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Abstract 

A new method is presented to derive a priority vector W = (w1 , w2 , …. w n )T defining the ranking of competing 
alternatives and factors or criteria from fuzzy pairwise judgments. The pairwise comparisons are accepted as linguistic 
evaluations or assessments expressing relative importance of pairs ( i  ,  j ) .These evaluations are quantified in the form of 
trapezoidal fuzzy numbers expressed as quadruples  (a i j, bi j, c i j, d i j) in order to model the vagueness and imprecision in 
linguistic evaluations. The problem of finding components of priority vector W, given n (n-1) / 2 quadruples (a i j, bi j, c i j, d i 
j) is formulated in an optimization model with a newly introduced objective function. The problem is solved by means of a 
genetic algorithm. The complications and inappropriateness in finding inconsistencies of fuzzy pairwise comparisons, as 
presented in existing literatures, are treated and resolved in the present work by introducing ratios of inconsistency index to 
index of inconsistency of random fuzzy comparisons. The proposed method is illustrated by numerical examples and 
compared with some of the existing methods in literatures. 

© 2008 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 

Keywords: priority vector, trapezoidal fuzzy numbers, genetic algorithm, pairwise comparisons, inconsistency ratio.

 
Nomenclature 
 
a i j, bi j, c i j, d i j  :  a trapezoidal fuzzy number 

expressing linguistic pair-wise 
Judgment relating alternatives i to j 

EV i j                    :  pair wise comparison judgments 
comparing i with j. 

ICI                       : Inconsistency Index 
ICR                      : Inconsistency Ratio 
l i j, m i j, u i j ,      : triangular fuzzy number 

expressing linguistic pair-wise 
Judgment relating alternatives i to j 

n                          :   size of the pairwise comparisons 
(reciprocal ) matrix 

RI                        :  Random Index 
W                        : (w1 , w2 , …. w n )T  a priority 

vector giving weight of importance 
w i to each 

 
Competing Alternative 
δ A                     :    Indicator function 
δ A  =  1               :      when event A occurs 
δ A  =  0               :      otherwise 
λ                          : a variable denoting to the degree of 

membership of the ratio w i / w j
*

μ i j (  w i / w j  )  :  membership functions of fuzzy 
ratios  w i / w j  of relative 
importance 

                                                 
* Corresponding author. e-mail: mail@ahmedfarouk.net 

1. Introduction 

Selecting the optimum alternative in multi-criteria 
decision problems is one of the most crucial challenges 
facing decision makers in engineering and management in 
different industries and businesses. These challenges are: 

1. The natural limitations of human capability to compare 
or to decide on among more than two factors or 
alternatives. It becomes more intricate if the 
comparison is made on the basis of multiple criteria. 

2. To capture and assess possible inconsistencies in 
comparison judgments of more than two factors or 
alternatives for the purpose of discarding heavily 
inconsistent judgments. 

3. The uncertainty, imprecision and vagueness of human 
comparison judgments. 
Over the last thirty years, numerous valuable 

contributions to the study and analysis of these problems 
were elaborated. These endeavors started with the 
development of Analytical Hierarchy Process (AHP) by 
T.L. Saaty [12] as a mathematical model built to derive 
priority vectors, which arrange competing alternatives, 
factors and/or criteria from pair-wise comparison 
judgments. The process of deriving an analytical hierarchy 
starts usually with forming a pair-wise comparison matrix 
with elements a i j (i < j) carrying values of relative 
importance of alternative (factor, criterion) i as compared 
to alternative (factor, criterion) j. The number of elements 
necessary and sufficient to form a pairwise comparison 
matrix of size n is equal to  n (n-1) / 2, since elements a i j 
equal to 1/ a j i.. 
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AHP uses a 9 point scale of importance in finding a i j.  
After building a reciprocal matrix, AHP proceeds further 
to show that priority vector W = (w1, w2 , …. w n )T is the 
principal eigenvector of the reciprocal matrix. The 
corresponding Eigen value is shown to be equal to n in 
case of perfectly consistent pair-wise comparison 
judgments.  

