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Abstract 

The paper has a dual purpose: firstly, to examine the influence of various cutting conditions (cutting speed 𝑉𝑐 , feed 𝑓, 

depth of cut 𝑎𝑝, tool nose radius 𝑟ɛ, and cutting edge angle 𝑋𝑟) on the quality of machined parts (𝑅𝑎), tangential force (𝐹𝑍) 

and cutting power (𝑃𝑐) during the turning process of polyoxymethylene POM-C. Two carbide inserts, SPMR 120304 and 

SPMR 120308, were used for the three-dimensional cutting operations. Secondly, the goal is to identify optimal cutting 

conditions that maximize material removal rate (𝑀𝑅𝑅) while minimizing three output parameters (𝑅𝑎, 𝐹𝑍, and 𝑃𝑐). The study 

employed analysis of variance (ANOVA) to assess the significance of the input parameters on the desired outcomes and 

utilized an artificial neural network (ANN) to create mathematical models. The K-fold Cross-Validation approach was 

deemed suitable due to its efficiency in requiring fewer experiments. To optimize the cutting conditions, a new metaheuristic 

optimization algorithm called Multi-Objective Artificial Hummingbird Algorithm (MOAHA) was selected. ANOVA analysis 

reveals that factors 𝑓 and 𝑟ɛ contribute 58.05% and 32.25%, respectively, to the response 𝑅𝑎. Classical parameters (𝑉𝑐 ,𝑓, and 

𝑎𝑝) also impact mechanical cutting actions (𝐹𝑍 and 𝑃𝑐).The MOAHA algorithm, coupled with four ANN models, optimized 

the five cutting conditions, resulting in optimal values 𝑉𝑐 = 250 𝑚/𝑚𝑖𝑛, 𝑓 = 0.08 𝑚𝑚/𝑟𝑒𝑣, 𝑎𝑝 = 1.3 𝑚𝑚, 𝑟ɛ = 0.8 𝑚𝑚, 

and 𝑋𝑟 = 75°. Under these conditions, responses are: 𝑅𝑎 = 0.6 µ𝑚, 𝐹𝑍 = 21.51 𝑁,𝑃𝑐 = 60.24 𝑊, and 𝑀𝑅𝑅 =
26.38 𝑐𝑚3/𝑚𝑖𝑛. The ANN-MOAHA coupling provides an excellent, simple, and fast computer tool for multi-objective 

optimization. 

© 2024 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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Abbreviations 

ANN:Artificial neural network 

MOAHA:Multi-Objective Artificial Hummingbird Algorithm 
POM-C: Polyoxymethylene (polyacetal) 

ANOVA: Analysis of variance 

𝑀𝑅𝑅: Material removal rate 
IHSA : Improved harmony search algorithm 
RSM: Response surface methodology 

DF: Desirability function 

𝑅𝑎: Arithmetic mean roughness 

𝑅𝑡 : Maximum peak to valley height 

𝑅𝑧 : Mean roughness depth 

𝐹𝑍: Cutting force 

𝑃𝑐 : Cutting power 

1. Introduction 

Polymeric materials are increasingly prevalent in 

mechanical engineering applications like automotive, 

aerospace, optics, robotics, and machinery [1, 2]. In the 

automotive sector, these materials are utilized for creating 

intricate components such as gears, racks, wheels, 

bearings, transmission pinions, valve seats, and more [3]. 

They offer several advantages in these applications, 

including excellent formability, moldability, good 

mechanical properties, affordability, lightweight, high 

resistance to corrosion and wear, durability in aggressive 

environments, noiseless operation without the need for 

lubrication, dimensional stability, and rigidity [3–5]. 

Consequently, they provide a compelling alternative to 

traditional metals, reducing production costs in various 

applications. In plastics processing, extrusion is a 

commonly employed method for both thermoplastics and 

thermosets. Mass production typically involves molding 

techniques for engineering plastics. However, components 

produced via shaping processes (like molding and 

forming) often necessitate additional machining to meet 
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industry requirements for dimensional accuracy and 

surface quality [1,3, 6, 7]. 

Several studies have delved into the machining of 

various engineering plastics [8–10]. Jasper et al. [8] 

examined the turning of glass fiber reinforced plastic 

(GFRP) considering standard cutting parameters (𝑉𝑐 , 𝑓, 

and𝑎𝑝). Their experimental results, obtained through a 

Taguchi 𝐿9 experimental design, reveal that the feed 

primarily influences surface roughness. Additionally, 

cutting speed emerges as the key factor affecting 

machining time, while depth of cut is the primary control 

parameter impacting material removal rate (𝑀𝑅𝑅). Madić 

et al. [11, 12] employed artificial neural networks 

(ANNs), the simplex method, improved harmony search 

algorithm (IHSA), and Taguchi 𝐿27 design to model and 

optimize the surface roughness (𝑅𝑎) when turning PA-6 

polyamide. The authors suggest that minimal surface 

roughness is likely achieved when the three classical 

cutting parameters (𝑉𝑐 , 𝑓, and 𝑎𝑝) are kept small, and the 

other tool parameter (𝑟ɛ) is set to a larger value. 

In the literature on machining polymer materials, 

Chabbi et al. [13, 14] conducted an empirical and 

statistical investigation to assess the impact of cutting 

parameters (𝑉𝑐 , 𝑓, and𝑎𝑝) when turning POM-C. They 

used a comprehensive factorial design (𝐿27) and the 

carbide cutting tool SCMN 120408 (K10) for their 

experiments. The parameters under scrutiny were 𝑅𝑎, 

Fi,𝑃𝑐, and𝑀𝑅𝑅, with statistical analysis relying on RSM, 

ANN, and DF techniques. In summary, the results revealed 

that surface roughness is predominantly affected by the 

feed, contributing 66.41%, followed by 𝑎𝑝 at 19.70%, with 

𝑉𝑐having a lesser impact. In contrast, tangential cutting 

force (𝐹𝑍) is influenced by both 𝑎𝑝 and 𝑓, contributing 

45.41% and 31.09%, respectively. The third response, 𝑃𝑐, 

is determined by three factors: 𝑎𝑝, 𝑓, and 𝑉𝑐 , contributing 

47.81%, 30.50%, and 12.63%, respectively. In a recent 

study, Bertolini et al. [7] examined the surface quality of 

biomedical-grade polyetheretherketone (PEEK) using dry 

and cryogenic turning processes. The study demonstrated 

that cryogenic turning consistently results in superior 

surface quality compared to the dry state. To understand 

the impact of two factors, 𝑉𝑐  and 𝑓, on 𝑅𝑎 and 𝑅𝑡 during 

the turning of glass fiber reinforced plastic (GFRP) and 

polyetherketone reinforced with 30% glass fiber (PEEK 

GF 30), Paulo Davim et al. [15, 16] conducted statistical 

analyses (ANOVA). All experimental tests and survey 

results highlighted that the feed is the primary factor 

influencing the arithmetic mean roughness 𝑅𝑎, 

contributing 65.9% and 99.1%, respectively. 

