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Abstract 

Value Stream Mapping (VSM) is a tool used for analyzing the current state of a production system and designing a future 

state by analyzing and improving the flow of material and reducing inefficiencies. However, aiming at improving 

performance without considering potential machine failures and other uncertainties in the production process may lead to an 

inaccurate future value stream map. 

The purpose of the present study is to introduce a novel approach that combines discrete event simulation, Design Of 

Experiments (DOE), and Failure Modes and Effects Analysis (FMEA) to enhance the VSM processes. Simulation modeling 

is utilized to evaluate production system performance and the severity of potential failure modes under several operational 

conditions. FMEA and DOE are then used to select the best systems enhancements which can be used to generate future 

map. The results of our approach show that failure modes can drastically affect the system performance if not taken into 

consideration, resulting in a non-representative future VSM. The proper selection of operational levels can reduce the 

severity of failures and at the same can provide high performance levels. 
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1. Introduction 

Value stream mapping, design of experiments, and 

simulation are three independent lean tools that are used in 

industrial engineering. Failure mode and effect analysis 

has been used to detect potential failure modes in 

engineering systems. A conceptual infusion model that 

integrates the four tools is proposed in the present study.  

Rother and Shook (1999) provided the guideline for the 

procedure of VSM in manufacturing. VSM is a process-

oriented tool that helps visualize the processes where both 

materials and information are mapped (Bin et al., 2016; 

Rohac and Januska, 2015; Tyagi and Vadrevu, 2015). 

VSM includes two themes; Current State Map (CSM) and 

Future State Map (FSM) (Ar and Al-Ashraf, 2012). The 

CSM includes the current production health status and any 

potential non-value added activities. The non-value added 

might include long lead-times, processing delays, and 

improper handling/utilization of resources. The second 

theme is FSM, which might be considered as an updated 

version (with reduced non-value adding activities) of the 

current value state map. The FSM produces a more lean 

principle system, that will result in more balanced 

production line and is more focused towards “pull system” 

where each process only produces the quantity and quality 

that is required by the following process (Lu et al., 2011; 

Rother and Shook, 1999). It has been argued that 

sometimes VSM is not capable of standing alone due to its 

static nature; thus, for VSM to be efficient, other tools are 

necessary to improve the efficiency of VSM (Flores, 

2015). While these tools are numerous, common examples 

include discrete event simulation and design of 

experiments (Abdulmalek and Rajgopal, 2007; Agyapong-

Kodua et al., 2009; Ali et al., 2015; Gurumurthy and 

Kodali, 2011; Jasti and Sharma, 2014; Lu et al., 2011; 

McDonald et al., 2010; Rohana et al., 2013; Woehrle and 

Abou-shady, 2010; Xia and Sun, 2013; Xie and Peng, 

2012).  

Simulation is a great tool that makes it possible to 

visualize processes, helps in alternative selections, and 

optimizes operations (Alrabghi and Tiwari, 2014). It has 

become as a proved tool for enhancing performance in 

facilities and organizations. Furthermore, simulation 

provides a virtual environment that can mimic the actual 
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environment. Thus, simulation not only complements lean 

concepts, but also highlights feasible options. This last 

point can solve the fundamental limitation of VSM (static 

manual nature), giving it a dynamic perspective 

(Abdulmalek and Rajgopal, 2007; Gurumurthy and Kodali, 

2011; Khalid et al., 2014; McDonald et al., 2010, 2002; 

Sigari and Clark, 2013; Swallmeh et al., 2014; Xia and 

Sun, 2013).  

Design Of Experiments (DOE), also referred to as 

designed experiment or experimental design, is a useful 

tool used to predict the interrelation between experimental 

factors by developing proper factorial design. Factorial 

design facilitates the study of the effects that several 

factors may simultaneously have on a process. When 

performing an experiment, varying the levels of the factors 

at the same time is both time and cost efficient, and allows 

for the study of interactions between the factors. DOE is 

performed under controlled conditions where a selected 

process’ inputs (factors), which may have impact on the 

selected process’ outputs (responses), are investigated. 

Depending on the number of factors and the size of the 

problem, two types of factorial designs can be used. Full 

factorial experiments are used when dealing with a small 

number of levels, as responses are measured at all 

combinations of the factor’s levels. For larger problems, it 

is not feasible to do that, hence fractional factorial design 

is used to minimize time and cost where information about 

high order interactions are excluded (Montgomery, 2015).  