For nearly consistent and inconsistent judgments, Eigen 
values are larger than n. Other methods of deriving 
priorities are considered in several literatures. Direct Least 
Square (DLS) method [5] and Logarithmic Least Square 
method (LLS) [6] formulated the problem of deriving 
priorities in the form of nonlinear programs. DLS and LLS 
methods have drawbacks - they have multiple solutions, 
and they lack explicit measures of inconsistency of pair-
wise comparison judgments similar to that clearly adopted 
in the AHP.  

The possibility of having inconsistent judgments is a 
pivotal issue calling for serious concerns since the validity 
and the credibility of prioritization are, to a great extent, 
dependant on consistency of decision maker’s judgments. 
Decision makers, usually, express their relative evaluations 
linguistically rather than in exact numbers given by a nine-
point scale in the standard AHP. Linguistic evaluations 
such as: extremely important, moderately important and 
more or less of the same importance are characterized by 
inherent uncertainty, imprecision, and vagueness. T. L. 
Saaty and L. Vargas [13] treated the problem of 
uncertainty and its effect on the stability of rank order of 
competing alternatives. They considered pair-wise 
comparison estimations and the resulting priorities as 
random variables with given probability distributions. 
However, these quantities are extremely subjective; and 
differ from person to another and therefore they cannot be 
considered random, and cannot be treated statistically by 
collecting data and deriving probability distributions 
describing the behavior of their populations.  

Fuzzy numbers are considered as the most appropriate 
model to express uncertainty, imprecision, and vagueness 
of decision makers' judgments. First approaches to solving 
the problem of fuzzy prioritization are given in Van 
Laarhoven et al [14], J. Buckley [2], C. Boender et al [1] 
and others.  

These approaches followed similar procedures as 
adopted in the standard Eigen Vector method developed by 
Saaty [12] in the standard AHP. However, performing 
multiple arithmetic operations such as addition, 
multiplication, and division on fuzzy numbers result in 
fuzzy priorities with wide spreads due to propagation of 
fuzziness. Obtained fuzzy priorities have almost no 
practical meaning and sometimes they are irrational 
(Mikhailov [10]). Researches who tried to follow similar 
procedures as in standard AHP fit in the work of D.Y. 
Chang [4].  

Chang determined crisp priority vector by performing 
fuzzy ordering and evaluating the truth value of the 
assertion that a fuzzy number I is greater than fuzzy 
number J. The error in this approach is that components of 
a priority vector may have zero values, which may result 
in infinite relative importance. This is in a total 
contradiction with assumed finite scale of relative 
importance upon which the problem is formulated and 
solved. Chang’s approach does not permit evaluations of 

inconsistencies of pair-wise judgments. This is why 
Erensal et al [7] did not detect this high inconsistency; and 
proceeded to find a hierarchy; and reached to a conclusion 
which is naturally questionable. To overcome such 
complications, Mikhailov [10] proposed two approaches: 
1) Fuzzy Preference Programming (FPP) and 2) Modified 
Fuzzy Preference Programming (MFPP). In the first 
approach (FPP), the defuzzification technique known as α 
– cuts is used. Crisp priorities rather than fuzzy priorities 
are derived from interval judgments corresponding to 
different α – cut levels. Priorities of the same alternative 
(factor or criterion) at different α – cut levels are then 
aggregated to obtain resultant priority. In the second 
approach (MFPP), a nonlinear optimization model has 
been obtained, and thereby avoiding the need for using α – 
cuts which requires a great deal of computations. The 
MFPP model formulates the problem in a nonlinear 
program given as follows: 
Maximize λ Subject to: 

 

     

    

      (1) 
  

(i = 1, 2,…..n-1),  (j =  2,3,……n) 

 The optimum solution of the above nonlinear program 
(1) is a vector W*, represents the optimum priority vector 
that leads to a maximum possible degree of membership 
λ*. As indicated by L. Mikhailov [10], λ* is the degree of 
satisfaction and is a natural indicator of the inconsistency 
of decision makers' judgments. But however, since λ* may 
accept negative values as well as positive values, it 
becomes inappropriate to act as a natural indicator of the 
inconsistency and to measure the degree of satisfaction. In 
order to render λ* positive for inconsistent ratios as well, 
Mikhailov proposed to introduce tolerance parameters - 
thus complicating problem.   