In the literature, several studies [17–21] have explored 

the impact of machining conditions on engineering 

plastics, focusing on output parameters like surface 

texture, cutting temperature, material removal rate, viscous 

deformation, crystallinity rate, cutting forces, and cutting 

power. A recent study by Azzi et al. [17] determined that 

the optimal parameters for minimizing𝑅𝑎and maximizing 

𝑀𝑅𝑅 during the turning of polytetrafluoroethylene 

polymer (PTFE) are 𝑎𝑝 =  2 𝑚𝑚, 𝑓 =  0.126 𝑚𝑚/𝑟𝑒𝑣, 

and 𝑉𝑐 =  270 𝑚/𝑚𝑖𝑛. They found that the key influencer 

for the quantities of interest (𝑅𝑎, 𝑅𝑧, and 𝑀𝑅𝑅) is the 

feed, with contributions of 90.02%, 91.81%, and 49.22%, 

respectively. Furthermore, Lazarević et al. [22] employed 

analysis of variance (ANOVA) and the Taguchi 𝐿27 

method to optimize cutting parameters (𝑉𝑐 , 𝑓, 𝑎𝑝,and 𝑟ɛ) 

when turning PA-6 polyamide. The primary objective was 

to minimize arithmetic roughness 𝑅𝑎, with the factors 

ranked in terms of significance as 𝑓, 𝑟ɛ, and 𝑎𝑝. The 

impact of interactions and cutting speed 𝑉𝑐  was found to be 

negligible. Jagtap et al. [23] delved into the effect of 

turning parameters on the surface flatness of both nylon 

and polypropylene. Their findings highlighted that the feed 

is the most influential factor for flatness in both polymers. 

Despite this, the minimum flatness value for 

polypropylene (10.7 μm) remains lower than that of nylon 

(16.65 μm). Similarly, Keddeche et al. [24] presented a 

statistical analysis of three output parameters: surface 

roughness, cutting forces, and cutting temperature, during 

dry turning of polyethylene pipes (HDPE-100 and HDPE-

80) using GC3015 carbide inserts (K10). They utilized 

Taguchi 𝐿9 design and ANOVA to ascertain the effect of 

cutting parameters (𝑉𝑐 , 𝑓, and 𝑎𝑝) on these responses. 

Decreasing the feed leads to improvements in all three 

surface parameters for both types of polyethylene (𝑅𝑎, 𝑅𝑡, 

and 𝑅𝑧), while increasing cutting speed results in a 

decrease in all three cutting force components (𝐹𝑟, 𝐹𝑎, and 

𝐹𝑧). Additionally, the depth of cut was found to 

significantly influence cutting temperature. In a recent 

study, Hamdi et al. [25] demonstrated that feed (𝑓) and the 

use of minimal quantity lubrication (MQL) are two 

independent factors that influence specific cutting energy 

(SCE) consumption during CNC turning of unreinforced 

polypropylene (PP). 

 

Nevertheless, few papers have been made to investigate 

the effect of cutting conditions, on output parameters 

during polymer turning. So far, the influence of cutting 

tool parameters (𝑟ɛ and 𝑋𝑟) on the turning of 

polyoxymethylene POM-C have not been studied. 

Therefore, the main objective of this paper was to study 

the effect of cutting parameters (𝑉𝑐 , 𝑓, 𝑎𝑝, 𝑟ɛ, and 𝑋𝑟) on 

machined part quality (𝑅𝑎), cutting force (𝐹𝑍), cutting 

power (𝑃𝑐) and productivity (𝑀𝑅𝑅) in POM-C polyacetal 

turning. The measured values of the responses were used 

to determine the four mathematical models by the artificial 

neural network approach (ANN). The latter was coupled 

with K-fold cross validation to give more reliability to 

ANN models. In the last part, these models were integrated 

with the Multi-Objective Artificial Hummingbird 

Algorithm (MOAHA) to optimize the cutting conditions to 

maximize productivity (𝑀𝑅𝑅) and minimize other 

responses (𝑅𝑎, 𝐹𝑍, and 𝑃𝑐). In the next paragraph, the 

experimental method will be presented. 

2. Experimental procedure 

2.1. Workpiece material, cutting insert and tool holder 

Turning operations for assessing surface roughness, 

cutting forces, and cutting power were performed on 

POM-C polyoxymethylene workpieces sourced from 

Ensinger. These workpieces had an 80 mm diameter and a 

300 mm length. Polyacetal, a semi-crystalline 

thermoplastic, boasts impressive characteristics, including 

excellent corrosion resistance, low moisture absorption, 

high abrasion resistance, and a balanced combination of 

toughness, wear resistance, and rigidity. POM-C's 
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qualities, like strong dimensional stability and resistance to 

stress, make it a versatile material suitable for various 

applications, including the production of intricate 

components like gears, contacting rollers, bearings, and 

wheels. You can find mechanical and thermal properties of 

this lightweight material in Table 1. 

Table 1. Mechanical and thermal properties of POM-C polyacetal 

Properties Values Standards 

Density 1.41 g/cm3 DIN EN ISO 1183 

Tensile modulus of 

elasticity 

2800 MPa DIN EN ISO 527-2 

Flexural modulus of 

elasticity 

2600 MPa DIN EN ISO 178 

Resistance to traction 67 MPa DIN EN ISO 527-2 

Resistance to flexion 91 MPa DIN EN ISO 178 

Brinell hardness 165 MPa ISO 2039-1 

Melting temperature 166 °C DIN 53765 

Operating 

temperature 

100 °C DIN 53765 

Heat conductivity 0.39 W/m*k ISO 22007-4 :2008 

The machine-tool used in the experimental tests was a 

"TOS TRENCIN" parallel lathe, model SN40C with equal 

spindle power of 6.6 kW. Furthermore, two carbide inserts 

SPMR 120304 (𝑟ɛ =  0.4 𝑚𝑚) and SPMR 120308 (𝑟ɛ =
 0.8 𝑚𝑚) from the company Dormer Pramet were used in 

order to perform the three-dimensional cutting operations. 