Conventional VSM does not take into consideration 

potential failures of the production system explicitly; faults 

or failures can significantly disrupt the production. These 

failures are usually listed under what is known as failure 

modes. For example, a machine breakdown in the system 

can be considered a failure mode. The degradation of the 

quality of the produced parts, or incorrect dimensions can 

be considered as a failure mode or a failure mode effect 

depending on whether the cause is known or not. For 

instance, if the latter is caused by the degradation of the 

machine tool through usage, the degradation of the 

machine tool itself is the failure mode and the degradation 

of the quality is a failure mode effect. 

While these failures are mostly potential possibilities, 

their impacts are important enough to affect the decision-

making. Failures in the production system have received 

significant attention in the literature. The efforts targeted 

the prevention or reduction of these failures (and in some 

cases accommodating their occurrence) over two main 

levels. The higher-level is concerned with maintenance-

related decision-making (such as the evolution of 

maintenance policies, paradigm, and maintenance-

influenced production policies) (Du et al., 2014; Liu et al., 

2015; Paciarotti et al., 2014). 

The lower-level is concerned with process-related 

maintenance (such as the continuous development in 

sensory and fault detection and estimation techniques).  

Tools were developed to assist in each of these levels 

and in many cases to link them together. For example, the 

Remaining Useful Life (RUL) is estimated from 

techniques developed in the lower level and represents an 

important asset (tool) for the decision-making in the higher 

level.  

One of the most useful tools that join both levels is the 

Failure Modes and Effects Analysis (FMEA). FMEA is a 

step-by-step systematic tool for identifying all possible 

failures in a design, a manufacturing or assembly process, 

or a product or service (Almannai et al., 2008; Chen and 

Ko, 2009; Chen and Wu, 2013; Ekmekcioglu et al., 2012; 

Paciarotti et al., 2014; Wu et al., 2014). FMEA ranks them, 

and prioritize the highest impact item on the system 

(Paciarotti et al., 2014).  

It studies one failure mode in the system at a time, as 

complex systems with multi-failures components are 

impractical to analyze especially when the a series of 

different effect combination exists (Paciarotti et al., 2014; 

Xiaoa et al., 2011). FMEA, could be applied in many 

different industries (Oldenhofa et al., 2011; Paciarotti et 

al., 2014; Xiaoa et al., 2011). Information gathered and 

listed in FMEA can be of qualitative (descriptive) or 

quantitative forms. For instance, in addition to listing all 

potential failure modes, a description of their potential 

effects, their potential causes or mechanisms, the current 

process controls, and the recommended actions can be 

incorporated in the FMEA presentation.  

Literature reveals that several efforts have been made 

to integrate the previously mentioned tools towards 

achieving enhancements. Integrating simulation and DOE 

is found in (Avenida et al., 2007; Li et al., 2014). VSM 

and simulation (Ali et al., 2015; Helleno et al., 2015; Tyagi 

and Vadrevu, 2015), and FMEA with DOE (Fahmy et al., 

2012; Senthilvelan, 2014; Shishebori et al., 2015). 

The objective of the present study is to integrate VSM, 

DOE, FMEA along with discrete event simulation. Figure 

1 clarifies the mutual added value of using these tools 

simultaneously. The benefit of VSM in both stages, CSM 

and FSM, is to visualize the processes and identify the 

potential areas of enhancement. DOE provides the variable 

input of the simulation model. Simulation helps to assess 

the current state map, compare the output scenarios of 

DOE, and provide information for FSM. FMEA will assess 

the severity of failures, and its impact on Key Performance 

Indicators (KPI). The approach, detailed in an algorithmic 

setup in the next section, is capable of achieving a more 

efficient and a less costly process improvement. It is 

worthwhile to mention that this approach was evaluated 

using a real case study in a leading glass-fabrication 

facility. 

 

Figure 1. Integration of VSM, Simulation, DOE and FMEA 



 © 2016 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 10, Number 3 (ISSN 1995-6665) 

 

217 

2. Methodology 

The integrated approach is detailed in Figure 2. The 

production operations of a major glass factory in Jordan 

are considered as the main example, but the approach is 

generic enough to allow for numerous applications and 

setups. After the data is collected, product families, 

process boundaries, and material flow are identified.  

