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Abstract 

In the present research, electric discharge machining (EDM) was performed on Inconel 625, a nickel-based superalloy by 

mixing graphite micro powder in dielectric fluid during machining. A Box-Behnken type RSM design was constructed for 

the experimental work varying five input parameters viz. current, pulse on time, duty cycle, powder concentration and mesh 

size of the powder to study their effects on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR). 

Further, back propagation type artificial neural network (ANN) was developed, trained and tested with the experimental data. 

Multi response desirability function was applied to the RSM model to maximize MRR, optimize TWR at a stipulated target 

value and minimize SR. The analysis of the experimental result indicates that current and powder concentration have the 

extreme influence on all the three responses.The obtained ANN model provides a mean error of prediction as 5.95%, 7.30% 

and 6.40% for MRR, TWR and SR respectively. The overall R value of the model is found as 0.945 which indicates that the 

ANN model is adequate to predict the responses for other combination of input parameters. From the desirability function 

analysis, the optimized value of MRR, TWR and SR are found as 26.135 mm3/min, 0.0800 mm3/min and 5.81 µm at current 

= 8.6 A, pulse on time = 35 µs, duty cycle = 0.5, powder concentration = 8 g/l and mesh size at 35 µm. The study of surface 

characterization of the Inconel 625 samples have been performed using AFM, SEM and XRD analysis. The AFM and SEM 

study revealed that the surface irregularities and the width of microcracks increase continuously with the increase of current. 

© 2023 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

In recent days, the demand for non-ferrous superalloys is 

increasing rapidly because of their light weight compared to 

ferrous alloy and magnificent mechanical properties. Inconel is 

a nickel-based ferrous alloy which is used in different 

engineering sectors such as aerospace, gas turbine 

manufacturing, nuclear power plant and automotive [1]. The 

high tensile strength, hardness, fatigue life and nearly zero 

corrosion rate made this alloy so demanding in these 

manufacturing industries. Inconel is also used in high-

temperature applications since it retains almost all the 

mechanical properties at the elevated temperature [2]. With the 

increase of demand, the processing of materials needs to be 

more efficient for enhancing productivity [3]. Since the 

conventional way of Inconel processing is pretty poor, many 

non-conventional machining processes are used to cut the 

material. Electric discharge machining (EDM) is one of the 

convenient way that is highly used for Inconel processing [4]. 

EDM is a non-conventional machining process where 

material is removed by applying a series of high-energy 

electrical sparks at the gap of the electrode and the work 

surface. The high-energy spark generates temperature beyond 

the melting point of the material. The high temperature melts 

and removes the materials by forming a small crater on the 

surface [5]. In this process, no mechanical contact is 

established between the tool and the workpiece which makes it 

advantageous to machine any difficult to cut materials [6, 7]. 

However, the rate of material removal is very low and the 

surface unevenness is very high compared to conventional 

machining processes [8]. Several researches are performed to 

overcome the challenges like addition of different 

technologies, parametric optimization and many more. Powder 

mixed electric discharge machining (PMEDM) is a new 

technology which is proven efficient to improve the machining 

quality and material removal rate. In this process, tiny little 

electrically conductive particles are mixed with dielectric fluid 

used in EDM and applied before the machining. During the 

process, the particles arrange themselves in the form of chains 

at the spark gap. When the voltage is applied between the 
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electrode and workpiece, the particles get electrically induced 

and start discharging with move in a random path. This 

enhances the thermal conductivity of the dielectric medium and 

widen the spark gap when the main spark is applied [9]. 

Several local sparks along with the main spark increase the 

material removal rate, surface roughness and tool wear rate 

during the machining. Several researches have been conducted 

on powder mixed electric discharge machining and found that 

the MRR, surface roughness and surface morphological 

characteristics are enhanced with different combination of 

process parameters. Majumdar et al. [10] studied the effect of 

graphene nano powder on Inconel 625 during the PMEDM. 

Three process parameters such as current, powder 

concentration and pulse on time have been selected as process 

parameters and studied their effects on MRR. The result 

indicates that the maximum MRR was found at a graphene 

concentration of 0.4 weight %. Talla et al. [11] analyzed the 

PMEDM study on Inconel 625 with three different powders 

viz. graphite, silicon and aluminium. MRR, surface roughness, 

microhardness and overcut have been studied in this research. 

In the result, the best MRR was found during the graphite 

mixed EDM whereas the best surface quality, microhardness 

and least overcut have been found during silicon mixed 

EDM.A research was conducted where silicon powder of mesh 

size 10 µm is mixed with EDM oil at 2g/l concentration and 

applied on AISI H13 steel [12]. In the study, it is found that the 

surface heterogeneity was significantly reduced and thickness 

of the white layer became thinner compared to the normal 

EDM. Kolli and Kumar [13] performed an investigation where 

graphite powder and span 20 surfactant were added with EDM 

oil and applied on Ti-6Al-4V alloy for EDM. The result shows 

that the discharge current and powder concentration mostly 

affect the MRR and tool wear rate whereas the surface 

roughness and the recast layer thickness (RLT) are affected by 

current and surfactant concentration. Another two studies 

associated with powder mixed EDM [14, 15] were performed 

by aiming the changes of surface characteristics, surface 

integrity and formation of micro-cracks after machining. 

Titanium nano powder mixed dielectric fluid with the 

concentration of 2 g/l was applied during the machining of 

AISI D2 steel and found that the MRR and surface roughness 

were increased and decreased by 69% and 35% respectively 

for the discharge current of 6A to 12A respectively. In the 

second research, carbon nanofiber was added to hydrocarbon 

based dielectric oil at 0 to 0.28 g/l concentration and applied on 

RB- SiC material for micro EDM. It is observed that the 

addition of carbon nano fiber helps to reduce the tool 

concavity, micro-cracks and crater diameter of the surfaces. 

Talla et al. [16] did multi response optimization using Grey-

Relation Analysis during the cutting of Aluminium/Alumina 

metal matrix composites (MMC) using Al powder (45 µm) 

mixed kerosene oil. The concentrations of the powder were 

chosen from 0 to 10 g/l. The study revealed that the high MRR 

and low surface roughness can be achieved when the 

parameters were chosen as powder concentration at 6 g/l, 

current at 3A, pulse on time at 150 µs and duty cycle at 85%. 

Anitha et al. [17] have used artificial neural network to predict 

and optimize the EDM process parameters during the 

machining of AISI D2 steel. In this study, the maximum MRR 

and minimum SR have been found as 51.58 mm3/min and 0.14 

µm respectively. 

Moreover, a research was conducted where magnetic field 

is applied during PMEDM of aluminium 6061 alloy [18]. In 

addition to PMEDM, a magnetic field of intensity 0 to 0.458T 

was applied with aluminium mixed dielectric during cutting. 

As a result, it was found that the MRR was increased and TWR 

was decreased with the increase of magnetic field and powder 

concentration. Sahu and Datta [19] investigated the effects of 

graphite on the surface morphology of Inconel 718 and 

compared with normal EDM. The study revealed that the 

maximum MRR and SR were achieved at 30A and 20A 

respectively. Also the white layer thickness increases slightly 

during PMEDM compare to normal EDM. The effects of 

graphite powder were found efficient for micro EDM in two 

researches [20,21]. It was observed that the addition of 

graphite in kerosene increased the MRR and reduced the 

surface roughness by 30.9% and 28.3% respectively whereas 

addition with EDM oil in wire cut EDM increased the MRR 

and spark gap by maximum 33% to 159% respectively. Wong 

et al. [22] did a different research by developing near mirror 

finish surface with addition of graphite and silicon powder. 

The current was kept at 2A and found that the addition of 

powder improved the surface quality by placing small, shallow 

and uniform crates on the machined surface. In a similar 

approach, Xie et al. [23] had performed a special EDM process 

where TiC coating were imposed on steel using graphite mixed 

dielectric. The tribological properties like friction and wear 

were measured and observed that beside the friction and wear, 

the coating thickness and microhardness increased by addition 

of graphite powder compared to normal coating. 