Machining this type of material requires strongly positive 

cutting angle values. Moreover, two tool holders were 

employed to mount the inserts, the designation according 

to ISO is CSDPN 2525M12 (𝑋𝑟 =  45°) and CSBPR 

2525M12 (𝑋𝑟 =  75°). 

2.2. Measurement configuration 

The arithmetic mean roughness (𝑅𝑎) is measured by a 

Mitutoyo Surftest-201roughness meter equipped with a 

stylus diamond tip of radius 5 µ𝑚. Furthermore, evaluation 

length 𝐿𝑛 = 2,4 𝑚𝑚, Gaussian filter and cut-off 𝜆𝐶  =
 0,8 𝑚𝑚were used. Each test was characterized by three 

measurements in different locations separated by an angle 

of 120° and the average value was taken to give more 

reliability to the results. The tangential cutting force was 

measured with a Kistler piezoelectric dynamometer (model 

9257B), the latter was connected by a multi-channel 

charge amplifier (type 5011B). Figure1 summarizes the 

procedures followed to carry out this paper. 

2.3. Design of experiments (DOE) 

In the turning process, an important number of 

independent variables influence one or more responses, 

i.e., the cutting parameters variables, the cutting tool 

parameters and those of the machined part. In this paper, 

the machining parameters chosen were as follows: cutting 

speed (𝑉𝑐), feed (𝑓), depth of cut (𝑎𝑝), tool nose radius (𝑟ɛ), 

and cutting edge angle (𝑋𝑟). The selected factors and their 

levels are shown in Table2. The cutting conditions ranges 

have been selected from the recommendations of cutting 

tool manufacturer Dormer Pramet and POM-C 

manufacturer Ensinger. In order to fix and reduce the 

number of experiments compared to the full factorial 

design (FFD), the Taguchi multifactorial method (𝐿16  =
 43 × 22) was chosen.This technique reduces the time and 

cost of carrying out experiments. 

Table 2. Cutting conditions and their levels 

 Level 1 Level 2 Level 3 Level 4 

𝑉𝑐 (𝑚/𝑚𝑖𝑛) 240 300 360 420 

𝑓(𝑚𝑚/𝑟𝑒𝑣) 0.08 0.14 0.20 0.24 

𝑎𝑝(𝑚𝑚) 0.8 1.6 2.4 3.2 

𝑟ɛ(𝑚𝑚) 0.4 0.8 − − 

𝑋𝑟(°) 45 75 − − 

3. Results and discussion 

The experimental results of 𝑅𝑎 (µ𝑚), 𝐹𝑍(𝑁), 𝑃𝑐, and 

𝑀𝑅𝑅 corresponding to the levels of the selected cutting 

parameters (𝑉𝑐 , 𝑓, 𝑎𝑝, 𝑟ɛ, and 𝑋𝑟) following the Taguchi 

L16 design are shown in Table 3. The material removal rate 

(𝑀𝑅𝑅 in 𝑐𝑚3/𝑚𝑖𝑛) and cutting power (𝑃𝑐 in 𝑊) are 

calculated by equations. 1 and 2. 

𝑀𝑅𝑅 = 𝑉𝑐 × 𝑓 × 𝑎𝑝                                             (1) 

𝑃𝑐  =
𝐹𝑧 × 𝑉𝑐

60
                                                                (2) 

According to Table 3, the minimum and maximum 

values of the experimental results vary between 0.60 𝜇𝑚 to 

5.05 𝜇𝑚 for 𝑅𝑎, 13.56 𝑁to 113.04 𝑁for 𝐹𝑍, 15.36 

𝑐𝑚3/𝑚𝑖𝑛to 192.00 𝑐𝑚3/𝑚𝑖𝑛for 𝑀𝑅𝑅, and 54.24 𝑊to 

527.80 𝑊for 𝑃𝑐.Experiment number 13 exhibits the most 

favorable combination of acceptable values for 𝑅𝑎, 𝐹𝑧, 𝑃𝑐, 

and 𝑀𝑅𝑅. These results are employed in sections devoted 

to analysis of variance (ANOVA), modeling, and 

optimization. Consequently, a comprehensive discussion 

and detailed analysis will follow. 

3.1.  Statistical analysis using ANOVA 

ANOVA is a statistical method that follows probability 

and mathematics rules to provide an analysis and 

interpretation of experimental data. The main purpose of 

this mathematical tool is to verify the validity of the 

models. Moreover, this approach allows to determine the 

influence of the input parameters on the response 

variation. ANOVA was performed with a 95% confidence 

interval (significance level: 𝛼 =  0.05 =  5%). A model, 

independent variable or interaction can be significant or 

not when the probability value 𝑝is [26–29]: 

 If the value of 𝑝 ≤  0.05, the parameter is significant, 

 If the value of 𝑝 >  0.05, the parameter is insignificant. 
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Figure 1. Flowchart of the experimental configuration 

Table 3. Experimental results of 𝑅𝑎(µ𝑚), 𝐹𝑍 (𝑁), 𝑀𝑅𝑅 (𝑐𝑚3/𝑚𝑖𝑛),and 𝑃𝑐(𝑊) as a function of cutting conditions 

 