2.1. VSM-CSM 

Initially, a VSM representing the CSM of the 

production facility is established (see Figure 3). It will help 

to visualize process flow as well as identify production 

status and any potential alerts (Andons) that might cause 

problems to the production system. For example, the CSM 

in Figure 3 illustrates the different processes involved in 

the glass production. Details of these processes are 

available in previous work (Atieh et al., 2015). According 

to the production logbook (historical data) and CSM, four 

processes are identified as major (shown in blue in fig. 3); 

these are Cutting, Edging, Drilling, and Tempering. The 

other five processes are  

identified as minor as their contribution to the total 

production represents less than 10% 

 

 

 
 

 

Figure 2. Algorithm Framework 
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2.2. Simulation Model 

After analyzing historical data related to production 

rates, available resources, setup times and process times, a 

simulation model representing the current operations at the 

production facility is created. The model of the case study, 

which was built using Arena-Rockwell Automation 

Technologies Software version 14.7, was developed to 

incorporate rework as it reflects in terms of cost that is 

added to the process. The model covers all production 

resources at the glass factory and was verified to mimic the 

logic of the actual production flow at the factory. 

Validation was also performed by comparing results to real 

production data. It is recommended that any simulation 

model is set to run for several replications with ample run 

length to achieve steady state. In the present study, 10 

replications and 160 days were chosen, respectively. 

Preliminary tests indicate that 14 days warm-up period is 

needed to remove any bias in the results. The model is 

capable of evaluating different KPIs given any 

combination of input factors’ levels (detailed in next 

section). Three variations of the simulation model are 

created: Tier 1, Tier 2, and Tier 3. Tier 1 is used in the 

preliminary runs to evaluate CSM for potential 

problematic areas. Tier 2 is used after the design of 

experiments, and Tier 3 is used with the FMEA analysis. 

2.3. Determining Input Factors and Responses (KPIs) 

In order to analyze and improve the process in any 

system, two sets of information have to be identified: the 

outputs (responses or KPIs) with which improvement can 

be measured, and the input factors, which can affect the 

outputs. Only feasible factors need to be considered.  

Based on company policy, it is found that three 

performance measures: daily production volume (KPI-1), 

resources utilizations (KPI-2), and production lead times 

(KPI-3) are the most desirable in terms of evaluating the 

system performance. While it is customary to evaluate 

these KPIs within the normal healthy operational 

conditions, one can anticipate the severity of the numerous 

potential failures on them. Therefore, while these KPIs 

will be evaluated at the healthy conditions, an additional 

KPI has been devised (FMEA index: KPI-4) to cover for 

the failure modes and their potential effects. Details of this 

KPI are provided in Section 2.5. 

With regard to KPI-1, the daily production volume is 

estimated from simulation by averaging the production of 

one month. The assessments of utilizations are not 

straightforward, especially with unavailable quality data 

(for the calculation of the Overall Equipment Efficiency 

(OEE)). Therefore, we devise the utilization index (KPI-2) 

which is discussed separately in Section 2.3.1. The 

production lead time (KPI-3) is calculated based on the 

average flow time of all products produced during a one 

month period.    

In our case study, the following input factors are 

considered as being feasible. First, overtime is introduced 

on the following machines: cutting machine, pencil edging 

machine, drilling machine, and tempering machine. For all 

machines, overtime manifests in an additional four 

operational hours to the 8-hour shift. Additionally, and as 

indicated in the previous work (Atieh et al., 2015), pencil 

edging represents a challenge in the production time due to 

long setup and process times. Therefore, the company is 

interested in evaluating the option to reduce the setup time 

and/or increase the conveyer speed by investing in a new 

setup through certain machine upgrades. This results in six 

feasible input factors.    

2.3.1.   Utilization Index 

The utilization index is adopted as KPI-2. It compares 

the improvement (or worsening) of the utilization of the 

resources in the system against its nominal value in the 

default setup (all factors at low level). On the one hand, it 

is known that excessive utilization of resources (or 

machines) reduces their life expectancy, and increases the 

probability of failures. On the other hand, under-utilized 

resources represent investment, which has not been fully 

exploited. Therefore, popular optimal utilization values are 

in the range of 80-90%. 

We propose to evaluate the utilization index for every 

experiment (combination) through the following equation: 

𝑈𝑖 = ∑ 𝑤𝑗[|𝑈𝑗
∗ − 𝑈0𝑗| − |𝑈𝑗

∗ − 𝑈𝑖𝑗|]

𝑁

𝑗=1

            

∀𝑗 = 1, … , 𝑁  𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠)       
∀𝑖 = 1, … , 𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 (𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠)       

where 𝑈𝑖 is the utilization index for the ith  experiment 

(combination); 

𝑤𝑗  is the weighted factor associated with the utilization 

of the  jth resource (or machine) in the system; 

𝑈𝑗
∗ is the optimal utilization value of the jth resource (or 

machine); 

𝑈0𝑗  is the nominal utilization value of the jth resource 

(or machine) in the default setup (all factors at low level); 

 𝑈𝑖𝑗 is the utilization value of the jth resource (or 

machine) in the ith experiment (combination). 