The rationality and tangibility of inconsistency ratio 
(ICR) as adopted by T.L. Saaty in the standard AHP 
disappear when replaced by the indicator λ. The absence of 
a reference to measure relatively how severe inconsistency 
is in pair-wise comparisons adds to the inappropriateness 
of λ.  The formulation in (1) is a nonlinear program which 
can be solved numerically by commercial software such as 
"Lingo" with declaration of λ as an unrestricted variable. 
But however this formulation is not amenable to direct 
application of nontraditional optimization techniques, for 
instance, Genetic Algorithms since the objective (fitness) 
function λ is an implicit function of the decision variables ( 
w1 , w2 , …. w n ). Recently, these nontraditional 
optimization techniques, like Genetic Algorithms, are 
widely used because of their simplicity, ease of their 
implementations, capability to deal with nonlinearities, 
scalability, and their proven validity. The present work is 
mainly concerned with overcoming the above-mentioned 
complications and shortcomings in deriving priority 
vectors from fuzzy pair-wise comparison judgments. This, 
in principle, will be accomplished by: 
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1. Reformulating the problem by introducing an explicit 
objective function and using trapezoidal fuzzy 
numbers. 

2. Solving the reformulated problem by use of one of the 
most powerful search techniques- Genetic Algorithms. 

3. Determining inconsistency index RI for different sizes 
of pair-wise comparisons matrices. 

 
Reformulating the problem enables the writer to restore 

back the concept of inconsistency ratio ICR with reference 
to inconsistencies of random fuzzy pair wise comparisons. 

2. Problem Statement and Mathematical Formulation 

Given n (n-1 )/ 2  pair-wise comparison judgments  
EV i j    of the relative importance of  n  alternatives, 

factors or criteria named afterwards as factors. The pair-
wise comparison judgments are linguistic. It is required, at 
first, to prioritize these n factors and determine priority 
vector W (w1 , w2 , …. w n )T and then to evaluate the 
relative inconsistency ICR  of judgments of each decision 
maker (DM). 

 
2.1. Modeling of Linguistic Judgments 

 

Figure 1: A membership function of a trapezoidal fuzzy number 
 
Linguistic evaluations are usually characterized by their 

vagueness, imprecision, and uncertainty. They cannot be 
expressed by crisp numbers as already adopted in standard 
AHP. Random numbers are also not the proper model 
because of subjectivity of judgments and absence of 
statistical data necessary to derive probability distributions 
describing uncertainty. Fuzzy numbers are the most 
appropriate model to quantify linguistic judgments. 
Quantification of linguistic judgments is necessary for 
proceeding further with the solution of the stated problem 
and finding the weights wi of the n competing factors. 
Fuzzy numbers are normal convex fuzzy sets first 
introduced by L. Zadeh [15]. Membership functions are 
used to express the degree of belonging of each element to 
the fuzzy set. Membership functions of fuzzy numbers  

may be taken as triangular or trapezoidal. In the present 
work, trapezoidal membership functions are considered as 
shown in Figure 1 - since triangular are special cases of the 
trapezoidal. Usually, trapezoidal fuzzy numbers are given 
in the form of quadruples EV i j ( a i j, bi j, c i j, d i j  ).  EV i j  
is evaluating the importance of factor i relative to factor j 
as judged by a decision maker DM. A scale quantifying 
linguistic judgments into trapezoidal fuzzy numbers is 
given in the following table 1. 