Recently, different mathematical and predictive models 

using the concept of machine learning become popular and 

they are used in the field of manufacturing for mathematical 

analysis. The RSM desirability functions have been used in a 

study to minimize the corrosion rate of Aluminium based 

composite with the optical setting of input parameters [24]. 

The result shows that the accuracy of the RSM desirability 

function is more than 90% to optimize the corrosion rate. 

Rahimi and Fazlollahtabar [25] applied genetic algorithm and 

particle swarm optimization to optimize the closed loop green 

supply chain network and compared the two optimization 

techniques. It was found that genetic algorithm is more 

efficient than particle swarm optimization technique with 

respect to relative percentage deviation and solution time. In 

EDM also, several models have been employed and found 

efficient for prediction of data. Artificial Neural Network 

(ANN) was applied in a study of SKD 11 tool steel machining 

using EDM [26]. In this study, Elman neural network was used 

to predict the surface roughness and found the mean square 

error and R value as 0.31355 and 0.999 respectively. Apart 

from EDM, Hayajneh and Abdellahia [27] applied gene 

expression programming (GEP) to predict the performance of 

an end milling parameters. Out of several GEP model applied 

for the study, the maximum R2 and minimum mean square 

error came as 0.928 and 0.268 respectively which determines 

the model can be accepted. Ayun et al. [28] applied particle 

swarm algorithm (PSO)to optimize the injection moulding 

process parameters and the result shows that the parameter 

shrinkage and warpage has been improved by 2.4233%. In 

another research, fuzzy predictive models were also employed 

to predict the responses in EDM process. Adaptive neuro-fuzzy 

inference system (ANFIS) and Mamdani based fuzzy logic 

were developed in two experimental results [29, 30] during the 

EDM of Inconel 718. The ANFIS based fuzzy logic predicted 

the MRR, surface roughness and TWR with the accuracy of 

95.55%, 97.82% and 90.35% respectively. Whereas, the 

mamdani based fuzzy logic with linear membership function 

predicted the MRR and surface roughnesswith the accuracy of 

89.21% and 91.23% respectively. 

 

The study of literatures shows that there is no significant 

research work which analyzed the effect of mesh size of 

graphite powder on the responses. In this study, graphite micro 

powder was added to EDM oil dielectric fluid at three different 

concentrations of 2 g/l, 5 g/l and 8 g/l and applied during the 

machining of Inconel 625. Along with powder concentration, 

otherinput parameters such as current, pulse on time, duty 

cycle and powder mesh size were selected in three different 

levels. Box-Behnken type RSM was used to prepare the 

experimental table which consists 46 number of experimental 
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run. The effects of the process parameters were investigated on 

material removal rate (MRR), tool wear rate (TWR) and 

surface roughness (SR). Further, a three layer artificial neural 

network (ANN) was developed using the experimental result. 

Multi response desirability function was used to obtain the 

optimize MRR, TWR and SR. Finally, the generated machine 

surface was analyzed by FESEM and XRD to investigate the 

surface morphology and phase transformation. 

2. Experimentation 

2.1.  Selection of workpiece, electrode and powder material 

Inconel 625 has been selected for workpiece material in this 

study. It is a nickel based supperalloy that contains around 

60% nickel 20% chromium. The chemical composition of the 

alloy was analyzed by Positive Material Identification testing 

machine (Makers: Thermo Fisher, Model: XL 2 800, Sr. No: 

76526) and listed in Table 1. It has very high tensile strength, 

hardness and thermal conductivity compared to ferrous alloy. 

The mechanical, electrical and thermal properties of the 

material are shown in Table 2. The square plate of Inconel 625 

having thickness 1.27 mm has been cut into small pieces of 

size 15 mm × 15 mm using wire EDM. Before machining, the 

samples were cleaned with acid solution followed by water. 

Further they were polished by emery paper (grade 1000) for 10 

minutes to remove the dust particles and oil film. In this 

experiment, copper round bar with 99.5% purity was selected 

for the electrode material. The diameter and length of the 

round bar were 12 mm and 100 mm respectively.  

Graphite micro powder was added with Carol EDM oil 

dielectric fluid before conducting the experiment and stirred 

thoroughly before initiating the discharge. Three size of 

powder particles were used here viz. 15 µm, 25 µm and 35 µm. 

The properties of graphite micro powders are listed in Table 3. 

The mass of the graphite micro powders of each mesh size was 

measured and then it is mixed in EDM oil.  

Table 1. Alloying element percentage of Inconel 625. 

Element Ni Fe Cr Ti Mo Nb 

% 62.1 4.79 21.30 0.1 8.11 3.68 

Table 2. Properties of Inconel 625. 

Properties Density Tensile 

Strength 

Hardness Melting 

Point 

Thermal 

Conductivity 

Electrical 

resistivity 

Specific 

heat 

Units kg/m3 MPa (Brinell) 0C W/mK µΩ/m J/g 0C 

Values 8440 992.9 210 1320 9.86 1.26 0.402 

Table 3.  Properties of graphite powder. 

Properties Density Melting 

Point 

Thermal 

Conductivity 

Electrical 

conductivity 

Specific 

heat  

Units kg/m3 0C W/mK µΩ-1/cm J/g 0C 

Values 1300 4550 0.25 500 0.714 

2.2. Experimental set up 

The experiments were conducted in die sinking type electric 

discharge machine (Model: ENC 20 of 400 × 250 

manufactured by Reliable Enterprises, Maharastra, India) with 

a special arrangement installed inside its dielectric chamber. 

The special arrangement consists a tank made by acrylic plate 

having a capacity of 50 liters. Two metallic plates are attached 

by nut and bolt at the bottom surface to establish the electrical 

connect between workpiece and the tank. Additionally, one 

submerged pump and a stirring mechanism are attached in the 

tank. The submerged pump is required for continuous flushing 

of the material at the machining area. The stirring mechanism 

having a motor attached fan blade is used to stir the dielectric 

fluid continuously. To ensure homogeneity, the stirrer 

continuously rotates during the machining. During the 

experiment, 12.12 L EDM oil was stored inside the tank. Then 

graphite powder of proper mesh size and required amount was 

mixed with EDM oil and stir it for one hour before machining. 

The photographic view of the setup is shown in Fig. 1(a) and 

the schematic representation is shown in Fig. 1(b). 

 

 
Figure 1. Experimental setup of graphite mixed EDM (a) photographic 

view (b) schematic view 
F 

2.3.  Selection of input parameters and responses 

The machining characteristics are largely affected by 

several electrical and powder related input parameters. In this 

particular experiment, five input parameters were selected with 

three levels out of which, three were electrical and two were 

powder related parameters. The parameters are current (I), 

pulse on time (Pon), duty cycle (DC), powder concentration 

(Cp) and mesh size (m). Based on the machining capacity and 

availability of powders, the minimum, intermediate and 

maximum level of each input parameter were chosen. Table 4 

represents the input parameters and their levels. Box- Behnken 

Design (BBD) of response surface methodology (RSM) was 

used to construct the plan of experiments. The BBD design 

provides a high order quadratic model with small number of 

experimental run compared to other design of the RSM model. 

According to the scheme of BBD design, the number of 

experimental runs consist only the midpoints of the cube 

edges. No center points and axis points are present in it like 

central composite design or other models [31]. Along with that, 

the variance of the model is uniform in design space. For 5 

factor BBD design, total 40 edge points and 6 center points 

have been considered and the L46 array of design has been 
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developed. The MINITAB 17 software has been used to 

construct the experimental table. 

Table 4. Input parameters with their levels. 