𝑈𝑗
∗ can be determined from Original Equipment 

Manufacturer (OEM) recommendations or from the 

organization’s policy. The weighted factors reflect the 

importance of a particular resource in reference to the 

collective resources. For example, the percentage of the 

production, which utilizes a specific resource, can be used 

to determine its utilization-weighted factor. 

The target optimal utilization value was set to 75% for 

all the resources (machines); it is considered in our case 

study based on the company’s policy. The targeted 

resources (machines) in the utilization index are from the 

four major processes (5 machines) indicated earlier: 

cutting, edging (pencil or flat), drilling and tempering. 
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Figure 3. VSM- current state map (CSM) 
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2.4. Design of Experiments 

The DOE is used to create the factorial design for the 

experimental runs on the input factors and their levels. The 

DOE considered all the input factors, with a suitable 

number of levels for each. For our case study, we consider 

the above six input factors, with each at two levels, 

resulting in a total of 64 runs for full factorial design. Two 

phases of DOE are performed; Phase 1 is concerned with 

experimental design and analysis of the production system 

behavior without considering effect of failure. Responses 

KPI-1, KPI-2, and KPI-3 are evaluated at all combinations 

of the experimental factors’ levels using simulation model 

Tier-2.  

After analyzing the factorial deign, the best design is 

found using the desirability approach (Derringer G, 1980; 

“Design of Experiments, Minitab user Manual,” 2005). 

For the scenarios when at least one failure mode exists, 

DOE phase 2 utilizes the same input factors mentioned 

above but uses KPI-4 as a response variable, namely 

failure modes and effects analysis index (FMEA-Index). 

KPI-4 takes into consideration the effect of failure mode 

severity on system performance and is obtained by 

applying Severity Analysis, which is explained in section 

2.5. Simulation Tier 3 is used to evaluate severity of 

potential failures on system performance for the given 64 

experimental runs. 

If the input factors and their interactions are found to be 

non-significant or do not provide a reasonable 

enhancement, another set of feasible factors must be 

considered. Otherwise, the DOE phase is finished with the 

understanding of the relationship between the input factors 

(and their interactions) and the responses.  

2.5. Failure Mode and Effect Analysis (FMEA) 

Potential failures, which may affect the KPIs, have to 

be identified. Their potential effect is to be studied in order 

to assist the DOE phase and what follows it in terms of 

analysis. A modified FMEA procedure (in reference to the 

standard one (Defeo, 2014)) is utilized. The procedure 

transforms the severity rate into a measure for the failures 

effects on the KPIs under study. Details of this are 

available in Section 2.5.1. The rest of the FMEA standard 

procedure (potential effect(s) of failure, its 

cause(s)/mechanism(s), occurrence and detectability rates) 

can be obtained from historical data and/or maintenance 

logs. Occurrence rates are calculated by counting the 

number of incidents that a certain failure has occurred. 

Then this number is normalized to the standard range 

of FMEA (1 for the failure mode with least frequency of 

occurrence and 10 for the most frequent one).  

The detectability rate indicates how much design 

control can detect potential cause/mechanism and 

subsequent failure mode. This is very dependent on the  

process/system at hand and the potential failures of 

concern. 

After calculating the severity rate (Section 2.5.1), the 

Risk Priority Number (RPN) of each failure mode at each 

combination of input factors/experiment can be easily 

obtained by multiplying the severity rate, the occurrence 

rate, and the detectability rate. 

In order to combine all the RPNs for a specific 

experiment into one representative value (namely FMEA-

Index), a weighted average can be used if all the RPNs are 

within the same order. However, averaging is well-known 

to be sensitive to extreme values. Therefore, while this 

method statistically covers for the failure modes with high 

RPN (important to take into consideration), it is also 

affected by the low RPNs. Therefore, a simple 

augmentation to the previously mentioned method of 

combining the RPNs is to exclude the lowest 10% of RPNs 

from the averaged pool. 

In reference to our case study, failures in production 

systems are quite common, leading to major production 

problems (Andons) in terms of reduced production rates 

and/or increased production lead time. Table 1 lists the 

FMEA for our case. These failure modes are identified 

based on historical data including the maintenance 

logbook of machine failures and feedback provided by 

production personnel regarding the most critical failures. 

Insignificant failures with extremely low occurrences 

and/or related to extremely underutilized resources have 

been disregarded, and only the most frequent eight have 

been listed. Table 1 lists as well, times to repair machines. 

Since these times do not depend on previous repair tasks, 

the Exponential distribution is used to simulate the Mean 

Time To Repair (MTTR). 

