiles u and the microrotation profiles N for K = 5, n = 0 and a = 1. 

         
Figure 8. Effects of parameter n on the velocity profiles u and the microrotation profiles N for K=5, φ=10 and a = 1. 
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Figure 9. Effects of buoyancy ratio  φ  and parameter n on the volume flow rate Q for K = 1.5, (a) a = 0, (b) a = 1. 

           
Figure 10.Effects of buoyancy ratio  φ  and parameter n on the total rate at which heat is added to the fluid, E, for K = 1.5, a = 0, (b) a = 1. 

 

Let's now consider the buoyancy ratio. The 

dimensionless total rate, Φ, at which species are added to 

the fluid, is depicted in Figure 11 as a function of  and 

the micro-gyration parameter n, for the case K = 1.5. The 

Soret-induced convection, represented by a dotted line, 

indicates that Φ = 0 independently of n. This is expected 

since, for this situation, the solid boundaries are 

impermeable to concentration. The Soret effect is merely 

to redistribute the originally uniform concentration within 

the system. However, for double diffusion, the solid lines 

indicate that increasing , i.e., increasing the strength of 

the convective flow, results in an enhancement of the rate 

of mass transfer through the system. These results are 

similar to those reported by Z. Alloui et al. [23]. Also, it is 

observed from Figure 11 that, for a given value of , Φ 

decreases as the value of n is reduced toward n = 0. As 

already mentioned, a decrease of n corresponds to an 

increase of the concentration of the solution such that the 

particles close to the solid boundaries are unable to rotate. 

This results in a decrease of the flow rate and thus a 

decrease of Φ. The volume flow rate, Q, and total rate at 

which heat is added to the fluid, E, are plotted in Figure 12 

as a function of K for  = 2 and n = 0. Here again, the 

results obtained for double-diffusive convection and Soret-

induced convection are qualitatively similar. In the limit 

0K both Q and E tend asymptotically to constant 

values corresponding to the Newtonian fluid situation. On 

the other hand, in the limit K , both Q and E 

become negligible, due to the increase of the vortex 

viscosity. 

It is seen from the Figure 13 for the values of magnetic 

parameter M = 0, 5, 10, the velocity decreases up to the 

position of y=0. At the position of y=5, velocity becomes 

constant, that is, velocity profiles meet at a point and then 

cross the side and increasing with magnetic parameter M. 

This is because of the velocity profiles, with lower peak 

values for higher values of magnetic parameter M, tend to 

decrease comparatively slower along y-direction than 

velocity profiles with higher peak values for lower values 

of magnetic parameter M. We may conclude that for 

increasing values in M; the Lorentz force, which opposes 

the flow, there is a fall in velocity maximum due to the 

retarding effect of the magnetic force in the region. As a 

result, the momentum boundary layer thickness becomes 

larger and the separation of the boundary layer will occur 

earlier. Here, it is observed that the increase in the viscous 

dissipation (Ec) decreases the velocity.  
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It is also observed from Figure 14 that as the viscous 

dissipation parameter (Ec) increases, the temperature 

profiles increase. The increase in the viscous dissipation 

cools the fluid. The temperature profile for various values 

of the viscous dissipation parameter (Ec) while the other 

parameters are kept constant. It is found that the increase 

in viscous dissipation parameter (Ec) leads to a 

corresponding increase in the temperature profile. It is also 

seen that the temperature decreases at a certain portion of 

the channel and then increases, this could be due to the 

dissipation effect and the harmonic pressure term. 

It is known that the viscous dissipation produces heat 

due to a drag between the fluid particles and this extra heat 

causes an increase of the initial fluid temperature (see 

Figure 14). This increase of temperature causes an increase 

of the buoyant force. The increase of the buoyant force 

causes an increase of the fluid velocity. The bigger fluid 

velocities cause a bigger drag between the fluid particles 

and consequently bigger viscous heating of the fluid. The 

new increase of fluid temperature influences the buoyant 

force and this procedure goes on. There is a continuous 

interaction between the viscous heating and the buoyant 

force. This mechanism produces different results in the 

upward and downward flow. In the upward flow, where 

the fluid is warmer than the ambient, the extra viscous heat 

is added to the initial heat (the warm fluid becomes 

warmer) and the fluid velocity increases. In the downward 

flow, the fluid is cooler than the ambient and the viscous 

heating causes an increase in the initial fluid temperature 

(the cold fluid becomes warmer). 

In many material processing applications, such as 

extrusion hot rolling, drawing and continuing costing, 

materials continuously move a channel. In such industrial 

applications, it is of great importance to encounter the heat 

transfer from the moving boundary to the surrounding 

fluid and vice versa. However, the moving boundaries 

deform the fluid velocity profiles and shear the fluid layer 

near the boundary resulting in local changes in velocity 

gradient thus the Eckert number effects may not be 

neglected in heat transfer analysis, associated with moving 

boundaries. The thermal energy generated due to Eckert 

number is significant near the wall, which alters the heat 

transfer rates following the changes in the temperature 

profiles. 

Figure 11. Effects of parameter K on the volume flow rate 

Q total rate at which heat is added to the fluid for      φ  = 2   

and n = 0. 

