
JJMIE 
Volume 5, Number 6, Dec. 2011 

ISSN 1995-6665 

Pages 567 - 571 

Jordan Journal of Mechanical and Industrial Engineering  

Linearization of Nonlinear Dynamical Systems: A Comparative Study 

M. Ababneh*
,a
, M. Salah

a
, K. Alwidyan

a
  

aMechatronics Engineering Department, Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan 

 

Abstract 

Linearization of nonlinear dynamical systems is a main approach in the designing and analyzing of such systems. Optimal 
linear model is an online linearization technique for finding a local model that is linear in both the state and the control terms. 
In this paper, a comparison between the performance of both optimal linear model and Jacobian linearization technique is 
conducted. The performance of these two linearization methods are illustrated using two benchmark nonlinear systems, these 
are inverted pendulum system; and Duffing chaos system. These two systems where chosen because they are inherently 
nonlinear unstable systems. 
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1. Introduction 

Linearization of nonlinear dynamical systems makes 

use of available literature in the linear system to design 

and analyze nonlinear systems [1]. Optimal linear model is 

a promising linearization technique that continues to find 

wide acceptance in the areas of nonlinear and chaos 

systems [2, 3, 4]. This method was first introduced by 

Teixeira and Zak [5]. 

In fact, typical approach to handle nonlinear systems is 

to utilize linearization at their operating points, including 

Jacobian analysis for local dynamics of control systems. 

Optimal linear model is another method that generates 

optimal local models; it is an online linearization technique 

for finding a local model that is linear in both the state and 

the control terms. This technique provides a new tool to 

control nonlinear systems and it is briefly described in the 

next section. 

Furthermore, the inverted pendulum problem has been 

used as benchmark to motivate the study of nonlinear 

control systems and techniques [6, 7]. This system is 

inherently nonlinear unstable non-minimum phase system 

and provides a challenging system to test different control 

techniques [8]. 

In addition, Duffing system is well-known chaos 

attractor and has used to address many practical 

applications in Engineering and Science [9, 10]. In this 

paper two Duffing systems are synchronized together. 

Where synchronization is when two systems come to 

behave in accordance with each other as time passes. 

The rest of paper is organized as follows. In Section 2, 

the optimal linear model is discussed and generation of 

linearized models around operating points is shown In 

Section 3, the effectiveness of the optimal linear model is 

demonstrated and its performance is compared with the 

Jacobian method performance. Finally, conclusions are 

presented in section 4. 

2. Optimal Linear Model of Non-linear Systems 

Consider a nonlinear system model 

     
( ) ( ( )) ( ( )) ( ),x t F x t G x t u t       (1) 

 

where : n nF    and : n nxmG    are nonlinear 

function, ( ) nx t   is the state vector, and ( ) mu t   is the 

control input. The optimal linear model objective is to find 

linearized models of a nonlinear dynamical system around 

operating points and it is described as follows.   

Suppose that it is desired to have a local linear model 

( , )op opA B  at the i-th operation point of interest ( , )op opx u , 

which is not necessarily an equilibrium point of the 

system. Let the linearized model be given as 

         

( ) ( ) ( )op opx t A x t B u t   (2) 

 

where 
opA  and 

opB  are constant matrices of appropriate 

dimensions.  For this purpose, Taylor expansion method is 

commonly used in this case, however, the truncation used 

in this method results in an affined rather than linear 

model.  Suppose that the operating point ( , )op opx u  is an 

equilibrium point, where ( ) n

opx t   and ( ) m

opu t  , that is, 

 
( ) ( ) 0.op op opF x G x u   

(3) 

 

The linear model then is expressed as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ).

op op op op op op op op

op op op op

d
x x F x G x u A x x B u u

dt

A x x B u u

      

   

 
(4) 
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The model (4) can be represented in the following form: 

 
( ) ( ) ( ) ( ).op op op op op opx t A x t B u t A x B u     

(5) 

 

The state equation (5) is an affined rather than a linear 

model due to the non-vanishing constant term in (5). One 

exception is the trivial case where the equilibrium point is 

zero, which, however, cannot be ensured throughout a 

nonlinear control process.  The goal is to construct a local 

model, linear in state and also linear in control, that can 

well approximate the dynamical behavior of (1) around the 

operating point ( , ).op opx u   In other words, two constant 

matrices, 
opA  and 

opB , are to be found such that they are 

located in a neighborhood of ,opx  

  

( ) ( ) op opF x G x u A x B u    (6) 

 

for any u, 

 

and     

  
( ) ( )op op op op opF x G x u A x B u    (7) 

 

for any u.  