2.5.1.  Severity Analysis 

The association of a severity rating in the FMEA is 

extremely important as it  

directly affects the risk priority number from which the 

FMEA index will be  

calculated. While the occurrence rating and the 

detectability rating can be evaluated from maintenance 

logs, the severity is almost ambiguous and can only be 

estimated when joining maintenance logs with production 

ones. To overcome such a problem, we introduce a 

simulation-based severity rating procedure that takes into 

consideration the organization’s policy. 

First, the maintenance logs are used to identify the time 

to repair for the main failure modes chosen in the design of 

the FMEA. Then, the failures are input into the simulation 

model, and runs are made to estimate the impact of each of 

these failure modes on the KPIs of interest. Expectedly, 

the period during which the failure mode is introduced, 

and the days after it are studied extensively. The failure 

modes are as well introduced to each experiment 

(combination) of enhancing factors. 

The KPIs of interest resulting from the healthy (no 

fault) mode and the ones resulting during the failure mode 

are compared for each combination. In order to combine 

the contributions of the different KPIs, a weighted average 

inspired from the organization’s policy can be used. For 

example, a production facility can have a severity index 

which focuses on the production volume, lead time, and 

combined resources utilization. This will result into an 

equation such as:   
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𝑆𝑖𝑘 = 𝑤1
′ ∗

𝐿𝑖𝑘 − 𝐿𝑖𝜑

𝐿𝑖𝜑
 +  𝑤2

′ ∗
𝑃𝑖𝜑 − 𝑃𝑖𝑘

𝑃𝑖𝜑
+ 𝑤3

′

∗ [∑ 𝑤𝑗[|𝑈𝑗
∗ − 𝑈𝑖𝑗𝜑|

𝑁

𝑗=1

− |𝑈𝑗
∗ − 𝑈𝑖𝑗𝑘|]]      

 

∀𝑘 = 1, … , 𝑀 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑜𝑑𝑒𝑠  ;     ∀𝑗
= 1, … , 𝑁  𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠; 

∀𝑖 = 1, … , 𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 (𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠) 

where S_ik is the kth severity index for the ith 

experiment (combination); 

w_1^'  ,w_2^',and w_3^' are the weighted factors 

associated with the different KPIs (lead time, production 

volume, resource utilization) changes because of failure;   

L_ik is the lead time in the ith experiment during the 

kth failure mode;  

L_iφ is the lead time in the ith experiment during the 

no failure (no fault) mode; 

 P_ik is the production volume in the ith experiment 

during the kth failure mode;  

P_iφ is the production volume in the ith experiment 

during the no failure (no fault) mode;  

w_j is the weighted factor associated with the 

utilization of the  jth resource (or machine) in the system; 

U_j^* is the optimal utilization value of the jth resource 

(or machine); 

U_ijφ is the utilization value of the jth resource (or 

machine) in the ith experiment (combination) during the 

no failure (no fault) mode; 

 U_ijk is the utilization value of the jth resource (or 

machine) in the ith experiment (combination) during the 

kth failure mode. 

Finally, the severity index for each failure mode at each 

combination are transformed to the standard FMEA one to 

ten rating with ten being the most severe failure mode. 

No. 
Potential Failure 

Mode 

MTTR 

(Hrs) 

Potential Effect(s) 

of Failure 
S

ev
 

Potential Cause(s)/ 

Mechanism(s) of Failure 

O
ccu

r 

D
etec 

R
P

N
 

Recommended Action(s) 

1 
Cutting Machine 

Failure 
16 

Non-straight cuts 

(Harder to Edge), 
Incorrect product 

dimensions 

F
u

n
ct

io
n

 o
f 

ex
p

er
im

en
t 

(c
o
m

b
in

at
io

n
) 

Degraded machine tool 

and/or parts: Oil pump, 
knives, etc. 

miscalibration 

2 2 

S
ev

 x
 O

cc
u

r 
x
 D

et
ec

 

Replace or calibrate 
cutting diamond 

2 
Flat Edging 

Machine Failure 
20 

Rough Edges Or 
breakage of panels 

/ Increased WIP 

Conveyor system: loose 

conveyer belt, motor 

dysfunction, jammed , 
miscalibration, etc. 

9 3 
Replace polishing and/or 

diamond wheels OR 

Adjust feed rate 

3 
Pencil Edging 

Machine Failure 
20 

Rough Edges Or 

breakage of panels 

/ Increased WIP 

Conveyor system: loose 

conveyer belt, motor 
dysfunction, miscalibration, 

etc. 