Input Parameter Unit 
Low 

level 

Intermediate 

Level 

High 

Level 

Current (I) A 4 8 12 

Pulse on time (Pon) µs 35 55 75 

Duty Cycle (DC)  0.5 0.7 0.9 

Powder concentration 
(Cp) 

g/l 2 5 8 

Mesh Size (m) µm 15 25 35 

After the experiment, three responses were measured for 

each sample and listed their values in Table 5; they are the 

material removal rate (MRR), surface roughness (SR) and tool 

wear rate (TWR). MRR represents the productivity of the 

machining which is determined by measuring the volume of 

material removal per unit time.TWR represents the 

consumption of electrode which is measured as the amount of 

tool eroded per unit time while machining. In this study, the 

MRR and TWR were measured using Eq. 1 and Eq. 2 

respectively and expressed in terms of mm3/min. The SR is the 

vertical unevenness of the machined surface measured from a 

mean line. SR relates the quality of machining and the texture 

of the newly developed surface. The center line average (CLA) 

or Ra  surface roughness was measured in this study by a stylus 

type precision profilometer (model name: Talyor Hobson, 

Surtronic 3+). In each surface, three measurements were taken 

and the mean value of the measurements was listed in Table 5. 

Atomic force microscopy (AFM) was also used to measure the 

precise value of surface roughness of three samples machined 

at three different levels of current.  

𝑀𝑅 =  

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒 𝑏𝑒𝑓𝑜𝑟𝑒
 𝑎𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 ×1000

𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ×𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

              (1) 

𝑇𝑊𝑅 =  

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑜𝑙 
𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 ×1000

𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑔 𝑡𝑖𝑚𝑒 ×𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 𝑜𝑓 𝑡𝑜𝑜𝑙 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

                                             (2) 

In this study, the density of Inconel 625 was taken as 8.44 

g/cm3 and density of the copper was taken as 8.83 g/cm3. The 

machining time for each sample was kept constant at 15 

minutes. 

2.4.  RSM modeling and Multi response optimization  

Response surface methodology (RSM) was introduced by 

Box and Wilson on 1951. It is used mainly to optimize 

different manufacturing, production and chemical processes. 

The approach of RSM is initiated with developing an 

experimental design consideringinput parameters and their 

levels. Further, the experiments are conducted using the design 

and the responses are measured. The RSM analysis provides a 

quadratic mathematical model which consists the linear, square 

and interaction terms of the input parameters and develops a 

second order regression equation as shown in Eq. 3 [32].Beside 

the equation, it generates response surfaces with contour plots 

over the interaction plane of two input parameters. The 

response surface determines the effect of input parameters and 

their interactions on responses. Beside this, the quadratic 

model helps to predict data at different combination of input 

parameters other than the experimental run.  

𝑌 =  𝛽0 +  ∑ 𝛽𝑖 
5
𝑖=1 𝑥𝑖 + ∑ 𝛽𝑖𝑖 

5
𝑖=1 𝑥𝑖𝑖

2 +
∑ ∑ 𝛽𝑖𝑗

4
𝑗=1 (𝑗 ≠𝑖)

5
𝑖=1 𝑥𝑖𝑥𝑗  +  ε                                                    (3) 

In this equation, Y is response, β0 is the fitted value of the 

centre point response, βi, βii, βij are the coefficients of linear, 

quadratic and interaction terms of the regression, xi, xj are 

coded input parameters and ε is the error coupled with the 

model. 

Multi response optimization is another mathematical 

technique which derives the optimal solution of the responses 

for a particular set of values of the input parameters. It is done 

based on the multiple desired goal of responses imposed in the 

model. RSM is one of the simple mathematical approach which 

does not require any complicated equation. In this study, 

desirability function approach is used by conjugating three 

objectives such that the optimization provides maximum MRR, 

minimum TWR and minimum SR. Initially, a desirability 

function di(yi) is derived from the regression equation yi for 

each response. Eq. 4 and Eq. 5 depict two methods to calculate 

desirability function when the optimization is performed 

between the minimum and maximum value of the regression 

equation. In Eq. 4, di(yi) is calculated when the response is to 

be maximized. However, to minimize the response, Eq. 5 is 

used. In both the equations, Ui and Lirepresent the upper and 

lower value of ith regression equation. Further, if a response is 

to optimize at a target value, the Ui for maximization and Li for 

minimization will be replaced by target value (Ti). In this way, 

the desirability functions generated from the individual 

responses are then simply multiplied to obtain composite 

desirability function (D) as shown in the Eq. 6. Further, D is 

maximized and the optimal result is obtained. 

𝑑𝑖(𝑦𝑖) =  
𝑦𝑖−𝐿𝑖

𝑈𝑖−𝐿𝑖
                                                                 (4) 

𝑑𝑖(𝑦𝑖) =  
𝑦𝑖−𝑈𝑖

𝐿𝑖−𝑈𝑖
                                                                 (5) 

𝐷 = (∏ 𝑑(𝑦𝑖
𝑛
𝑖=1 ))1/𝑛                                                     (6) 

Presently, yi is the regression equation of ith response, and 

d(yi) is the desirability function of it. D is the overall 

desirability function. n is the number of responses.  

2.5. Mathematical model using artificial neural network 

Artificial neural network (ANN) is a part of deep learning 

process used to predict an output after a rigorous training of 

similar type data. The basic structure of neural network was 

constructed based on the human nervous system. Like the main 

unit of the nervous system, this network also consists of 

several neurons connecting to other set of neurons with a 

mathematical relationship [33]. The scheme of the ANN model 

is shown in Fig. 2.In this model, the circles represent the 

neurons and they are connected by the straight lines called 

synapses. The synapses are assigned by a weight factor. One 

neurons receive signal from other neuron by multiplying the 

signal weight factor. The network consists at least three layers 

viz. one input layer, one output layers and on hidden layer. 

However, multiple hidden layers may be used based on the 

requirement of the model. For the requirement of the present 

study, a three layer neural network has been constructed where 

the input layers and output layer consist 5 and 3 neurons 

respectively. Since a very large and too small number of 

neurons reduce the accuracy of prediction, the hidden layer has 

been constructed with 20 neurons. This number has been 

considered after making several trials.  
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Figure 2. Three layer based neural network for predicting the 

responses 

ANN is basically a statistical and mathematical model 

where the responses are predicted after several training of the 

model with an experimental data set [33]. In this method, a set 

of data point for each input parameter is assigned in the 

neurons of input layers. Now the values (also called signal) are 

transferred to the next layer by multiplying the weight factor 

allotted by the model itself. Each neuron of the hidden layer 

receives the input as a sum of the weighted signal coming from 

every neuron of input layer. Further, the signal received by the 

neuron of hidden layer is activated by an activating function 

and transferred to next layer (output layer in this case) again by 

multiplying a weight factor. Finally, the neuron of the output 

layer generates the predicted response by converting the 

received signal in to output training function. It is quite 

obvious the output signals will not match with the actual 

values of responses. Hence, the mean square error (MSE) is 

calculated between actual and predicted. If the error is found 

large, the feedback will be received by the network and it 

changes the weight factor in each synapse and repeat the 

training process further. This complete cycle consisted of 

training of the network, MSE measurement, feedback 

generation and backpropagation is called an epoch. The 

network is performing its computation till it reaches the 

specified number of epoch or a value of MSE whichever is 

achieved earlier. Six activation functions viz. Hyperbolic 

tangent sigmoid function, denoted (tansig) Log-sigmoid 

function, denoted by (logsig), Linear function (purelin), 

Positive linear function (rectilin), Conjugate gradient with 

Polak-Ribiére (CGP) and One-step secant (OSS) are 

commonly used in hidden layers. However, the selection of 

activation function solely depends on the nature of problem, 

non-linear complex relationship between input and output and 

the number of data point [34].  

The accuracy of the network is measured by calculating the 

mean error followed by percentage relative error between 

actual data and the predicted data. During the network 

modeling, 2/3rd of the total experimental data were selected as 

training data and 1/3rddata were further tested by it [35]. 

Testing is performed with the remaining data after completion 

of training and the predicted result was compared with the 

actual data. The relative error was calculated by Eq. 7 and the 

mean error is calculated by Eq. 8. 

%𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
(𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎)×100

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎
   (7) 

𝑀𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 =  
∑ % 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡
                               (8) 

3. Result and Analysis 

The result of the present experiment has been presented in 

Table 5 by enlisting the measured values of all the three 

responses. From the Table 5, it can be observed that the 

maximum values of MRR, TWR and SR are 30.772 mm3/min, 

0.2039 mm3/min and 12.33 µm respectively whereas the 

minimum values are 2.204 mm3/min, 0.0129 mm3/min and 

3.12 µm respectively. The main aspects of this discussion are 

limited to parametric analysis, accuracy of the ANN model, 

multi objective optimization using desirability function and 

surface characterization. 

3.1. Analysis of responses 

3.1.1. Effect on MRR 

Material removal rate (MRR) is one of the important 

parameter to measure the machinability of a process as it is 

directly proportional to the rate of productivity. In industrial 

application, MRR needs to be maximized to enhance the 

production. In the Fig. 3(a), the variations of MRR are shown 

against their mean values with respect to the input parameters. 

It can be observed the MRR varies notably with current, 

powder concentration and mesh size. Also in the Fig. 3(a),the 

variation of MRR is found maximum in case of change in 

current from lower to higher level. From Table 5, the average 

of MRR values for lower, intermediate and higher level can be 

calculated as 4.732 mm3/min, 18.379 mm3/min and 27.217 

mm3/min respectively. However, it is found that the 

enhancement from low level to intermediate level with respect 

to intermediate level is 74.25% and intermediate level to high 

level with respect to intermediate level is 48.08%. It indicates 

the rate of enhancement is higher for changing the current from 

lower to intermediate compare to the changing of current 

between intermediate to higher level. The principal reason of 

increasing MRR is the enhancement of energy transfer rate on 

the surface. Material is melted and vaporized at a higher rate 

due to the high energy transfer. Now, high energy transfer 

occurs mainly due to increase of the current which directly 

provides more energy to the discharges. On the other hand, the 

increase of concentration adds more graphite particle in 

dielectric. The concentrated graphite particles thus emits more 

local discharges and utilize the spark energy uniformly over 

the machining surface.Along with this, increase of graphite 

concentration in the dielectric fluid increases the electrical 

conductivity of the solution. Graphite particles are arranged in 

a chain from electrode to workpiece surface at different 

locations which provides a varying conductivity over the 

machining region and creates additional discharges from each 

chain. With the increase of graphite particles the number of 

chains and thus conductivity increase which lead to the 

enhancement of discharges.  As a result, the removal of 

material increases compared to the removal rate at lower 

powder concentration. The mesh size of the graphite particles 

plays an interesting role in changing of MRR. In the Fig. 3(a), 

it can be seen that the MRR decreases when mesh size 

increases from 15 µm to 25µm and increases slightly till 35 

µm. The rate of mixing with dielectric for small particles are 

better than large particles. Therefore the small particles can 

effectively take part on local discharging compared to large 

particles and removes materials from the surfaces. However a 

little large particle can induce and discharge high energy spark 

as it has high surface area. Therefore, the MRR increases 

slightly when the mesh size changes from25 µm to 35 µm. 
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Table 5. Experimental result for MRR, TWR and SR. 

Run 

no. 
Current 

Pulse on 

Time 

Duty 

Cycle 

Powder 

Concentration 

Powder 

mesh size 
MRR TWR SR 

 (A) (µs)  (g/l) (µm) (mm3/min) (mm3/min) (µm) 

1 8 55 0.7 5 25 16.659 0.0797 9.08 

2 8 75 0.5 5 25 18.780 0.0810 9.99 

3 12 55 0.7 5 35 29.068 0.1627 8.50 

4 8 55 0.9 5 35 20.468 0.0882 8.34 

5 8 55 0.7 2 35 16.736 0.0574 10.32 

6 8 55 0.7 5 25 18.602 0.0763 8.86 

7 8 35 0.7 8 25 16.563 0.0680 7.41 

8 4 55 0.7 8 25 3.989 0.0190 4.67 

9 12 35 0.7 5 25 28.919 0.1493 12.33 

10 12 55 0.7 8 25 29.452 0.1419 9.11 

11 8 75 0.9 5 25 15.450 0.0921 9.08 

12 8 55 0.7 2 15 19.879 0.0863 8.69 

13 12 75 0.7 5 25 27.923 0.1654 10.39 

14 8 55 0.9 2 25 16.983 0.0762 8.69 

15 8 55 0.7 8 15 23.324 0.0664 9.58 

16 8 55 0.9 5 15 21.771 0.0782 8.46 

17 12 55 0.7 5 15 30.772 0.1656 11.56 

18 8 35 0.5 5 25 12.994 0.0861 8.74 

19 4 55 0.9 5 25 4.404 0.0157 4.20 

20 8 35 0.7 5 15 14.739 0.0881 9.53 

21 8 55 0.5 8 25 20.468 0.0728 8.29 

22 8 55 0.7 5 25 18.697 0.0991 6.72 

23 12 55 0.5 5 25 23.697 0.1738 11.62 

24 8 75 0.7 5 15 27.921 0.0685 9.55 

25 4 55 0.7 5 35 4.333 0.0249 3.12 

26 4 55 0.5 5 25 4.542 0.0132 4.10 

27 8 55 0.7 5 25 20.024 0.0823 7.58 

28 8 35 0.9 5 25 13.586 0.0813 9.57 

29 8 55 0.9 8 25 23.726 0.0775 7.13 

30 8 55 0.5 5 15 19.431 0.0650 10.79 

31 12 55 0.7 2 25 20.472 0.2039 10.93 

32 8 55 0.5 5 35 16.055 0.0998 6.74 

33 8 75 0.7 2 25 17.546 0.0789 9.86 

34 8 55 0.5 2 25 12.576 0.0737 10.98 

35 8 55 0.7 8 35 20.438 0.0642 7.81 

36 8 75 0.7 8 25 20.201 0.0781 7.43 

37 8 35 0.7 2 25 15.521 0.0991 8.28 

38 4 55 0.7 2 25 6.536 0.0884 6.12 

39 8 55 0.7 5 25 16.543 0.0944 10.14 

40 4 35 0.7 5 25 2.204 0.0159 4.60 

41 8 55 0.7 5 25 19.589 0.0775 8.66 

42 4 75 0.7 5 25 7.701 0.0261 4.53 

43 4 55 0.7 5 15 4.147 0.0129 3.92 

44 12 55 0.9 5 25 27.429 0.1886 10.76 

45 8 75 0.7 5 35 8.672 0.0713 10.14 

46 8 35 0.7 5 35 27.429 0.0827 7.90 
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Figure 3. Main effect plot of (a) MRR (b) TWR and (c) SR 

 

3.1.2. Effect on TWR 

Tool wear rate (TWR) is directly related to the consumables 

required for the machining. In mass scale production, the aim 

of the machining should be reducing the tool wear. In EDM, 

tool or electrode has high thermal conductivity so that the 

temperature of the tool surface must not increase significantly. 

The tool wear phenomenon is associated with the removal of 

the metal from the surface of tool. In EDM, the tool wear 

occurs due to the melting and vapourization of the tiny material 

from the tool electrode due to the rise of temperature beyond 

the melting point at certain portions of the surface. The transfer 

of thermal energy is the main reason behind the increase of 

temperature of the surface. When the electrode is discharging 

and electrons are flowing through the plasma channels, the 

positive ions are moving opposite direction towards electrode 

surface and transfer heat energy on it. But the presence of 

graphite particles in the dielectric disrupts the movement of 

positive ions due to their zig zag motion during their 

discharges[36].The movement of particles and their discharges 

deflect the route of positive ions towards the surface and 

slowdowns the tool wear. In Fig. 3(b), it can be seen that TWR 

increases significantly with the increase of current. Whereasthe 

tool wear rate is constant with the increase of graphite powder 

concentration from 2 g/l to 5 g/l and decreased for 5 g/l to 8 

g/l.This phenomenon can be explained as the disruption of 

positive ions are very low during the change of concentration 

from 2 g/l to 5 g/l and it is very high at 5 g/l to 8 g/l because 

more graphite particles enhance the disruption in better way. 