 
Table 1: Scale translating linguistic judgments into fuzzy numbers 

Fuzzy numbers Linguistic judgments 

When i compared with j a i  j bi  j c i  j d i  j

Extremely Important 7 8 9 10 

Moderately Important 5 6 7 8 

Important 3 4 5 6 

Slightly Important 1 2 3 4 

Nearly of Equal 
Importance 

1/2 1 1 3/2 

 
Since EV i j = 1 / EV j i the matrix of pair-wise 

comparisons is sufficiently defined by n (n-1 )/ 2, which 
are the number of the elements in the upper triangle of the 
matrix for which ( i  <  j ), ( i = 1,2,…, n-1), ( j = 2,3,…n). 

 
2.2. Mathematical Formulation 

1 

ai bi ci di

2.2.1. Decision Variables:  
w i  - weight of importance of factor i (i  = 1,2,…. n),  
( 0  < w i  < 1) 

Our objective is to find values of weights w i similar to 
values of their ratios w i / w j , which will be maximizing 
their membership in corresponding fuzzy sets EV i j. 
Maximum contributions to the value of the objective or the 
fitness function occur when ratios w i / w j lie in the 
interval from b i j to c i j. On the other hand, contributions 
diminish as ratios w i / w j get values less than b i j or 
greater than c i j.  Negative contributions to the objective 
function or fitness function occur as ratios w i / w j take 
values less than a i j or greater than d i j. Next function G 
(w1 , w2 , …. w n) is introduced in the present work, to 
represent the behavior of the fitness of a solution  w1 , w2 , 
…. w n.. 

2.2.2. Fitness function(expression 2), Where (expression 
3): 
Conditions    a i  j   <   b i j`  and       c i j   <   d i j  are 
necessary to render the fitness function G(w1 , w2 , …. w 
n),  which is finite. Triangular membership functions could 
be accepted as special cases where,  b i j`  =  c i j . 
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In these Special cases the indicator functions:  

 
Fitness function : 

 G(w1 , w2 , …. w n) as given in (2) and (3) is 
obviously nonlinear function in decision variables  

w i  ( i = 1, 2, …..n ). Therefore, the problem of 
deriving a priority vector  W (w1 , w2 , …. w n )T from 
pair-wise comparison judgments are expressed in the form 
of    n (n-1 )/ 2   trapezoidal fuzzy evaluations  
EV i j   ( a i j, bi j, c i j, d i j  )  and can be readily given in the 
following form: 
Maximize    G (w1, w2, w n) 
Subject to 

 
Where   G (w1, w2, …. w n) is completely defined by 
expressions (2) and (3). 
 
3. Solution of The Formulated Problem by a Genetic  

Algorithm 

The optimization problem formulated in (4) could be 
effectively and efficiently solved by applying one of the 
most powerful search techniques- Genetic Algorithms 
(GA) originally developed by J.H. Holland [9] and later 
refined by D.E. Goldberg [8] and others. GA outperforms 
Directed Search Techniques because of their capability to 
explore wider spaces of feasible solutions aiming at a 
global optimum solution and thus have higher 
effectiveness. GA also outperforms methods of Random 
Search since they exploit obtained good solutions to arrive 
at better solutions and thus they are more efficient. GA 
starts with devising a special coding set of decision 
variables known as chromosomes as inspired by theories 
of evolution and genetics in biology. Each chromosome 
represents a solution to the problem by coding all variables 
of decision. The chromosome representation, as shown in 
Error! Reference source not found., consists of n boxes 
(genes). Each gene carries a value for one of the n decision 
variables w i . An initial population of 30 to 50 
chromosomes is randomly generated. The fitness of each 
feasible chromosome (solution in which the n decision 
variables sum to one) is evaluated by (2) and (3). 
Consecutive generations are evolved from the initial 
population by applying GA operators: crossover, mutation, 
and copying. In biological systems, nature mercilessly 
selects only the fittest for longer lives and further 
reproduction. In a similar manner, chromosomes are 
selected for crossover and copying in accordance with and 
proportional to their fitness values. Crossover of two 
parent chromosomes is operated aiming at having better 
offspring. Crossover is generally operated with a 
predetermined probability Pxover raging from 90% to 
95%. Copying is a complementary with crossover event 
having probability of 5% to 10% and is operated with the 
purpose of enriching the population with good solutions.  