N 

Input factors Output parameters 

𝑉𝑐 𝑓 𝑎𝑝 𝑟ɛ 𝑋𝑟  𝑅𝑎 𝐹𝑍 𝑀𝑅𝑅 𝑃𝑐 

1 240 0.08 0.8 0.4 45 2.47 13.56 15.36 54.24 

2 240 0.14 1.6 0.4 45 3.10 45.65 53.76 182.60 

3 240 0.20 2.4 0.8 75 2.15 80.71 115.20 322.84 

4 240 0.24 3.2 0.8 75 2.92 113.04 184.32 452.16 

5 300 0.08 1.6 0.8 75 1.01 24.20 38.40 121.00 

6 300 0.14 0.8 0.8 75 1.30 25.30 33.60 126.50 

7 300 0.20 3.2 0.4 45 4.00 105.56 192.00 527.80 

8 300 0.24 2.4 0.4 45 5.05 88.67 172.80 443.35 

9 360 0.08 2.4 0.4 75 1.35 38.22 69.12 229.32 

10 360 0.14 3.2 0.4 75 2.35 75.30 161.28 451.80 

11 360 0.20 0.8 0.8 45 2.52 24.90 57.60 149.40 

12 360 0.24 1.6 0.8 45 2.99 65.30 138.24 391.80 

13 420 0.08 3.2 0.8 45 0.60 59.71 107.52 417.97 

14 420 0.14 2.4 0.8 45 1.32 60.12 141.12 420.84 

15 420 0.20 1.6 0.4 75 3.27 49.14 134.40 343.98 

16 420 0.24 0.8 0.4 75 3.98 35.25 80.64 246.75 

Tables 4–6 describe the ANOVA of the dependent variables (𝑅𝑎, 𝐹𝑍, and 𝑃𝑐) in terms of the independent variables (𝑉𝑐, 𝑓, 𝑎𝑝, 𝑟ɛ, and𝑋𝑟). 

3.1.1. Surface roughness (𝑅𝑎) 

 
The quality of precision mechanical parts relies heavily 

on the surface finish achieved through various machining 

processes. In this context, the key parameter for evaluating 

the quality of parts produced through well-defined edge 

processes, like turning, is the arithmetic mean roughness 

𝑅𝑎. Analyzing the ANOVA results for 𝑅𝑎 in Table 4 

reveals that the most influential factor impacting surface 

roughness is the feed, contributing over 50%. The nose 

radius 𝑟ɛ is the second most significant factor, with a 

32.25% contribution. As for the other parameters, cutting 

speed 𝑉𝑐  and cutting edge angle 𝑋𝑟 are statistically 

significant but have relatively modest effects, contributing 

2.40% and 3.86%, respectively. Interestingly, 𝑎𝑝 does not 

significantly affect 𝑅𝑎. These findings align with those 

reported by Chabbi et al. [13, 14] during their study on 

POM-C turning. Furthermore, Pradeep Allu et al. [30] 

observed similar results when turning AISI 52100 hard 

steel.

Input parameters : 
 Cutting speed (Vc), 
 Feed rate (f), 
 Depth of cut (ap), 
 Nose radius (rɛ), 
 Major cutting  
 edge angle (Xr). 

o SPMR 120304, 
o SPMR 120308. 

 

o CSDPN 2525M12, 

CSBPR 2525M12. 

Turning of POM–C 

Measured 
𝑅𝑎 

Calculated 𝑃𝑐 and 𝑀𝑅𝑅 Measured 
𝐹𝑧 

Statistical analysis 

ANN Modeling ANOVA MOAHA Optimization 

Validation tests 
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3.1.2. Tangential force (Fz) 

 

In this paper, the study and evaluation of the cutting 

mechanical actions during the turning of polyacetal POM-

C is represented by the tangential cutting force (𝐹𝑍) and 

the cutting power (𝑃𝑐). The results of the ANOVA for𝐹𝑍 

are presented in Table5. This table shows that the depth of 

cut is the first factor influencing 𝐹𝑍 by a percentage of 

66.48%, followed by the feed with a contribution of 

28.69%, while the cutting speed is the last significant 

parameter with a low percentage of 3.21%. The other two 

input parameters are not significant because these 

probability values are greater than 0.05. According to 

Laouissi et al. [31], these results are in agreement with the 

theory that correlates the cutting force 𝐹𝑍 with the two 

factors 𝑎𝑝 and 𝑓respectively. In this regard, similar results 

were found by Nouioua et al. [32] when turning 

X210CR12 steel with minimum quantity lubrication 

(MQL). Along these lines, Laouissi et al. [33] reported that 

the cutting force is largely influenced by the three factors 

𝑎𝑝, 𝑓, 𝑉𝑐 , and the interaction (𝑎𝑝 ×  𝑓) when turning EN-

GJL-250 gray iron with coated and uncoated silicon nitride 

ceramics (Si3N4). 

3.1.3. Cutting power (𝑃𝑐) 

 

The analysis of variance of the cutting power 𝑃𝑐 is 

given in Table 6. Through this table, the contribution of 

the depth of cut is the highest (67.81%), which shows that 

it is the factor that most influences the 𝑃𝑐 response. The 

next factor influencing the cutting power is the feed𝑓, 

followed by the cutting speed 𝑉𝑐 , with contributions of 

20.57% and 6.09%, respectively. Regarding the cutting 

tool parameters, it can be seen that both factors (𝑟ɛand 𝑋𝑟) 

have a non-significant effect, i.e., a sum of contribution 

less than 2%. Comparison of the ANOVA results for 𝐹𝑍 

and 𝑃𝑐clearly shows that these two responses are affected 

by the same input parameters (𝑎𝑝, 𝑓, and 𝑉𝑐). The same 

conclusion was found by Chabbi et al. [13, 14]and 

Laouissi et al. [34]. 

3.2. ANN-based modeling 

A neural network is an adaptable system that can learn 

relationships through repeated exposure to data and is 

capable of generalizing to new, previously unseen 

data[35]. The idea behind ANNs is to emulate the brain's 

functioning to solve technical problems that may not be 

solvable using other methods, as noted by Svorcan et al. 

[36]. Thus, ANN serves as a decision support tool [37]. 

The use of ANNs has reduced the development time and 

enhanced the flexibility of the studied system [38]. In the 

realm of mechanical material removal processes, the ANN 

algorithm is the most commonly used artificial intelligence 

approach, according to Panadiyan et al. [39]. It is a 

sophisticated mathematical and computer science method 

that establishes a mathematical relationship between a 

response variable (𝑌) and one or more independent 

variables (𝑋𝑖, where 𝑖 can be 1, 2, ..., 𝑛). In recent years, 

researchers in various fields, such as prediction of friction 

stir welding [40], hard turning[41], turning process[42], 

machine condition monitoring[43], drilling process [44], 

electrical discharge machining process [45], extensively 

use ANN modeling, which underlines the importance of 

this mathematical technique in material removal 

machining. 