 

Since the control input u is to be designed, it is arbitrary, 

and therefore 

 

( ),op opB G x  (8) 

 

Furthermore, 

 

( ) opF x A x  (9) 

         

And 

 

( )op op opF x A x  (10) 

 

Now let T

opa  denotes the i-th row of the matrix
opA .  Then 

    

nixaxF T

ii ,,3,2,1,)(   (11) 

   

and  

 

( ) , 1,2,3, ,T

i op op opF x a x i n   (12) 

 

where : n

iF    is the i-th  component of F.  Then, 

expanding the left-hand side of (1) about 
opx , and 

neglecting the second and higher order terms, the 

following equation can be obtained 

 

( ) [ ( )] ( ) ,T T

i op i op op iF x F x x x a x     (13) 

 

where ( ) : n n

i opF x    is the gradient column vector of 

iF  evaluated at 
opx .  Now, using (12), equation (13) can 

be written as 

 

[ ( )] ( ) ( ),T T

i op op i opF x x x a x x     (14) 

 

in which x  is arbitrary but should be close to 
opx  so that 

the approximation is good.  To determine a constant 

vector, ,T

ia  such that it is as close as possible to [ ( )]Ti opF x  

and satisfies ( ),T

i op i opa x F x  consider the following 

constrained minimization problem: 

 
2

1
2 2

min : ( )i op iE F x a       

 

subject to  

 

( )T

i op i opa x F x     
(15) 

 

Given that this is a constrained optimization problem; 

therefore, the first order necessary condition for a 

minimum of E is also sufficient, which is  

 

( ( )) 0
i i

T

a a i op i opE a x F x      (16) 

 

( ),T

i op i opa x F x  (17) 

 

where λ is the Lagrange multiplier and the subscript 
ia  in 

ia  indicates that the gradient is taken with respect to 
ia .  

Then  

 

( ) 0.i i op opa F x x    (18) 

 

Recalling the case where 0,opx   so by solving (18), the 

following can be obtained 

 

2

2

( ) ( )
.

T

op i op i op

op

x F x F x

x


 


 
(19) 

 

Substituting this λ into (18) gives 

 

2

2

( ) ( )
( )

T

i op op i op

j i op op

op

F x x F x
a F x x

x

 
 

 
(20) 

 

where 0opx    It is easily verified that when 0opx   

equation (18) yields 

 

( )i i opa F x  (21) 

 

which is also a special case of (20).   

3. Simulation Examples 

Most often, control algorithms are tested on standard 

nonlinear models, and the objective is to first find the 

linearized model then to design suitable controller based 

on our skills with linear systems. These linearized models 

of the nonlinear model are valid only for small deviations 

of the state values from their nominal value. Such a 

nominal value is called the equilibrium point. Therefore, 

the linear models are acceptable around a small range of 

the operating point. In this section, the effectiveness of the 

above method described in previous section will be 

presented and its performance is compared with Jacobian 

method performance. 
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3.1. Inverted Pendulum: 

 

The inverted pendulum, shown in Figure 1, is highly 

nonlinear system which can be considered as an important 

benchmark system for controller testing. 

 

 
Figure 1: Inverted pendulum system. 

 

The nonlinear dynamical equations of motion is given 

by [11]. 

 
2

2

( ) cos sin

( ) sin cos 0

rm M x f x ml ml F

I ml mgl mlx

   

  

    

   

 
(22) 

 

where m is the pole mass, M is the cart mass, fr is the cart 

friction coefficient, x is the horizontal displacement, l is 

the pole length, θ is the angle of the pole from upright 

position, F is the applied force on the cart, I is the pole 

moment of inertia, and g is the gravity. The state space 

model can be presented as follows: 
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(21) 

 

Where 

 

1 2 3 4[ ] [ ] .T Tx x x x x x    

 

Given equations (20) and (21) the optimal model 

 

3 3 3

3 3 2

0 1 0 0

0 (cos ) (sin ) 0

0 0 0 1

0 (cos ) (sin ) 0

op

a b x b x x
A

d x d x x e
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
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2

32

3

0

0cos
0

cos

op

c
B for x x

h x
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 (24) 

 

 

 

And 
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(25) 

 

where    

 
2 2 2
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The Jacobian model is gradient of the system is given by:  

 

3 3 3

3 3 2

0 1 0 0

0 cos (sin ) 0( )

0 0 0 1

0 cos (sin ) 0

i
a b x b x xF x

x

d x d x x e

 
 

  
 
 

   

 

(26) 

 

The inverted pendulum parameters are assigned the 

following values [11], m = 0.23 kg, M = 2.4 kg, l = 0.38 

m. fr = 0.05 Ns/m, I = 0.099 kg.m2, and g = 9.81 m/s2. 