Mutation is a random change of gene values in order to 
widen the exploration front. This operator is necessary to 
avoid premature convergence and falling into a local 
optimum. However, it is recommended to apply mutation 
with low probability Pmut from 1% to 10% in order to 
preserve the exploitation capability of GA, and not 
becoming just random searches. The Genetic Algorithm 
adopted in the present work, named as Fuzzy Genetic 
Prioritization (FGP), is described in the following steps: 

 

0    )/(    =<< ijjiij cwwbδ

w1 w2   w i   w n

Figure 2:  A chromosome of n genes carrying values of n decision 
variables 

1. Build a chromosome, by generating n random 
numbers uniformly distributed between 0 and 1, 
and normalize these n random numbers to render 
them - summing to one. These n normalized 
random numbers represent one of the feasible 
solutions. 

2. Substitute for the values of the priorities w i , 
where(i = 1,2,….n) in (2) by the values of n 
normalized random number obtained in step 1 in 
order to evaluate the fitness of the chromosome. 

3. Repeat steps 1 and 2 until having an initial 
population of 30 chromosomes (feasible 
solutions). 

4. Decide on probabilities of crossover Pxover and 
mutation Pmut to start reproduction. 

5.  Select two chromosomes from the population by 
giving higher chances to those Chromosomes 
with higher fitness 

6. Generate y - a continuous random number [0,1] 
uniformly distributed. If y <= Pxover. Then the 
next operation will be crossover, otherwise it 
will be copying. In case of having crossover 
apply steps 7 and 8, otherwise skip them and go 
directly to 9. 

7. In case of having crossover operation, uniform 
crossover is applied since it is found more 
suitable for the problem at hand. In uniform 
crossover, each two corresponding genes in the 
two selected in step 5 parent chromosomes will 
exchange their values with 50% probability. 
Thereby two new child chromosomes are 
formed. 

8. Generate z – a continuous random number [0, 1] 
uniformly distributed. If z <= Pmut, then 
perform mutation in the first gene in one of the 
parents, otherwise skip and take next gene. 
Repeat this step for all genes of the two child 
chromosomes. Normalization of the set of newly 
obtained gene values after crossover and 
mutation should be restored back and then one 
evaluates the fitness of each new child. Go to 
step 10. 
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9. Copying, in the present algorithm, is performed 
simply by replacing the two worst chromosomes 
having least fitness by the two selected in step 5 
chromosomes. 

10. By completing the above steps, a new generation 
is already obtained. Go to step 5 for further 
reproduction. 

11. Repeat until convergence is obtained or reaching 
at a given terminating signal. 

12. The solution is then reached by taking values of 
the genes of the fittest chromosome in the last 
generation. 

 
The described algorithm is illustrated in Figures 3, 4 

and 5 and then implemented in Visual Basic 
forApplication (VBA) under Excel. 