Table 4. ANOVA for 𝑅𝑎 

Source DF SC MC F Prob. Cont.% Remarks 

𝑉𝑐 1 0.5379 0.5379 7.31 0.022 2.40 Significant 

𝑓 1 13.0238 13.0238 177.02 <0.0001 58.05 Significant 

𝑎𝑝 1 0.0361 0.0361 0.49 0.499 0.16 Insignificant 

𝑟ɛ 1 7.2361 7.2361 98.35 <0.0001 32.25 Significant 

𝑋𝑟 1 0.8649 0.8649 11.76 0.006 3.86 Significant 

Residual 10 0.7357 0.0736     

Cor total 15 22.4346      

Table 5. ANOVA for 𝐹𝑍 

Source DF SC MC F Prob. Cont.% Remarks 

𝑉𝑐 1 433.5 433.52 23.17 0.001 3.21 Significant 

𝑓 1 3871.3 3871.28 206.94 <0.0001 28.69 Significant 

𝑎𝑝 1 8972.5 8972.48 479.62 <0.0001 66.48 Significant 

𝑟ɛ 1 0.2 0.23 0.01 0.913 0.00 Insignificant 

𝑋𝑟 1 31.1 31.11 1.66 0.226 0.23 Insignificant 

Residual 10 187.1 18.71     

Cor total 15 13495.7      

Table 6. ANOVA for 𝑃𝑐 

Source DF SC MC F Prob. Cont.% Remarks 

𝑉𝑐 1 19743 19743 16.19 0.002 6.09 Significant 

𝑓 1 66724 66724 54.71 < 0.0001 20.57 Significant 

𝑎𝑝 1 220027 220027 180.42 <0.0001 67.81 Significant 

𝑟ɛ 1 374 374 0.31 0.592 0.12 Insignificant 

𝑋𝑟 1 5389 5389 4.42 0.062 1.66 Insignificant 

Residual 10 12195 1220     

Cor total 15 324452      
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ANNs consist of three interconnected layers: the input 

layer, the hidden layer, and the output layer (see 

figure2)[46]. The input layer is where the factor values are 

introduced. The hidden layer processes the relationships 

between the independent variables from the previous layer. 

The output layer presents the results of the intermediate 

layer as mathematical equations. The back propagation 

algorithm (BPA) based on gradient descent is used during 

the network learning stage. The hyperbolic tangent 

function (𝑓) is the activation function employed in this 

study. The ideal neural architecture for the three responses 

is 5-3-1, meaning it has an input layer with 5 nodes, a 

single hidden layer with 3 nodes, and an output layer with 

1 node. This configuration helps the model effectively 

capture essential features, process them, and provide 

accurate responses. The balanced architecture ensures 

optimal performance for the specific problem being 

addressed. The activation function is crucial for ANN, as it 

determines their ability to model a system. 

 
Figure 2. Artificial neural network architecture. 

 

3.2.1. ANN with K-fold cross validation  

After training an ANN model on labeled data, it is 

assumed to work on new data. However, it is important to 

ensure the accuracy of the model predictions in 

production. To do this, it is necessary to validate the 

model. The validation process involves deciding whether 

the numerical results quantifying the hypothesized 

relationships between the variables are acceptable as 

descriptions of the data.      

One of the techniques used to test the effectiveness, 

performance and quality of an ANN model is K-fold cross 

validation. Furthermore, this method is a re-sampling 

procedure to evaluate a model even with limited data [47]. 

The K-Fold technique is simple to understand, and 

particularly popular. Compared to other Cross-Validation 

approaches, it generally results in a less biased model. This 

is because this method ensures that all observations in the 

original data set have a chance to appear in both the 

training and test sets. Therefore, in case of limited input 

data, it constitutes one of the best approaches. According 

to Ming et al. [48], the ANN model with K-fold cross-

validation gives a better prediction result compared to the 

stand-alone ANN model. 

The first step of this technique is to separate the data 

set randomly into K-fold. Thus, the procedure has a single 

parameter called 𝐾 referring to the number of groups into 

which the sample will be divided. In this perspective, the 

choice of the value of 𝐾 is determined according to the 

length of the dataset (neither too low nor too high) [49]. In 

our case, 𝐾 =  4, i.e., the dataset of our study will be 

divided into 4 sections (see figure3). Then, in turn, we 

learn on a fold and test on the others. The process is 

repeated until each K-fold serves within the training set. 

The average of the recorded scores is the performance 

metric of the model. 

 
Figure 3. Choice of the K value according to the length of the 

dataset. 

The obtained mathematical models of 𝑅𝑎, 𝐹𝑍, 𝑃𝑐, and 

𝑀𝑅𝑅 as a function of the input parameters (𝑉𝑐 , 𝑓, 𝑎𝑝, 𝑟ɛ, 

and 𝑋𝑟) using the ANN technique with K-fold cross 

validation and their coefficients of determination (𝑅2) are 

presented by equations3–6. The 𝑅2 values are very close to 

unity (𝑅2 = 0.99 for all four models). This means that the 

models developed by the ANN technique with K-fold 

cross validation are statistically significant, which 

demonstrates a strong correlation between the 

experimental data and the prediction results. 

3.2.2. Comparison between experimental and ANN 

predicted values 

Figure 4 shows the comparison between the 

experimental values of the responses (𝑅𝑎, 𝐹𝑍, and 𝑃𝑐) and 

the results predicted by the ANN mathematical models. 

This comparison confirms the strong correlation between 

the experimental data and the predicted values as all points 

are very close. The mean absolute percentage error 

(MAPE) values of the dependent variables (𝑅𝑎, 𝐹𝑍, and 𝑃𝑐) 

are 3.82%, 6.49% and 5.96% respectively. Thus, these 

ANN models can be used to predict the values of the 

previous four responses within the range of the turning 

parameters selected in Table 2. 

3.2.3. Validation tests 

 

In general, the experimental values used to build the 

model have errors. These are passed on to the model 

coefficients and then to the values calculated by the model. 