Furthermore, the simulation for the controllers, with pole 

placement at poles -1±j1 and -2±j1, was carried out in 

SimuLink of MatLab using a fifth-order Dormand-Prince 

algorithm with a fixed integration step of 0.005 and initial 

condition of [0, 0, 0, 1]T. The performances for both 

optimal linear model and Jacobian method are displayed in 

Figure 2. It is obvious that first method has less overshoot 

and better performance than the second method. 
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Figure 2: Comparison between Optimal linear model and Jacobian 

method. 
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3.2. Synchronization of Duffing System: 

 

The chaotic Duffing system is a popular benchmark 

example in the study of nonlinear system. The Duffing 

system can be expressed as [4, 12]: 

 

1 2

3

2 1 2 2 1 3 1 cos( )

x x

x p x p x p x q wt



    

 
(27) 

 

with parameters  p1 = -1.1, p2 = 0.4, p3 = 1, q = 1.8 and w 

=1.8, the system is chaotic and the attractor for 

uncontrolled system is shown Figure 3 below. 
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Figure 3: Duffing system chaotic attractor. 

 

Applying equations (20) and (21), the optimal linear model 

is derived as: 

 

2

2 2
2 3 1 1
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0

3
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   
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x x
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 

      
 
 

 

 TkB 10   
and  

 01kC  
 

(28) 

 

where and 2

1 2 1 22
[ , ] [ , ]Tx x x x x  is the square magnitude 

of the operating point.   

In general, synchronization is when two systems come 

to behave in accordance with each other as time passes; an 

example is the transmitter / receiver unit in communication 

system. The goal here is to consider the synchronization 

problem from the point of view of control theory [3]. 

Mathematically speaking, consider two dynamical 

systems,  

 

))(()( txftx  , 0)0( xx   
))(()( txhty   

                 (29) 

 

and  

 

))(),(ˆ(ˆ)(ˆ tytxftx 
, 0

ˆ)0(ˆ xx   

))(ˆ()(ˆ txhty   

                 (30) 

 

 

 

 

the two systems are said to be synchronized if 

 

0)(ˆ)(lim 


txtx
t  

(31) 

 

For the optimal linearized model    

 

( ) ( ) ( ),op opx t A x t B u t  0(0)x x  

)()( tCxty   
(32) 

         

with Aop and Bop are the matrices from optimal linear 

model, then an observer can be designed as  

 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( )),ox t Ax t Bu t K y t y t    0
ˆ)0(ˆ xx   

)(ˆ)(ˆ txCty   
(33) 

 

where Ko is the observer gain matrix. 
 

The simulation for this synchronization was carried out 

in SimuLink of MatLab using a fifth-order Dormand-

Prince algorithm with a fixed integration step of 0.005 and 

initial condition of [0, 5]T. Note that state x2 is the state 

that not measurable. The performance of synchronization 

for Duffing system is shown in Figure 4 for the optimal 

linear model and in Figure 5 for the Jacobian method. It is 

obvious that first method is superior to the second method, 

and it was able to synchronize completely with non-

measurable state x2 but the Jacobian method fail to do so 

and the error was huge for most of the time. 
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Figure 4: Synchronization of Duffing system using optimal linear 

model. 
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Figure 5: Synchronization of Duffing system using Jacobian 

method. 
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4. Conclusions 

A linearization technique of optimal linear model was 

briefly presented in this paper, and its performance was 

compared with a popular Jacobian method. Two typical 

nonlinear benchmark examples were used to compare the 

two linearization methods; these are inverted pendulum 

and chaotic Duffing system. In the inverted pendulum 

example, the controllers were designed with pole 

placement for both cases, and as shown in Figure 2 the 

performance of first method was superior to the second 

method with much less overshoot. Furthermore, the 

synchronization of Duffing system was performed, as 

shown by the convincing simulation results in Figure 4 and 

5, the optimal linear model was able to perfectly reproduce 

the non-measurable state x2, but the Jacobian failed to do 

so with large error. It is obvious from these results that 

optimal linear model has better performance than the 

Jacobian method, especially when the system is highly 

nonlinear. Future work might be in conducting 

performance comparison between optimal linear model 

and feedback linearization method. 
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