Input Data 
N- Number of factors to be ranked 
N (N-1)/2 linguistic responses to  
 a questionnaire filled by one of the stakeholders 

Start 

Translation of linguistic responses into 
Trapezoidal Fuzzy Numbers (a i j , b i j , c i j , d i j ) 
(i= 1,2,…N-1)          (j=1,2,…N)    (i  >  j ) 

Input Parameters of the Genetic Algorithm 
Size_pop = Population size (number of chromosomes) 
Pxover     = Crossover probability 
Pmut        = Mutation probability 
Num_Iter = Number of Reproduction Iterations 

Build Population 

Reproduction 

Optimum Solution 

 End 

First chromosome 
Q = 1 

Generate N uniform random numbers 
[0,1] 

Normalize the generated Random 
numbers to get 

The weights of the N factors in a 
chromosome: 

Evaluate Ratios   w i / w j 

Evaluate Membership Functions   µi j
(i= 1, 2, …, N-1) (j=1,2,…N)    (i  >  j ) 

(Formula 3) 

Evaluate Fitness Function 
GQ  =  Min (µ1 2 , µ1 3 , ….. µ (N-1) N ) 

(Formula 2) 

Q =  Q + 1 

Sort the chromosomes in descending order 
of  GQ

Select two candidate chromosomes for 
Reproduction 

Q > Size_pop 

 1 

No 

 

 

Yes 

 

Figure 3: Main Block diagram of the Fuzzy Genetic Prioritization 
(FGP) Model 

 
 
 

 
 
 

Figure 4:  Flow Chart for Build Population Procedure 
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Figure 5: Flow chart for Reproduction and Optimum solution 
procedure 

 
1 

Generate a uniform random number   x 

x     <    Px over 

Perform linear crossover of the two candidate 
chromosomes.  Normalize and evaluate Fitness 
function G of the two new offspring 

The two worst chromosomes in the population 
are replaced by the two new offspring of the two 
candidates after crossover 

Iter = Iter +1 

Generate a uniform random number   y 

y   <     Pmut 

Mutation 

Iter > Num_Iter 

Read the two Chromosomes with the highest 

4. Evaluating Inconsistency of Fuzzy Pairwise 
Comparison 

When constructing a judgment matrix for more than 
two competing factors or alternatives for the purpose of 
their ranking, there is a possibility of being inconsistent in 
decision making DM pair-wise comparisons.  

For example comparing factor A with factor B, it is 
found that A is more important than B (A > B). Similarly 
comparing B with C, it is found that (B>C). To be 
consistent A should be rather more important than C. But 
for any reason, DM may enter a wrong entry (A < C). The 
comparison judgment becomes severely inconsistent. If the 
entry is correct, without appropriate evaluation of the 
relative importance, inconsistent comparisons are also 
obtained and to a lesser degree. Inconsistency increases as 
the number of factors to be compared and ranked. T.L. 
Saaty proposed a method to evaluate inconsistency in 
judgments; and showed that the judgment is perfectly 
consistent if the maximum eigen value of the reciprocal 
matrix is equal to the matrix size n. Note that the 
inconsistency index ICI is equal to (Max. eigen value – 
matrix size) / (matrix size – 1). In order to take a decision 
to discard one of DM matrices or not, ICI should be 
compared with the value of ICI of a completely random 
judgment RI.  Saaty [12] evaluated RI for matrices of 
different sizes. The ratio of   ICI of any DM judgment to 
RI gives the inconsistency ratio (ICR). Based on the value 
of ICR, it can decide whether to discard a DM judgment, 
depending on the number of available DM s and the 
criticality of the decision making problem. Acceptable 
values of ICR may take values ranging from say 0.01 to 
0.1. Method of T.L. Saaty   [12] is applicable only to case 
of DM comparison judgments represented by crisp (single) 
values.  

It cannot be applied directly to the case of fuzzy 
representations. As already stated in the introduction, one 
of the main concerns of the present work is to extend the 
method of finding ICR s in the standard AHP to cover 
cases of fuzzy judgments. This is to overcome 
complications and inconveniences produced in existing 
methods that is adopted for evaluation of inconsistency in 
case of fuzzy judgments. 

It is easy to show that fitness function G(w1 , w2 , …. 
w n) in (2) has the upper bound of unity in case of 
perfectly consistent judgments for which  b i j  < =  w i / w j  
<=  c i j. As ratios w i / w j  get values less than  b i j or 
greater than c i j., the value of fitness function decreases. 
This behavior of G (w1, w2, …. w n) proposes the 
following expression to evaluate the inconsistency index  
ICI  as follows: 

No 
Yes 
Yes 

No 
 
Yes 

The two worst chromosomes in the 
population are replaced by the two 
candidate chromosomes. 
 