To this end, four additional experimental validation tests 

were performed to verify the quality and performance of 

the models developed by ANN. The cutting conditions are 

selected within their range in Table 2. From the results 

shown in Table 7, the values of the absolute prediction 

error (APE) are in the ranges 2.61%-17.51% for the 

surface roughness 𝑅𝑎, 4.19%-8.01% for the cutting force 

𝐹𝑍, 0.24%-8.16% for the cutting power 𝑃𝑐 and 0.44%-

19.26% for the material removal rate 𝑀𝑅𝑅. These results 

confirm the performance and reliability of the four models 

to predict new results within the range of cutting 

conditions when turning POM-C, as shown in Table 2. 
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𝑅𝑎 = 0.80328𝐻1 − 0.86417𝐻2 + 3.42147𝐻3 + 3.35752                                                                                     (3) 
𝑅𝑅𝑎

2 = 0.99986 
 
Where: 

{

𝐻1 = 𝑡𝑎𝑛ℎ(0.5(− 0.00768𝑉𝑐 + 3.7979𝑓 − 0.651𝑎𝑝 − 1.3423𝑟𝜀 + 0.03102𝑋𝑟 + 2.6805))

𝐻2 = 𝑡𝑎𝑛ℎ(0.5( 0.0072𝑉𝑐 + 1.16324𝑓 − 0.3428𝑎𝑝 − 1.3113𝑟𝜀 + 0.0654𝑋𝑟 − 5.84277))

𝐻3 = 𝑡𝑎𝑛ℎ(0.5(0.00154𝑉𝑐 + 10.791𝑓 + 0.04807𝑎𝑝 − 2.5646𝑟𝜀 − 0.0034𝑋𝑟 − 1.58929))

 

 

𝐹𝑍 = 53.45295𝐻1 − 16.55734𝐻2 − 66.0027𝐻3 + 78.24948                                                                              (4) 

𝑅𝐹𝑍
2 = 0.99871 

 
Where: 

{

𝐻1 = 𝑡𝑎𝑛ℎ(0.5( 0.00766𝑉𝑐 + 7.47738𝑓 + 0.72136𝑎𝑝 + 0.22988𝑟𝜀 − 0.01906𝑋𝑟 − 4.79437))

𝐻2 = 𝑡𝑎𝑛ℎ(0.5(− 0.01345𝑉𝑐 − 2.21095𝑓 − 0.03403𝑎𝑝 + 0.42603𝑟𝜀 − 0.01573𝑋𝑟 + 5.95418))

𝐻3 = 𝑡𝑎𝑛ℎ(0.5(0.01129𝑉𝑐 − 3.48000𝑓 − 0.383260𝑎𝑝 − 0.09641𝑟𝜀 − 0.01290𝑋𝑟 − 1.338630))

 

 
𝑃𝑐 = 91.08569𝐻1 + 24.8929𝐻2 − 202.17399𝐻3 + 256.54684                                                                          (5) 
𝑅𝑃𝑐

2 = 0.99823 

 
Where: 

{

𝐻1 =  𝑡𝑎𝑛ℎ(0.5(−0.01964𝑉𝑐 + 17.37462𝑓 + 0.86084𝑎𝑝 + 3.61084𝑟𝜀 − 0.00163𝑋𝑟 + 0.71254))

𝐻2 =  𝑡𝑎𝑛ℎ(0.5(0.0031𝑉𝑐 −  42.05361𝑓 +  0.40851𝑎𝑝 −  4.0589𝑟𝜀  −  0.01432𝑋𝑟  +  9.31397))

𝐻3 = 𝑡𝑎𝑛ℎ(0.5(−0.01548𝑉𝑐 − 15.48985𝑓 − 1.83108𝑎𝑝 + 0.37149𝑟𝜀 − 0.00058𝑋𝑟 + 11.01791))

 

 
𝑀𝑅𝑅 = 49.84269𝐻1 − 26.60189𝐻2 + 52.33127𝐻3 + 116.69902                                                                    (6) 
𝑅𝑀𝑅𝑅

2 = 0.99967 
 
Where: 

{

𝐻1 = 𝑡𝑎𝑛ℎ(0.5(−0.00416𝑉𝑐 + 26.89733𝑓 + 2.059770𝑎𝑝 − 5.12039𝑟𝜀 − 0.03902𝑋𝑟 − 2.9736))

𝐻2 = 𝑡𝑎𝑛ℎ(0.5(− 0.01778𝑉𝑐 − 36.76325𝑓 + 2.16955𝑎𝑝 + 1.52437𝑟𝜀 + 0.07314𝑋𝑟 + 1.67983))

𝐻3 = 𝑡𝑎𝑛ℎ(0.5(0.01638𝑉𝑐 + 6.105990𝑓 + 2.50916𝑎𝑝 +  5.19089𝑟𝜀 + 0.04886𝑋𝑟 − 17.37715))

 

 
Table 7. Results of confirmatory tests 

 

N° 

 

  𝑉𝑐 

 

𝑓 

 

𝑎𝑝 

 

𝑟ɛ 

 

𝑋𝑟 

Experi 

results 

Predic 

results 

APE (%) 

Surface roughness 𝑅𝑎 (µ𝑚) 

1 320 0.16 1 0.4 75 2.59 2.6767 3.23 

2 380 0.18 2 0.8 75 1.73 1.4721 17.51 

3 280 0.18 1.2 0.4 45 3.72 3.8198 2.61 

4 400 0.22 0.8 0.8 45 2.2 2.6347 16.49 

Cutting force 𝐹𝑍 (𝑁) 

1 320 0.16 1 0.4 75 30.55 32.1737 5.04 

2 380 0.18 2 0.8 75 63.65 58.9278 8.01 

3 280 0.18 1.2 0.4 45 33.88 35.4849 4.52 

4 400 0 .22 0.8 0.8 45 36.59 35.1175 4.19 

Cutting power 𝑃𝑐(𝑊) 

1 320 0.16 1 0.4 75 162.93 177.4177 8.16 

2 380 0.18 2 0.8 75 403.11 384.8545 4.74 

3 280 0.18 1.2 0.4 45 158.1 158.4932 0.24 

4 400 0 .22 0.8 0.8 45 243.93 229.1617 6.44 

Material removal rate 𝑀𝑅𝑅(𝑐𝑚3/𝑚𝑖𝑛) 