8 4 Install Tool Detectors 

4 
Drilling Machine 

Failure 
4 

Panels breakage / 
Increased WIP 

Degraded machine tool: 

Broken Drill 

Pneumatic press failure 

8 7 

Ensure the table is stable 

OR replace cutting 
diamond OR adjust feed 

rate 

5 
Tempering/ 

Furnace Failure 1 
16 

Stalling 

products/Increased 

WIP 

Conveyor system 8 5 

Check and/or replace 

rollers (if they absorb heat 
differently they affect the 

heat distribution) 

6 
Tempering/ 

Furnace Failure 2 
45.6 

Excessive 

unbalanced 

expansion of glass 
leading to 

breakage 

Heating system: Heaters 

malfunction, relays, chiller, 
etc. 

7 2 

Check and/or replace 

heaters (heat distribution 
needs to be equal) 

7 
Tempering/ 

Furnace Failure 3 
16 

Products 

characteristics that 
do not meet 

customer 

requirements (e.g. 
strength) 

Control/sensors 7 4 
Install new detectors and  

frequent calibrations 

8 Rework% increase N/A 

Increased WIP, 

increased cost, 
increased product 

lead time 

Various: Human errors, 

improper machine set up. 
cumulative machine tools 

degradation, etc. 

7 10 

Systematic inspections of 
tools and products, 

Modify manufacturing 

procedure, Apply lean 
manufacturing tools 
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2.6. Optimal Solution 

While DOE provides the statistical analysis to describe 

the relationship between the responses (KPIs) and the 

input factors, it does not explicitly provide the optimal 

solution for a given response or a combination of 

responses. Nonetheless, it facilitates it through the 

regression equations generated in the DOE analysis stage. 

The optimization can be achieved using the desirability 

function approach to find the best solution. First individual 

desirability is obtained for each KPI according to the 

targets set for each. Second, the composite desirability is 

determined using weighted geometric mean of the 

individual desirabilities. Finally, a reduced gradient 

algorithm with multiple starting points that maximizes the 

composite desirability is applied to determine the 

numerical optimal solution (Derringer G, 1980; “Design of 

Experiments, Minitab user Manual,” 2005). 

Optimized solutions are obtained for several scenarios 

by setting different weights for the response variables. The 

weights should be selected according to the organization’s 

policy. The more failure-conscious the organization would 

like to be, the larger the weight assigned to the FMEA-

index must be. The methodology will be more efficient if 

solutions for individual KPIs are investigated first then 

different combinations using several weights are 

considered. Finally, a subjective selection of one of 

solution will be made by consulting with the 

organization’s management.  

For our case study a solution that will maximize KPI-1 

and KPI-2, and minimize KPI-3 and KPI-4 is sought.  

3. Results and Discussion 

Implementing the algorithmic procedures detailed 

above for our case study and using Arena® simulation 

software version 14.7 and Minitab® 17.1.0, the following 

results are obtained. 

3.1. DOE Factorial Plots 

DOE factorial plots are generated for individual 

response variables to determine significant input factors 

for each of these responses individually. 

3.1.1. Production Volume 

Inspection of Figure 4 reveals that the most critical 

factor to improve the daily production rate is the tempering 

overtime factor indicating the necessity of increasing the 

availability of tempering resources, mainly the furnace. All 

other factors were found to be insignificant in terms of our 

case study. We also note here that inspection of the 

interaction plots showed that the input factors do not 

interact with each other in terms of this response variable. 

3.1.2. Utilization-Index 

Unlike the production volume, the Utilization-Index 

KPI is affected by all input factors. It can be improved by 

adding more overtime to the bottleneck tempering machine 

and reduce time on the other less-busier machines; drilling, 

pencil edging, and cutting. This is expected since 

Utilization-Index measures the deviation of machine 

utilization from the company’s target utilization of 75%.  

The results show that drilling station current utilization 

is about 70% and increasing time availability of this 

machine reduces the utilization to 31% distancing it further 

from the target value. Once again, the interaction between 

different input factors was found to be minimal. 

  

 
Figure 4. Main Effect plot for production volume 

Figure 5. Main Effect plot for utilization 
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3.1.3. Lead Time 

Similar to Production Volume, this KPI is mainly 

affected by overtime on tempering input factor. To reduce 

lead time it is imperative to increase tempering machine 

availability. This is intuitive, as the tempering machine has 

been shown to be a primary bottleneck (Atieh et al., 2015). 

Once again, the interaction between different input factors 

was found to be minimal. 

3.1.4. FMEA-Index 

As the production system at hand has several under-

utilized machines, failure modes have been found to be 

significant particularly for the lead time. Additionally, the 

lead time is considered one of the most important 

performance measures the company is looking to enhance. 