Fitness as the optimum solution   
w1 ,  w2  , w3 , …………… w N

 
 
(5)                ( ) 0,......., 21 ≥

As in the standard AHP, inconsistency measure 
becomes more tangible if the index ICI is related to a 
random index RI. Next, values of index RI for different 
matrix sizes (n = 3 to 9) have been computed by solving 
the problem formulated in (4) with random fuzzy 
judgments. 

 

1 −= nwwwGICI

End 
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The inconsistency ratio is given as: 
                                                                                                              

                                                

5. Evaluation of the Random Index (RI) 

Fuzzy numbers ( a i j, bi j, c i j, d i j  )  are generated 
randomly. The GA described in section 3 is run for seven 
values of n (n = 3, 4,…, 9 ). For each value of n, the GA is 
run 100 times in order to take an average for the fitness 
function G(w1 , w2 , …. w n) Having G (w1 , w2 , …. w n), 
ICI can be calculated by (5). In case of randomly generated 
fuzzy pairwise judgment, RI = ICI. In table 2, results of 
these computations are given. 

 
Table 2: Random Index RI   for different sizes n of fuzzy pairwise 
judgment matrices 

n 3 4 5 6 7 8 9 

RI 2.62 4.74 6.18 7.2 7.9 9.62 11.28 

6. Numerical Examples 

The first example to be considered is that presented 
several times by L. Mikhailov and P. Tsvetnov [11]. The 
pair-wise comparison judgment matrix is given in table 3. 

 
Table 3: Pairwise comparison (reciprocal) matrixwith triangular 
fuzzy judgments taken from L. Mikhailov et al [ 11 ] 

 A B C 

A 1 (2, 3, 4 ) (1, 2, 3 ) 

B (1/4, 1/3, 1 / 2 ) 1 ( 1/3, 1 / 2, 1 ) 

C ( 1/3, 1 / 2, 1 ) (1, 2, 3 ) 1 

 
The solution obtained by applying Fuzzy Genetic 

Prioritization (FGP), and developed in the present work, 
and that is obtained by (MFPP), and is developed by 
Mikhailov is presented in the following table 4 

 
Table 4:  Priority vector derived by FGP of the present work and 
MFPP of Mikhailov et al [11] 

 Present work (FGP) MFPP 

w1 0.53749 0.538 

w2 0.17 0.17 

w3 0.2925 0.292 

G( w1, w2,…, wn ) 0.83757 λ = 0.838 

ICI 0.1624  

RI 2.62  

ICR 0.062  

 
The comparison in table 4 reveals coincidence of 

solutions obtained from the two approaches. This evidently 
proves validity of the proposed Fuzzy Genetic 
Prioritization (FGP) as developed in the present work. The 
inconsistency ratio ICR, as proposed in the present work, 

gives a value of 0.062, which is low, and gives a tangible 
measure of consistency of pair-wise comparison given in 
table 3 rather than that of λ = 0.838 used in [11].The 
second example is considered by Erensal et al [7]; and is 
solved by the method of D. Chang [4]. As already stated in 
the introduction, method of Chang belongs to a category of 
works that extend the approach of standard AHP to be 
applied directly to fuzzy pair-wise comparisons. However, 
Chang derived a crisp priority vector by evaluating the 
truth value of the assertion that a fuzzy number (I) is 
greater than a fuzzy number (J) as pointed out in the 
introduction. The priority vector, derived from reciprocal 
matrix in table 5 given by Erensal et al [7] applying 
Chang’s method, is given in table 6. The same example, as 
given in table 5, is solved by the Fuzzy Genetic 
Prioritization FGP of the present work; and is also solved 
by the Modified Fuzzy Preference Programming MFPP 
developed in [10]. The comparison of the results of the 
three approaches reveals the following: 
• The solution of Erensal et al [7] is not an optimum 

solution since better solutions have been obtained by 
both FGP and MFPP for the same reciprocal matrix. 