1 320 0.16 1 0.4 75 51.2 42.9287 19.26 

2 380 0.18 2 0.8 75 136.8 136.1979 0.44 

3 280 0.18 1.2 0.4 45 60.48 66.5560 9.12 

4 400 0 .22 0.8 0.8 45 70.4 71.8761 2.05 
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3.3. Cutting parameters optimization by MOAHA 

This section deals with the muti-objective optimization 

of cutting conditions in POM-C polyacetal turning that 

lead to near optimal values of two or more responses. The 

empirical ANN models presented in the previous section 

were used as objective functions. First, constraints on the 

cutting conditions (𝑉𝑐 , 𝑓, 𝑎𝑝, 𝑟ɛ, and 𝑋𝑟) were added to the 

models to confirm that the results are physically 

significant. In this way, a new metaheuristic optimization 

algorithm called Multi-Objective Artificial Hummingbird 

Algorithm (MOAHA) was used. Therefore, the ANN 

models developed for 𝑅𝑎, 𝐹𝑍, 𝑃𝑐, and 𝑀𝑅𝑅 were 

incorporated into the MOAHA algorithm to optimize the 

cutting conditions. 

The artificial hummingbird algorithm (AHA) has been 

inspired by the foraging behaviors of hummingbirds in 

nature [50]. It should be noted that this algorithm has been 

extended to deal with multi-criteria problems by Zhao et 

al. [51]. Where the authors include three components (an 

external archive, a dynamic elimination-based crowding 

distance, and a solution update mechanism) for this 

purpose. The original version of AHA is based on three 

main procedures: guided foraging, territorial foraging and 

migration foraging. In this paper, a multi-objective AHA 

(MOAHA) is introduced for optimizing the multi-objective 

machining process during the turning operation. The steps 

of the MOAHA for this purpose are provided in figure5. 

The MOAHA presents several advantages compared to 

other algorithms applied in multi-objective optimization. 

Some of these advantages include solution diversity, 

adaptability, fast convergence, efficient resource 

utilization, robustness, and ease of implementation.It is 

important to note that the benefits of an algorithm often 

depend on the specific context of the application. 

However, MOAHA is recognized for its robust 

performance in various multi-objective optimization 

problems. 

3.3.1. 𝑅𝑎 and 𝑀𝑅𝑅 optimization 

Figure6 show the values of cutting conditions that 

minimize surface roughness (𝑅𝑎) and maximize 

productivity (𝑀𝑅𝑅). The optimal cutting conditions 

removed according to this table and figure are 𝑉𝑐 =
359.99 𝑚/𝑚𝑖𝑛, 𝑓 = 0.09 𝑚𝑚/𝑟𝑒𝑣, 𝑎𝑝 = 2.4 𝑚𝑚, 𝑟ɛ =
0.8 𝑚𝑚, and 𝑋𝑟 = 75°. In this sense, the optimal values of 

these two objective functions are 0.62 µ𝑚 and 67.09 

𝑐𝑚3/𝑚𝑖𝑛 respectively. Moreover, this figure clearly 

shows a proportional relationship between the two 

responses (𝑅𝑎 and 𝑀𝑅𝑅). 

3.3.2. 𝐹𝑧 and 𝑀𝑅𝑅 optimization 

 
The couple optimization of 𝑀𝑅𝑅 and 𝐹𝑍 responses are 

presented by figure 7. The cutting conditions to maximize 

the objective function 𝑀𝑅𝑅 and minimize the other 

function are 𝑉𝑐 = 360 𝑚/𝑚𝑖𝑛, 𝑓 = 0.19 𝑚𝑚/𝑟𝑒𝑣, 𝑎𝑝 =
1.35 𝑚𝑚, 𝑟ɛ = 0.4 𝑚𝑚, and 𝑋𝑟 = 75°. Therefore, the 

optimal values of these two objective functions are 14.29 

𝑁 and 113.54 𝑐𝑚3/𝑚𝑖𝑛 respectively. Also, this figure 

shows the same previous relationship between the two 

responses (𝑀𝑅𝑅 and 𝑅𝑎), which is due to the same 

objective considered by the two functions 𝑅𝑎 and 𝐹𝑍 

(minimization). 

 

 

 
Figure 4. Comparison between the experimental values of the 

responses (𝑅𝑎, 𝐹𝑍, and 𝑃𝑐) and the results predicted by the ANN 

models. 

The couple optimization of the 𝑅𝑎 and 𝑃𝑐 responses are 

presented by figure8. The cutting conditions to minimize 

the two objective functions are as follows: 𝑉𝑐 =
360 𝑚/𝑚𝑖𝑛, 𝑓 = 0.08 𝑚𝑚/𝑟𝑒𝑣, 𝑎𝑝 = 2.13 𝑚𝑚, 𝑟ɛ =
0.8 𝑚𝑚, and 𝑋𝑟 = 75°. Thus, the optimal values of 𝑅𝑎 

and 𝑃𝑐 are 0.6 µ𝑚 and 152.46 𝑊respectively. However, 

this figure clearly shows an inversely proportional 

relationship between these two criteria variables, which is 

due to the opposition of these two endogenous variables. 

3.3.3. Combinatorial optimization of the 4 objectives 
 

The optimization of cutting conditions has become a 

crucial topic in most material removal machining 

processes. Indeed, the complexity of this part lies in the 

important number of piloting parameters. Therefore, the 

goal of this part is to integrate the objectives of the four 

machining indicators (𝑅𝑎, 𝐹𝑍, 𝑃𝑐, and 𝑀𝑅𝑅) at the same 

time to determine the optimal cutting parameters. The 

MOAHA algorithm will be the effective tool of intelligent 

computing to search for a compromise between several 

quantities of interest during POM-C turning. 