Therefore, the severity index has been chosen to evaluate 

the severity of the failure over the lead time. 

Unlike the previous KPIs, this response variable 

indicates complex behavior with the different input factors. 

For example, on the one hand overtime on tempering is 

shown in Figure 7 to increase the FMEA-Index as a single 

response affected by a single factor. However, interaction 

between input factors (see Figure 8) is shown to be strong 

and in our case can invert the effect of the single factor. 

The figure shows that the reduction of the setup time on 

the pencil edging machine will reverse the effect of the 

overtime on tempering. 

This outcome is explained by the fact that both 

resources have high utilizations and are considered as 

potential bottlenecks in the production system. Overtime 

on tempering will generally relieve the production system 

(enhancing all its KPIs). Therefore, failures will result in a 

potential loss of this relief, and hence the FMEA-Index 

will increase when this input factor is considered on its 

own. Nonetheless, this factor can (with the interaction of 

other factors) reduce the FMEA-Index. Particularly, there 

is a strong cross over interaction between overtime on 

tempering machine and setup time of pencil edging 

machine with P-value of 0.019.  

This explains why overtime on tempering will be 

chosen for all the optimal solutions detailed later coupled 

with a reduced pencil edging setup time or increased 

conveyer speed. If both have been selected together, the 

rate of work flow will increase and once the failure occurs 

(for example at tempering), the WIP increases at the other 

resources leading to an increase in waiting times. That will 

reflect on the lead time and consequently worsens the 

FMEA-Index value. Furthermore, not selecting both input 

factors will once again highlight the criticality of the 

tempering machine during failure in a similar manner to 

not having overtime on tempering (default setup-all factors 

at low level).      

Pencil edging overtime is also a significant factor and 

Figure 7 shows that it should have higher value to reduce 

FMEA-Index. In addition, Figure 8 shows that overtime on 

drilling and cutting machines have strong crossover 

interaction indicating that having overtime on either one of 

them should be sufficient. 

It is clear that since the FMEA-Index is designed to 

measure the potential loss of enhancement a change of 

input factor(s) can provide, in addition to the fact that the 

enhancement is measured in terms of several KPIs, it will 

be almost impossible to track physically every input 

factor’s effect. Therefore, statistical analysis such as this 

approach becomes important. This is in line with the fact 

that changing an input factor will have dynamic effects on 

the whole production system and not only on a single 

machine or component. This can only be captured through 

simulation which results were used in the DOE analysis.  

 
Figure 6. Main Effect plot for lead time 

 
Figure 7. Main Effect plot for FMEA-Index 
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3.1.5.  Joint View 

For all four KPIs, the input factor; over time on 

tempering is the most significant one with highest slope 

indicating the urgent need to increase the availability of 

the tempering machine. This result is expected as the 

preliminary analysis showed that this process is considered 

as a bottleneck. Introducing overtime on tempering will 

not only increase productivity and decrease lead time but 

also the utilization mean effect plot indicates that it is not 

recommended to have any overtime on other machines 

except for the tempering as all other machine are 

underutilized and increasing availability time will reduce 

their utilization way under the target value of 75%. 

However, the FMEA-Index plots illustrate some important 

interactions that can help reduce it, and consequently 

reduce the risk of failure. To decide the best combination 

of input factors, optimization is performed using several 

scenarios as illustrated in the following section.  

3.2. Optimization Analysis 

Optimization analyses are performed and compared for 

each single response variable individually and for a 

selection of weighted combinations of all responses 

together. The three best solutions for each scenario are 

considered in the comparison.  

3.2.1.  Single Response 

Optimization analysis for each response separately 

resulted in a slightly different set of combination factors as 

illustrated in Figure 9. The numbers between brackets 

represent the response value for each solution. Some of the 

obtained levels of input factors were common among most 

solutions, for example, all solutions show that overtime on 

tempering is needed for all scenarios, pencil edging 

overtime is needed considering Production volume, Lead 

Time, and FMEA-Index but not recommended when 

considering Utilization-Index. All four charts show 

significant enhancement in the value of each response 

variable compared to no-improvement scenario. Best 

production volume obtained was 33.51 panels/day while 

best lead time was 1.73 days. To decide what would be a

good combination of input factors that will optimize all 

four responses simultaneously multiple-response 

optimization is discussed in the following section. 

3.2.2. Multiple Responses 

To find a solution that will enhance all responses 

simultaneously, optimization was carried on several 

combinations of response variables using different 

weights. The weights were selected carefully to be in line 

with company policy. Mainly three of these combinations 

are illustrated in Figures 10, 11, and 12. 