 
Figure 12. Effects of parameter K on the volume flow rate 

Q and on the total rate at which heat is added to the 

fluid for  φ = 2 and n=0

                 

Figure 13. Effects of Viscous dissipation (Ec) on the Velocity Profiles u
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Figure 14. Effects of Viscous dissipation(Ec) on the Temperature  

Profiles T 

Table. 1 presents a comparison between the numerical, 

analytical and present solution for K=1.5, B = 1,  φ =2 ,RT 

= 0.6, RS=0.3 , n = 0 and a = 0. It must be mentioned that 

in the case of a = 0 and n = 0 the present results are 

similar to those reported by Z. Alloui et al. [23]. There is a 

good agreement with the previous author’s results.  

 

Table 1. Presents a comparison between the numerical, 

analytical and present solution for K = 1.5, B = 1,  φ=2,  

RT =0.6, RS=0.3, n = 0 and a = 0. 

Profiles Analytical 
Numerical 

Analytical 
Present 

u 1.06092 1.06092 1.05925 

N 0.14075 0.14075 0.14078 
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The profiles for skin friction and the rate of heat 

transfer with viscous dissipation (Ec) parameter are shown 

graphically in Figure 15, depicting the distribution of the 

skin friction with the variation of material parameter, 

magnetic parameter and viscous dissipation parameter. It is 

clear from the figure that for assisting flow skin friction 

decreases with the increase of material parameter and 

magnetic parameter, while a reverse pattern is observed for 

opposing flow. The rate of heat transfer increases with an 

increase in viscous dissipation (Ec)  parameter. Thus, fast 

cooling of the plate can be achieved by increasing a/c. It 

can also be obtained by increasing the material parameter, 

magnetic field parameter for the opposing flow while for 

assisting flow, fast cooling of the plate can also be 

achieved by decreasing the material parameter or magnetic 

parameter.  

 

 

Fig. 15(a). Ec-Viscous dissipation 

 

Fig. 15(b). Ec-Viscous dissipation 

 

Fig. 15(c). Ec-Viscous dissipation 
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Conclusions 

In this paper we have studied fully developed free 

convection flow heat and mass transfer of a MHD/ 

micropolar fluid over a vertical channel. The cases of fully 

developed convection and viscous dispassion effect are 

investigated. Asymmetric wall temperatures and 

concentrations are considered.  

 The closed form solution proposed in this paper, for 

fully developed flow, is found to be in excellent 

agreement with a numerical solution of the time 

dependent form of the governing equations. Thus, in 

the range of the governing parameters considered in 

this study, the solution is steady.  

 In general, it is found that upon increasing the vortex 

viscosity parameter K, the fluid velocity is inhibited. 

The influence of micro-gyration parameter n, which 

characterizes the boundary conditions applied on 

rotation of the microelements near the solid boundaries, 

on the velocity u and microrotation N profiles is found 

to be significant. Thus, as n is augmented, the 

microrotation term is promoted, which induces 

enhancement of flow velocities.  

 The effect of the buoyancy ratio  φ on the velocity 

profiles u and microrotation profiles N is also found to 

be important. The flow direction in the channel 

depends strongly on the sign of this parameter. The 

results presented in this paper illustrate the difference 

between double diffusion [13] and Soret-induced 

convection.  

 For instance, the rate of flow Q within the channel is 

found to be independent of the buoyancy ratio φ. This 

is not the case for double-diffusive convection where Q 

is observed to depend considerably upon φ. Also the 

results indicate that, for given values of φ and n, the 

influence of K on u and N is higher for a = 0 than a = 1. 

A similar trend is observed for the effect of  φ  on u and 

N, for fixed values of K and n.  

 The total rate at which heat is added to the fluid is 

found to be considerably higher for double diffusion 

than Soret convection. Finally, it must be mentioned 

that in the case of a = 0 and n = 0 the present results are 

similar to those reported by Chen [34]. As regards the 

Soret-induced convection, this flow configuration does 

not seem, to the best of authors’ knowledge, to have 

been investigated previously. 

 For the values of magnetic parameter M = 0, 5, 10, the 

velocity decreasing up to the position of y=0. At the 

position of y=4.5 velocity becomes constant that is 

velocity profiles meet at a point and then cross the side 

and increasing with magnetic parameter M. It is also 

found that increase in viscous dissipation parameter 

(Ec) leads to a corresponding increase in the velocity. It 

is also seen that the velocity decreases at a certain 

portion of the channel and then increases; this could be 

due to the dissipation effect. 

 It is found that the increase in viscous dissipation 

parameter (Ec) leads to a corresponding increase in the 

temperature profile. It is also seen that the temperature 

decreases at a certain portion of the channel and then 

increases; this could be due to the dissipation effect and 

the harmonic pressure term. 

 The Eckert number (Ec) is the ratio of kinetic energy of 

the flow to the boundary layer enthalpy difference. The 

effect of Eckert number (Ec) on flow field is to increase 

the energy, yielding a greater fluid temperature and as a 

consequence greater buoyancy forces, the increasing on 

the buoyancy forces due to an increase in the 

dissipation parameter hence the temperature.    
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