MAPE = 3.82% 

MAPE = 5.96% 

MAPE = 6.49% 
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The results of the MOAHA optimization are shown in 

Table 8. Examination of this table gives the following 

optimal cutting conditions: cutting speed 𝑉𝑐 =
250.58 𝑚/𝑚𝑖𝑛, feed𝑓 =  0.08 𝑚𝑚/𝑟𝑒𝑣, depth of cut 

𝑎𝑝 = 1.31 𝑚𝑚, nose radius 𝑟ɛ = 0.8 𝑚𝑚 and cutting 

edge angle 𝑋𝑟 = 75°. In this case, the response values are 

𝑅𝑎 = 0.6 µ𝑚, 𝐹𝑍 = 21.51 𝑁, 𝑃𝑐 = 60.24 𝑊and 𝑀𝑅𝑅 =
26.38 𝑐𝑚3/𝑚𝑖𝑛. In this way, the approach developed by 

ANN-K-Fold-MOAHA is very effective to optimize the 

cutting conditions of POM-C turning and to predict the 

dependent variables (𝑅𝑎, 𝐹𝑍, 𝑀𝑅𝑅, etc). 

Initialize the 

hummingbird food

source position 

Calculate the fitness values 

to find the best food source  

Guided foraging Migration foraging

No

Display the pareto front 

for:  Ra , MRR, Fz, and Pc Yes

Territorial foraging

Update the archive

Start

End

Specifying required input 

parameters of the 

MOAHA: np, tmax, D, Lmin , 

Lmax and 

number of archives 

t > tmax 

ANN
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Pc

f
ap

 Vc 

Modeling step 

Optimization procdure with MOAHA

re

Xr
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Figure 5. MOAHA for optimization of machining parameters. 

 
Figure 6.𝑅𝑎 and 𝑀𝑅𝑅 couple optimization by the MOAHA 

algorithm. 

 
Figure7.𝐹𝑍 and 𝑀𝑅𝑅 couple optimization by the MOAHA 

 
Figure 8.𝑅𝑎 and 𝑃𝑐 couple optimization by the MOAHA algorithm. 
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Table 8. MOAHA optimization results 

N°  𝑉𝑐 𝑓 𝑎𝑝 𝑟ɛ 𝑋𝑟 𝑅𝑎 𝐹𝑍 𝑀𝑅𝑅 𝑃𝑐 

1 250.58 0.08 1.31 0.8 75 0.60 21.51 26.38 60.24 

2 270.86 0.08 1.63 0.8 75 0.61 29.66 37.76 117.89 

3 270.91 0.08 1.63 0.8 75 0.62 29.73 37.88 118.21 

4 345.84 0.10 1.99 0.8 75 0.63 37.75 70.28 222.73 

5 324.30 0.10 1.77 0.8 75 0.74 34.23 60.19 185.10 

6 359.99 0.11 1.69 0.8 75 0.8 31.99 69.98 204.40 

7 360 0.13 1.69 0.8 75 1.08 36.90 81.72 224.75 

4. Conclusions 

The objective of this study is to evaluate the influence 

of cutting conditions (𝑉𝑐 , 𝑓, 𝑎𝑝, 𝑟ɛ,and 𝑋𝑟) on four 

quantities of interest (𝑅𝑎, 𝐹𝑍, 𝑃𝑐, and 𝑀𝑅𝑅) when turning 

POM-C polyacetal. Statistical analysis (ANOVA) and 

artificial neural network (ANN) with K-fold cross 

validation approach were used. Thus, the objective is to 

optimize the cutting conditions in an intelligent way by 

using a new multi-objective optimization algorithm 

(MOAHA). The conclusions obtained in this investigation 

are shown below: 

 The analysis of variance (ANOVA) of the quantity of 

interest 𝑅𝑎 indicates that the feed 𝑓 is the first factor 

determining this roughness parameter with a 

contribution greater than 50%, followed by 𝑟ɛ, 𝑋𝑟, and 

𝑉𝑐 . Their contributions are 32.25%, 3.86% and 2.40%, 

respectively. Moreover, the use of cutting inserts of 

large nose radius 𝑟ɛ and a large main direction angle 𝑋𝑟 

of tool holder improves the surface roughness. 

 The mechanical actions of the cut (𝐹𝑍 and 𝑃𝑐) are only 

influenced by the classical input parameters (𝑉𝐶, 𝑓, and 

𝑎𝑝). Therefore, the cutting tool parameters (𝑋𝑟 and 𝑟ɛ) 

are not significant on the cutting force 𝐹𝑍 and cutting 

power 𝑃𝑐. The first factor affecting the two previous 

responses is the depth of cut (𝑎𝑝) with a contribution of 

66.48% and 67.81% respectively, followed by the two 

factors 𝑓 and 𝑉𝐶. 

 The K-fold cross validation technique is one of the best 

approaches used to test the efficiency, performance and 

quality of an ANN mathematical model even with 

limited data. Indeed, the ANN model with this method 

gives a better prediction result compared to the 

standalone ANN model. 

 The roughness (𝑅𝑎), cutting force (𝐹𝑧), cutting power 

(𝑃𝑐) and material removal rate (𝑀𝑅𝑅) models were 

established by the ANN method with K-fold cross 

validation. All four models are reliable and in good 

agreement with the experimental results to estimate the 

new results in the range of cutting conditions variation. 

 The four ANN models were integrated with the 

MOAHA algorithm to optimize the five cutting 

conditions. The results found are as follows: 𝑉𝑐 =
250.58 𝑚/𝑚𝑖𝑛, 𝑓 = 0.08 𝑚𝑚/𝑟𝑒𝑣, 𝑎𝑝 = 1.31 𝑚𝑚, 

𝑟ɛ = 0.8 𝑚𝑚, and 𝑋𝑟 = 75°. In this case, the response 

values are 𝑅𝑎 = 0.6 µ𝑚, 𝐹𝑍 = 21.51 𝑁, 𝑃𝑐 =
60.24 𝑊, and 𝑀𝑅𝑅 = 26.38 𝑐𝑚3/𝑚𝑖𝑛. 

 The ANN-MOAHA coupling is an effective artificial 

intelligence tool for finding a good choice of cutting 

conditions between several quantities of interest from a 

minimum of experiments. This approach is 

recommended in the use of industrial mechanics 

applications in order to estimate the quality of the 

machined parts and to optimize the parameters of the 

machining processes by chip removal. 

 Future directions involve implementing the Minimum 

Quantity Lubrication (MQL) technique for machining 

POM-C. Additionally, the aim is to assess their 

sustainability by determining other dependent 

parameters such as carbon emissions (CO2), total 

turning cost (𝐶𝑡𝑜𝑡𝑎𝑙),), total cutting energy 

(𝐸𝑡𝑜𝑡𝑎𝑙),…etc. 
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