• The inconsistency ratio ICR as obtained by the present 
work for the optimum solution is 0.341. This ratio is 
high; and assures that pairwise judgment in table 5 is 
inconsistent. This result is confirmed by the findings of 
MFPP for which  λ has negative value (λ  =  - 1.06). 

Table 5 : Pair-wise comparison reciprocal matrix with triangular 
fuzzy evaluations , from Erensal et al [7] 

7. Findings and Conclusions 

7.1. The extension of the standard AHP method, as 
introduced by T.L. Saaty, in which the pairwise 
comparisons  are given by crisp values, to be applied 
directly to cases of having fuzzy pair-wise judgments is 
not valid; and leads mostly to irrational and inconsistent 
solutions. 
7.2. The proper handling of problems of deriving priorities 
from fuzzy pair-wise judgments is to formulate them as 
optimization problems. Fuzzy Preference Programming 
developed by Mikhailov [10] is the first trial in this 
concern. 
7.3. Expressing objective functions explicitly, in 
optimization models, is an important prerequisite to 
rendering the nonlinear programs amenable to applications 
of the effective and widespread nontraditional search 
techniques such as Genetic Algorithms. 

  

 Cost Price Quality Flexibility Time 

Cost 1 1/5,1/3,1 1/7,1/5,1/3 1/5.1/3,1 1/7,1/5,1/3

Price 1,3,5 1 1/9,1/7,1/5 0.5,1,1.5 1/5,1/3,1 

Quality 3,5,7 5,7,9 1 1/7,1/5,1/3 0.5,1,1..5

Flexibility 1,3,5 0.9,1,1.1 3,5,7 1 1/7,1/5,1/3

Time 3,5,7 1,3,5 0.9,1,1.1 3,5,7 1 

ICIICR = (6) RI
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Table 6: Priority vector derived by three methods FGP of the 
present work, Chang [4] applied by Erensal et al [7] and MFPP of 
Mikhailov [10] for the pair-wise comparisons matrix given in 
table 5 

 Present work 
(FGP) 

Chang method 
applied by 

Erensal et al [11] 

MFPP by 
Mikhailov 

Using Lingo 8 

w1 0.0473 0.00 0.0447 

w2 0.0282 0.12 0.03188 

w3 0.1223 0.31 0.1224 

w4 0.2602 0.25 0.2578 

w5 0.542 0.32 0.54314 

G -1.107 -6.8 λ = -1.06 

ICI 2.107 7.8  

ICR 0.341 1.262  

7.4. It has been demonstrated that Genetic Algorithms can 
be easily and transparently applied to solve the formulated 
optimization models for deriving priorities from fuzzy 
pair-wise judgments after modification of the objective 
(fitness) function and making it explicit function of 
decision variables wi.. The coincidence of results obtained 
from the application of the developed, in the present work, 
Fuzzy Genetic Prioritization FGP and solutions obtained 
from MFPP by Mikhailov is clearly demonstrated by the 
two provided numerical examples. 

7.5. Modeling of linguistic judgments in the form of 
trapezoidal fuzzy numbers is sought to be more realistic 
and capable of capturing fuzziness of comparisons. 

7.6. To have ICR as a tangible measure of inconsistency of 
pair-wise judgments is crucial for making rational 
decisions. The measure ICR acts as a screening element by 
means of which seriously inconsistent responses of DM to 
questionnaires could be discarded. This screening is 
mandatory prior to getting geometric means in case of 
having group of decision makers. The computations of the 
random indexes RI for matrices of different sizes with 
random fuzzy entries, as elaborated in the present work, 
made it possible to evaluate ICR s 
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