Along with that the increase of electrical conductivity with the 

increase of powder concentration induces more current in the 

plasma column. Due to which, the temperature of the tool 

surface increases and the tool wear rate increases. However, 

the conjugate action of these two phenomenon makes the TWR 

constant in the first section and lower down at the second 

section. The changes of tool wear for other three parameters 

are found less significant in this study. Like MRR, the 

variation of TWR is maximum in case of change in current 

from lower to higher level shown in the Fig. 3(b). From Table 

5, the average of TWR values for lower, intermediate and 

higher level can be calculated as 0.0170 mm3/min, 0.0800 

mm3/min and 0.1690 mm3/min respectively. However, it is 

found that the enhancement from low level to intermediate 

level with respect to intermediate level is 78.65% and 

intermediate level to high level with respect to intermediate 

level is 111.99%. Unlike MRR, it indicates that the rate of 

enhancement is lesser for changing the current from lower to 

intermediate compare to the changing of current between 

intermediate to higher level.  

3.1.3. Effect on SR 

The quality of surface generated during machining is one of 

the important criterion for the quality production. It is quite 

normal that the surface roughness increases with increase of 

MRR. In EDM, the surface is generated by melting and 

vaporization of the material. When the materials melts and 

removes from surface, it leaves a small concave shaped crater 

on the surface. Moreover, the melted material further deposits 

on the freshly generated surface in the form of recast layer and 

the distribution of this layer is not uniform. These are two 

major reasons of getting high surface roughness. In the 

Fig.3(c), the variation of surface roughness SR has been shown 

with respect to the increase of input parameters. The major 

influences have been investigated for current, powder 

concentration and powder mesh size. SR remarkably increases 

with increase of current but decreases with graphite 

concentration and graphite mesh size. The increase of current 

removes the material at a faster rate which increases the crater 

depth by removing more material from a particular area. This 

contributes to enhance the peak to valley distance of a 

particular point. Whereas the high concentration of graphite 

powder distributes the spark uniformly over the surface. This 

increases the number of spark at the different region of the 

(a) (b) 

(c) 
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cutting surface. Due to which, more number of craters are 

generated in unit areas due to removal of material. The craters 

get overlapped as their density in the unit area increase which 

leads to reduce their depth and inside unevenness. The 

reduction in crate depth and unevenness therefore reflected on 

the surface roughness to reduce. However, large mesh size 

reduces the energy density of the particles at the discharged 

region. Due to these, the craters on the machined surface get 

shallower compared to the discharge of small meshed graphite 

particle. This leads to a reduction in surface roughness 

observed on the sample after the machining. The pulse on time 

and duty cycle has less effect on surface roughness. Normally 

surface roughness increases with increase of pulse on time as 

higher pulse time increases the crater depth. The increase of 

duty cycle promotes the sufficient flushing timefor removed 

material which prevents the formation of recast layer for which 

surface roughness decreases. Refer to Fig. 3 (c), The variation 

of SR is found maximum in case of change in current from 

lower to higher level shown like MRR and TWR. From Table 

5, the average of SR values for lower, intermediate and higher 

level can be calculated as 4.407 µm, 8.811 µm and 10.650 µm 

respectively. However, it is found that the enhancement from 

low level to intermediate level with respect to intermediate 

level is 49.97% and intermediate level to high level with 

respect to intermediate level is 20.86%. The result indicates the 

rate of enhancement is higher for changing the current from 

lower to intermediate compare to the changing of current 

between intermediate to higher level.  

3.2.  ANOVA and Regression analysis 

3.2.1. ANOVA 

A brief idea regarding the significance of each input 

parameter is already achieved in main effect plots shown in 

Fig. 3. However, the significance of each input parameter, their 

contribution and the model fitness can be calculated 

statistically by analysis of variance method (ANOVA). In the 

calculation of ANOVA, adjusted sum of square, mean square, 

F value and P value of each parameter and their interaction 

terms are calculated. Along with that the percentage 

contribution of each significant parameter on the response has 

been calculated as the ratio of adjusted sum of square of that 

parameter to the total adjusted sum of square of all the 

components of ANOVA. Table 6 represents the ANOVA result 

calculated for MRR with 95% confidence level. In the analysis, 

the p values for current, powder concentration, mesh size, 

square term of the current and mesh size and interaction term 

of current with pulse on time and pulse on time with mesh size 

are found less than 0.05. Hence, the contribution of these terms 

are significant to change the responses. The contribution of 

current, powder concentration and mesh size are 75.55%, 

2.38% and 0.82% respectively. It is observed that pulse on 

time is an insignificant parameter but interacting with current 

and mesh size it changes the responses significantly as the 

latter two terms are highly significant. Table 7 represents the 

ANOVA of tool wear rate. In this analysis, the significant 

terms are found current, powder concentration, square of the 

current term and interaction of current and powder 

concentration. The percentage contributions of current and 

powder concentration are 92.90% and 0.57% respectively. In 

case of surface roughness, the ANOVA result is shown in 

Table 8. The significant terms are found current, powder 

concentration and mesh size and the square of current. The 

contribution of the significant terms are 68.11%, 4.22% and 

2.31% respectively. From the ANOVA of three responses, it is 

clear that current and powder concentration as are the most 

influential parameters responsible to vary all the three 

responses. Also, the p value of model and lack of fit for three 

responses are found less than 0.05 and greater than 0.05 

respectively which indicate the models are significant and 

fitting of quadratic polynomial in these data is accepted [37]. 

The other terms having >0.05 value of p are insignificant for 

all the three responses. 

Table 6. ANOVA result for MRR 

Sl no. DOF Adj SS Adj MS F Value p Value 

Model 20 2555.29 127.76 26.36 0.000* 

I 1 2022.21 2022.21 417.20 0.000* 
Pon 1 9.36 9.36 1.93 0.177 

DC 1 14.58 14.58 3.01 0.095 

Cp 1 63.65 63.65 13.13 0.001* 
M 1 22.05 22.05 4.55 0.043* 

I2 1 50.05 50.05 10.33 0.004* 

Pon
2 1 4.05 4.05 0.84 0.369 

DC2 1 8.68 8.68 1.79 0.193 

Cp
2 1 0.00 0.00 0.00 0.993 

M2 1 26.37 26.37 5.44 0.028* 
I × Pon 1 10.54 10.54 2.17 0.153 

I × DC 1 3.74 3.74 0.77 0.388 

I × Cp 1 33.22 33.22 6.85 0.015* 
I × M 1 0.89 0.89 0.18 0.671 

Pon × DC 1 3.85 3.85 0.79 0.382 

Pon × Cp 1 0.65 0.65 0.13 0.717 
Pon × M 1 255.02 255.02 52.61 0.000* 

DC × Cp 1 0.33 0.33 0.07 0.796 

DC × M 1 1.07 1.07 0.22 0.642 
Cp × M 1 0.02 0.02 0.00 0.954 

Lack of 

Fit 

20 110.53 5.53 2.60 0.147 

Pure Error 5 10.65 2.13   

Total 45 2676.46    

R2 = 0.9547 R2 Adjusted = 0.9185 R2 Predicted = 0.8291   

Table 7. ANOVA result for TWR 

Sl no. DOF Adj SS Adj MS F Value p Value 

Model 20 0.097519 0.004876 40.22 0.000* 

I 1 0.092952 0.092952 761.23 0.000* 

Pon 1 0.000005 0.000005 0.04 0.838 
DC 1 0.000066 0.000066 0.54 0.469 

Cp 1 0.000576 0.000576 4.75 0.039* 

M 1 0.000026 0.000026 0.21 0.650 
I2 1 0.001120 0.001120 9.24 0.005* 

Pon
2 1 0.000023 0.000023 0.19 0.667 

DC2 1 0.000384 0.000384 0.07 0.793 
Cp

2 1 0.000384 0.000384 3.16 0.087 

M2 1 0.000290 0.000290 2.39 0.135 

I × Pon 1 0.000009 0.000009 0.07 0.791 
I × DC 1 0.000038 0.000038 0.31 0.581 

I × Cp 1 0.001318 0.001318 10.87 0.003* 

I × M 1 0.000056 0.000056 0.46 0.505 
Pon × DC 1 0.000063 0.000063 0.52 0.477 

Pon × Cp 1 0.000230 0.000230 1.89 0.181 

Pon × M 1 0.000017 0.000017 0.14 0.713 
DC × Cp 1 0.000001 0.000001 0.01 0.921 

DC × M 1 0.000154 0.000154 1.27 0.271 

Cp × M 1 0.000178 0.000178 1.47 0.237 
Lack of 

Fit 

20 0.002576 0.000129 1.42 0.374 

Pure 
Error 

5 0.000454 0.000091   

Total 45 0.100549    

R2 = 0.9699 R2 Adjusted = 0.9457 R2 Predicted = 0.8910 
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Table 8. ANOVA result for SR 