In Figure 10, the optimization was performed mainly 

on the three traditional responses; Production volume, 

Utilization, and Lead time while a 0% without 

consideration of the FMEA-Index. First, it can be clearly 

seen that the results drastically enhances the two main 

KPIs, lead time and production volume. The optimizer was 

switching between focusing on enhancing the production 

volume, lead time and utilization. For example, the 

production volume has the best value in solution 1, the 

lead time has the best value in solution 3, while the 

utilization has the best value in solution 2. One important 

issue regarding the provided solutions is the large value of 

the FMEA-Index associated with them, indicating that 

these solutions present preferable outcome in the healthy 

mode and are susceptible to failure.   

Figures 11 and 12 consider all KPIs including FMEA-

Index. Therefore, different sets of solutions have been 

generated with set in Figure 12 focusing on the production 

volume. It can be seen from the figures that a solution 

which does not compromise the enhancements in the 

traditional KPIs and the FMEA-Index can be attained.  We 

note that achieving the best possible value in all KPIs 

simultaneously is not achievable. While some solutions 

achieve excellent levels in some KPIs, other KPIs are less 

or not enhanced at all. Nonetheless, we recommend 

generating enough solutions with different sets of weights 

in order to create a reasonable pool of alternatives from 

which one solution is subjectively selected.    

In the case study, the best solution was selected to be 

solution 1 produced with weights as; 40% for production 

volume, 20% for overall resources utilizations, 20% for 

lead time, and for 20% FMEA-Index. 

  

 

Figure 8. interaction plot for FMEA-Index 
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Figure 9. Single response optimization 

 

Figure 10. Multiple responses optimization 1 
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Figure 11. Multiple responses optimization 2 

 

Figure 12. Multiple responses optimization 3 
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3.3. VSM-FSM 

VSM-FSM was constructed as an extra evaluation 

methodology to measure the enhancement in the 

production system. The FSM values were updated using 

the output of simulation model as illustrated in Figure 13. 

Based on the selected optimized solution described in 

Section 3.2, for multiple-response variables, a significant 

enhancement in system performance was observed. 

Considering the production volume, the daily production 

in square meters was increased from 24.7 panels/day (220 

sqm) to 33.4 panels/day (298 sqm). This increase, 

represent a 35% enhancement in daily production volume. 

In addition, the work in process WIP for all four major 

processes (highlighted in blue) were dramatically reduced 

except for tempering. For example the WIP for drilling, 

was reduced from 368 to 35 sqm. While tempering process 

WIP increased from 635 to 831 sqm, this increase is 

justified by the increase in daily production volume. 

Consequently, the overall lead times was reduced for all 

processes by 56%. While cycle times were enhanced by 

5%. This enhancement is a result of the infusion of all 

previous mentioned tools described above in the new 

proposed methodology. The utilization of all machines was 

observed to either be reduced or stayed constant. The 

major reduction in machine utilization was on tempering 

which was reduced from 99.99% to 89.9%. Hence, this 

case study can prove that the application of proposed 

algorithm can result in major enhancement of production 

performance.  

Figure 13. VSM-future state map (FSM) 
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4. Conclusion 

Different types of failures can occur in any production 

system, causing interruptions to production process, 

leading to lower production rates and increased lead times. 

Planning resources to meet production requirements 

without considering the risk of failures can lead to 

catastrophic consequences to any organization. Although 

VSM is used for planning future system improvements, it 

does not explicitly take into consideration risk of failures.  

In the present study, we  

show that the VSM procedure can be improved 

considerably by utilizing three lean tools: FMEA, discrete 

event simulation, and DOE. The proposed methodology 

offers a valuable contribution since it helps to optimize 

several KPIs simultaneously, identify critical factors 

affecting production, assess severity of different failures, 

and select the best levels of factors that will maximize 

performance and reduce risk of failures. 

We have demonstrated the effective use of our 

methodology by applying it to a real case study of glass-

fabrication facility. Results show that introducing four-

hour overtime on a tempering station will enhance system 

performance considerably. This is expected as the 

utilization of the furnace is very high, over 95%, and is 

considered a bottleneck in the production process. 

However, the Utilization-Index and FMEA-Index plots 

show that other factors are also significant. Improving the 

Utilization-Index will help in having a more balanced 

production system, but should not be considered alone as it 

may deteriorate important performance measures, like 

production volume and lead time. In addition, several 

interactions between input factors were identified which 

can help in selecting proper levels of input factors. Results 

also show that neglecting to consider risk of failure might 

lead to an unrealistic estimate of production volume. 

Selecting input factors carefully can reduce the failure risk, 

but still produce good values of other KPI’s. 
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