Sl no. DOF Adj SS Adj MS F Value p Value 

Model 20 203.839 10.192 10.20 0.000 

I 1 155.875 155.875 155.94 0.000* 

Pon 1 0.426 0.426 0.43 0.520 
DC 1 1.575 1.575 1.58 0.221 

Cp 1 9.672 9.672 9.68 0.005* 

M 1 5.303 5.303 5.30 0.030* 
I2 1 11.913 11.913 11.92 0.002* 

Pon
2 1 1.426 1.426 1.43 0.244 

DC2 1 0.545 0.545 0.55 0.467 
Cp

2 1 0.041 0.041 0.04 0.842 

M2 1 0.013 0.013 0.01 0.909 

I × Pon 1 0.874 0.874 0.87 0.359 
I × DC 1 0.230 0.230 0.23 0.635 

I × Cp 1 0.034 0.034 0.03 0.855 

I × M 1 1.277 1.277 1.28 0.269 
Pon × DC 1 0.757 0.757 0.76 0.392 

Pon × Cp 1 0.608 0.608 0.61 0.443 

Pon × M 1 1.232 1.232 1.23 0.277 
DC × Cp 1 0.319 0.319 0.32 0.577 

DC × M 1 3.861 3.861 3.86 0.061 

Cp × M 1 2.890 2.890 2.89 0.101 
Lack of 

Fit 

20 17.795 0.890 0.62 0.799 

Pure 
Error 

5 7.196 1.439   

Total 45 228.829    

R2 = 0.8908 R2 Adjusted = 0.8034 R2 Predicted = 0.6437   

3.2.2. Regression Equation 

The result of the experiment is used to construct a second 

order equation using multivariable least square regression 

including all the interaction terms. Eq. 9, Eq. 10 and Eq. 11 

represent the expression for MRR, TWR and SR respectively. 

The closeness of fitting of the data can be measured by the 

value of coefficient of determination (R2). The R2, R2 adjusted 

and R2 predicted data for MRR are 0.9547, 0.9185 and 0.8291 

respectively. It indicates the closeness of fit with the model is 

quite satisfactory and the over fitting with each independent 

parameters are significantly less. Hence the model can be 

accepted. The same values for TWR are 0.9699, 0.9457 and 

0.8910 respectively and the TWR model is found close to the 

experimental data. Also, the values of R2, R2 adjusted and R2 

predicted for SR are 0.8908, 0.8034 and 0.6437 respectively. In 

surface roughness the R2 value is little less than 90% but the 

difference between adjusted R2 and predicted R2is less than 

0.2. Hence the adequacy of the RSM model of SR is found 

very well and the overfitting of the data is within the range. 

Also, the experimental result for each experimental run have 

been compared with the value generated by regression equation 

and shown in Fig. 4. In Fig. 4 (a)-(c), the experimental result of 

MRR, TWR and SR have been plotted against the regression 

value respectively. 

𝑀𝑅𝑅 =  −80.3 +  4.57 𝐼 +  1.524 𝑃𝑜𝑛  +  39.4 𝐷𝐶 −  1.35 𝐶𝑝 + 1.112 M − 0.1497 𝐼2 − 0.0017 𝑃𝑜𝑛
2 − 24.9 𝐷𝐶2 + 0.0008 𝐶𝑝

2 +

0.01738 𝑀2 − 0.0203 𝐼 × 𝑃𝑜𝑛 + 1.21 𝐼 × 𝐷𝐶 + 0.2401 𝐼 × 𝐶𝑝 − 0.0118 𝐼 × 𝑀 − 0.245 𝑃𝑜𝑛 × 𝐷𝐶 + 0.0067 𝑃𝑜𝑛 ×  𝐶𝑝 −

0.03992 𝑃𝑜𝑛 × 𝑀 − 0.48 𝐷𝐶 ×  𝐶𝑃 + 0.259 𝐷𝐶 × 𝑀 + 0.0021 𝐶𝑝  × 𝑀                                                                   (9) 

𝑇𝑊𝑅 =  −0.061 +  0.01384 𝐼 − 0.00131 𝑃𝑜𝑛 − 0.037 𝐷𝐶 + 0.0043 𝐶𝑝 + 0.00425 M + 0.000708 𝐼2 − 0.000004 𝑃𝑜𝑛
2 + 0.0247 𝐷𝐶2 −

0.000737 𝐶𝑝
2 − 0.000058 𝑀2 + 0.000018 𝐼 × 𝑃𝑜𝑛 + 0.00384 𝐼 × 𝐷𝐶 − 0.001513 𝐼 × 𝐶𝑝 − 0.000093 𝐼 × 𝑀 + 0.00099 𝑃𝑜𝑛 × 𝐷𝐶 +

0.000126 𝑃𝑜𝑛 ×  𝐶𝑝 + 0.000010 𝑃𝑜𝑛 × 𝑀 + 0.00092 𝐷𝐶 × 𝐶𝑃 − 0.00310 𝐷𝐶 × 𝑀 + 0.000222 𝐶𝑝  × 𝑀                                            (10) 

S𝑅 =  4.7 + 2.872 𝐼 − 0.017 𝑃𝑜𝑛 − 16.6 𝐷𝐶 + 0.463 𝐶𝑝 − 0.319 M − 0.073 𝐼2 + 0.001010 𝑃𝑜𝑛
2 + 6.25𝐷𝐶2 + 0.0076 𝐶𝑝

2 +

0.00039 𝑀2 − 0.00584 𝐼 × 𝑃𝑜𝑛 − 0.3 𝐼 × 𝐷𝐶 − 0.0077 𝐼 × 𝐶𝑝 − 0.0141 𝐼 × 𝑀 − 0.109 𝑃𝑜𝑛 × 𝐷𝐶 − 0.00650 𝑃𝑜𝑛 × 𝐶𝑝 +

0.00277 𝑃𝑜𝑛 × 𝑀 + 0.471 𝐷𝐶 ×  𝐶𝑃 + 0.491 𝐷𝐶 × 𝑀 − 0.0283 𝐶𝑝  × 𝑀                    (11) 

 
Figure 4. Comparison of experimental result with regression value (a) MRR (b) TWR and (c) SR 

(a) (b) 

 (c) 
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The normal probability plot measures the distribution of the 

residual points along the normal probability line. In Fig. 5 (a), 

5 (b) and 5 (c), it can be observedthat the residual points of 

MRR, TWR and SR are situated close to the probability line. 

Hence, it can be stated that the residuals are distributed 

normally and confirms that the fitness of the quadratic models 

are adequate. 

3.3. Response surfaces against the interaction of two 

parameters 

From the ANOVA result of the three responses, it has 

already been revealed that the two major significant parameters 

for this investigation are current and powder concentration. 

Hence 3D response surfaces can be generated for each of the 

three responses considering the interaction of two input 

parameters. The surfaces are generated using DESIGN 

EXPERT 12 software. Fig. 6(a) shows the interaction plot of 

MRR which indicates that the maximum MRR can be achieved 

when current is at 12 A and powder concentration is 8 g/l. 

Since MRR is increasing with increase of both current and 

graphite concentration, the maximum value can be achieved at 

the maximum value of both the parameters. In Fig. 6(b), the 

surface plot of TWR is represented which conveys the 

minimum TWR can be achieved when the current is 4 A and 

the powder concentration is 8 g/l. It is already proved that at 

low current and high graphite concentration, the flow of 

positive ions toward electrode decelerates and disrupts. As a 

consequence, the minimum TWR is achieved at the above said 

values. In Fig. 6(c), the nature of the surface plot is slightly 

different than other two responses. A convex type surface plot 

is achieved where the lowest surface roughness is found at a 

current of 4 A and powder concentration of 8 g/l. At the low 

current discharge, the depth of the crater becomes small due to 

the removal of small size material from the surface. Also at 

high powder concentration, more local discharges take place 

which produce uniform and shallow craters in the discharge 

region. The combine effect of these two parameters at their 

aforesaid level values, however, produces the least surface 

roughness.  

 
 

 
Figure 5. Normal probability plot of (a) MRR (b) TWR and (c) SR 

(a) (b) 

(c) 
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Figure 6. 3D surface plot for (a) MRR (b) TWR and (c) SR against the interaction of current and powder concentration 

 

3.4. ANN Result 

In the present study, a 5-20-3 neural network has 
beendeveloped using neural network toolbox in 
MATLAB R2021 a. It is a feed forward backpropagation 
type networkwhere the training function, learning 
function and performance function are chosen as 
TRAINLM, LEARNGOM and MSE respectively. After 
several trials made by different combination of network, 
a single hidden layer with 20 neurons has beenselected 
for this analysis. The activation functions for the hidden 
layer and the output layerwereselected as hyperbolic 
tangent sigmoid function (Tansig) and pure linear 
function (Purelin) respectively. In several researches, it 
has been found that the effect of performance parameters 
on the responses during EDM is highly nonlinear [38]. 
In ANN, the nonlinear interaction between hidden layers 
can be efficiently performed by a nonlinear sigmoid 
function. During the training of network, the stopping 
criterion was set as 1000 epochs or an error of 0 
whichever reaches earlier. During the training of the 
network, arbitrarily 30 results were chosen for training 
of the network. The remaining 16 results were kept for 
testing the data. After completion of the training, the 
testing dataset was simulated with trained network and 
the predicted result was generated. 

In table 9, the prediction of the training and testing 
results have been provided. In the table, the experimental 
result and the predicted result are compared for all the 
three responses. A percentage relative error is calculated 
for every prediction. In the table, it can be observed that 
the percentage relative error has a wide range for 
different runs and different responses. However, a mean 
error has been calculated according to Eq. 8 considering 
all the 46 predictions. The mean error for MRR, TWR 
and SR is 5.95%, 7.30% and 6.40% respectively. The 
mean error for all the responses are found less than 10% 
which indicates the ANN model can predict the 
responses 90% closer to the actual result. In Fig. 7 (a)-
(c), the prediction of the tested data are plotted against 
their experimental data for MRR, TWR and SR. In the 
graphical representation, red dots represent predicted 
data and black dots represent the actual data for all the 
three responses. It can be observed that the prediction 
lines and the lines made with actual values are situated 
closely even coincided somewhere.  Fig. 8 shows the R-
value (correlation coefficient) of training, validation, test 
and overall performance for the present neural network. 
Apart from test performance, the R-values of training 
and validation were found more than 0.9. The R-value of 
overall performance is 0.94509 which indicates the 
predicted values are distributed at close intervals with 
target data. In Fig. 9, the mean square error is plotted 
against the value of epoch. It is observed that the 

(a) (b) 

(c) 
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training of the model has been completed with minimum 
error within 11 epochs. This indicates the training model 
takes less time of computation during the training. 

In this study, two parameters related to the 
performance of neural network have been evaluated viz. 
mean error and R- value. In manufacturing industry, a 
new ANN model is adopted for production, machining 
and other work only when the values of these two 

parameters found closer to a standard one. In this study, 
the mean error and R values are found adequate to 
accept the model. With less than 10% mean error and R 
value as 0.94509, it can be well said that the model has a 
good correlation with experimental result and it can 
perform efficiently to predict the responses for the 
remaining combination of the input parameters in 
practice. 

Table 9. Predicted result of MRR, TWR and SR using ANN. 

Run 

No. 

MRR  TWR   SR  

 

Exp. 

ANN pred. %Error Exp. ANN pred. %Error Exp. ANN pred. %Error 

Training data 

1 16.659 18.127 8.81 0.0797 0.0728 8.78 9.08 8.14 10.35 

2 18.780 20.291 8.05 0.0810 0.0859 6.17 9.99 9.59 4.00 

3 29.068 28.273 2.74 0.1627 0.1470 9.83 8.50 8.77 3.18 

5 16.736 16.785 0.29 0.0574 0.0531 6.97 10.32 9.53 7.66 

7 16.563 17.163 3.62 0.0680 0.0606 10.29 7.41 7.58 2.29 

8 3.989 3.722 6.69 0.0190 0.0177 5.26 4.67 4.55 2.57 

9 28.919 28.593 1.13 0.1493 0.1412 5.36 12.33 11.46 7.06 

11 15.450 14.202 8.08 0.0921 0.0500 45.60 9.08 8.50 6.39 

13 27.923 29.530 5.76 0.1654 0.1841 11.49 10.39 11.03 6.16 

14 16.983 17.387 2.38 0.0762 0.0757 1.31 8.69 8.67 0.23 

16 21.771 22.474 3.23 0.0782 0.0721 7.67 8.46 8.34 1.42 

18 12.994 13.875 6.78 0.0861 0.0854 1.16 8.74 8.20 6.18 

19 4.404 4.777 8.47 0.0157 0.0143 6.37 4.20 4.57 8.81 

20 14.739 16.330 10.79 0.0881 0.0895 1.14 9.53 8.98 5.77 

22 18.697 18.127 3.05 0.0991 0.0828 16.15 6.72 7.14 6.25 

23 23.697 26.428 11.53 0.1738 0.1697 2.30 11.62 11.03 5.08 

24 27.921 25.417 8.97 0.0685 0.0640 5.84 9.55 9.88 3.46 

26 4.542 4.920 8.32 0.0132 0.0139 7.58 4.10 4.74 15.61 

28 13.586 14.371 5.78 0.0813 0.0847 3.69 9.57 8.92 6.79 

29 23.726 23.877 0.64 0.0775 0.0709 9.03 7.13 7.47 4.77 

30 19.431 17.649 9.17 0.0650 0.0636 1.54 10.79 9.76 9.55 

31 20.472 23.523 14.90 0.2039 0.2173 6.38 10.93 12.04 10.16 

32 16.055 14.649 8.76 0.0998 0.0896 10.02 6.74 7.26 7.72 

34 12.576 12.649 0.58 0.0737 0.0746 1.36 10.98 10.76 2.00 

36 20.201 17.628 12.74 0.0781 0.0812 3.84 7.43 7.39 0.54 

39 16.543 15.916 3.79 0.0944 0.0940 0.00 10.14 9.15 9.76 

42 7.701 7.764 0.82 0.0261 0.0246 7.66 4.53 4.98 9.93 

43 4.147 4.140 0.17 0.0129 0.0137 7.75 3.92 3.33 15.05 

44 27.429 26.255 4.28 0.1886 0.1827 3.18 10.76 9.37 12.92 

46 27.429 25.229 8.02 0.0827 0.0920 10.88 7.90 7.98 1.01 

Testing data 

4 20.468 20.957 2.39 0.0882 0.0786 11.34 8.34 8.38 0.48 

6 18.602 18.127 2.55 0.0763 0.0728 3.93 8.86 8.14 8.13 

10 29.452 28.799 2.22 0.1419 0.1205 14.80 9.11 9.65 5.93 

12 19.879 20.798 4.62 0.0863 0.0796 8.11 8.69 9.46 8.86 

15 23.324 23.131 0.83 0.0664 0.0710 7.53 9.58 9.73 1.57 

17 30.772 28.610 7.03 0.1656 0.1569 5.44 11.56 11.74 1.56 

21 20.468 19.217 6.11 0.0728 0.0741 1.37 8.29 8.82 6.39 

25 4.333 4.700 8.47 0.0249 0.0254 0.00 3.12 3.69 18.27 

27 20.024 18.127 9.47 0.0823 0.0728 10.94 7.58 8.14 7.39 

33 17.546 17.628 0.47 0.0789 0.0812 2.54 9.86 9.39 4.77 

35 20.438 20.633 0.95 0.0642 0.0683 6.23 7.81 8.19 4.87 

37 15.521 16.033 3.30 0.0991 0.0929 6.05 8.28 7.70 7.01 

38 6.536 6.910 5.72 0.0884 0.0835 5.66 6.12 6.40 4.58 

40 2.204 2.757 25.09 0.0159 0.0139 12.58 4.60 4.99 8.48 

41 19.589 18.329 6.43 0.0775 0.0729 6.45 8.66 7.93 8.43 

45 8.672 9.500 9.55 0.0713 0.0776 8.42 10.14 10.66 5.13 
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Figure 7. Comparison of ANN result and actual result for tested data of (a) MRR, (b) TWR and (c) SR 

 
            Figure 8. R- Values of the ANN model                                              Figure 9. Epoch vs MSE plot during the training of the network 

  

(a) (b) 

(c) 
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3.5. Multi response optimization using desirability function 

In the present study, multi response optimization was 

performed using desirability function approach based on RSM 

equations. The objective functions were selected as to 

maximize MRR, minimize SR and to get a target value of 

TWR at 0.08 mm3/min. The reason behind selecting a target 

level of TWR is to maximize MRR. In practical approach, the 

TWR must be minimized but the priority of maximization of 

MRR is more than that. After several analysis with the 

different target values of TWR including the least value, the 

above said value which is approximately average of all the 

TWR has been found suitable for the optimization. The 

constraints were taken as upper and lower and upper value of 

each input parameter. At two sided confidence level of 95% 

the calculation was performed. 

3.5.1. Result of optimization 

Using MINITAB 17.0, the result of the optimization is 

achieved and enlisted in Table 10. The value of MRR, TWR 

and SR for the optimal setting of parameters are 26.1358 

mm3/min, 0.08 mm3/min and 5.8182 µm respectively. The 

value of composite desirability is found 0.8398 as shown in 

Fig. 10. It indicates that the degree of optimization has 

achieved closer to 1 and supports for accepting the result. 

Table 10. Result of multi objective optimization using desirability 

function  

Input 

parameters 

Optimized 

result 

MRR 

 

TWR 

 

SR 

 

I (A) 8.6082 

26.1358 

mm3/min 

0.0800 

mm3/min 

5.8182 

µm 

Pon (µs) 35.0 

DC 0.5029 

Cp (g/l) 8.0 
M (µm) 35.0 

3.5.2. Validation of the result 

The result of the optimization has been validated by 

conducting a validation experiment. In this experiment, input 

parameters were set with the feasible value correspond to the 

optimal set of solution achieved from the optimization. The 

input parameters selected for the validation test were current as 

9 A, pulse on time as 35 µs, duty cycle as 0.5, powder 

concentration as 8 g/l and mesh size 35 µm. The other input 

parameters and experimental environment were kept unaltered 

as done the main experiment. The responses were measured in 

the way same as measured previously. The values of MRR, 

TWR and SR are 25.864 mm3/min, 0.0836 mm3/min and 6.21 

µm. Therefore, a percentage relative error of the prediction is 

calculated against the actual result and found the errors for 

MRR, TWR and SR are 1.03%, 4.50% and 6.73%. A similar 

type multi objective optimization has been performed to 

optimize the PMEDM process of H11 steel. It is found that the 

confirmatory test result of MRR, TWR and SR has been 

deviated from the optimized result by less than 8% for each 

responses [33].  However, it is enough to accept the optimized 

result in the practical application having the same affecting 

parameters with same level values.  

3.6. AFM study of the surface 

Atomic force microscopy (AFM) is used to capture the 

three dimensional surface morphology of the machined surface 

using interatomic van der Waal force. In this measurement, a 

very sensitive cantilever beam attached with a silicon tip of 10 

nm is moved on the surface by making direct contact [39, 40]. 

The precise deflection of the beam is measured and sensed by 

an electronic sensor and the three dimensional image of the 

surface is generated. From the AFM images, the vertical 

projections are measured in nanoscale and the surface 

roughness can be calculated from the data. In the current study, 

the machine surface were analyzed by the scanning of a small 

area under AFM probe and the surface roughness has been 

calculated from the morphological data. A comparative study 

has been made to analyze the changes in surface roughness 

with the increase of current. Therefore, three samples from the 

experimental run viz. sample no 26, 16 and 23 concerning with 

the current level of 4 A, 8 A and 12 A have been studied under 

the atomic force microscopy. Fig. 11 (a)-(c) represents the 3D 

AFM image of the samples. The scanning was done for sample 

no. 26 and 16 on the area of 80 µm × 80 µm whereas for 

sample no. 23, it was measured on 25 µm × 25 µm. The 

surface roughness calculated from the measured data for the 

sample machined by current levels 4 A, 8 A and 12 A are 4.96 

µm, 8.78 µm and 10.94 µm respectively. The deviations of the 

SR value measured by AFM to that from surface profilometer 

are 17.30%, 3.64% and 6.21%. The deviation for all the 

measurements are less than 20%. Nevertheless the result 

indicates the measurements taken by AFM and surface 

profilometer is much closer to each other. The wide deviation 

of the measured value can be explained by inevitable errors 

during the measurements in both the instruments. Especially in 

AFM, external vibration and unavoidable gap between the 

probe and the surface causes significant error in measurements 

[41]. Also the surface roughness measured by surface 

profilometer is a measurement made by traversing the probe in 

a line which must be deviated to some extent from the AFM 

measurement performed in a small area as it has slightly 

different characteristics of roughness than a line. 

 
Figure 10. Result of multi objective optimization by desirability function approach 
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Figure 11. AFM analysis of the machined surfaces at (a) 4 A (b) 8 A and (c) 12 A 

3.7. Surface morphology studies 

In this section, study of the machined surface morphology 

has been discussed in qualitative and quantitative approach. 

Field effect scanning electrode microscope (FESEM: model: 

Sigma Smart Sem, version 5.09, maker’s name: Carl Zeiss 

Microscopy Ltd.) was used to capture the micrograph of the 

surface. The overall surface integrity and depositions were 

analyzed in 500× magnification and the detail crack width 

measurement was performed in 5000× magnification. 

Fig. 12 (a), (c) and (e) represent the small magnification 

surface micrographs for the samples machined by a current of 

4 A, 8 A and 12 A respectively. As per the qualitative 

investigations are concerned, it is clearly observed the surface 

consists irregular and complex shaped recast layers, deposition 

of powder particles in the form of globules and  microcracks. 

The recast layers are formed due to the deposition of the 

molten material on the surface. After melting, an adhesive 

force acts between the detached molten material and the hot 

and newly generated surface. This adhesive force cannot be 

absolutely overtaken by the flushing force of dielectric flow 

and as a result the recast layers deposit on the surface itself. 

During the discharge several phenomenon occurs at the spark 

gap. Out of them, one important phenomenon is the random 

movement of powder particles during the electrical discharge. 

The movement of the particles cause several plastic collision 

with molten material and deposited on the surface in the form 

of globules. These globules are extremely hard and deposited 

randomly on the surface as shown in white color in Fig. 12. In 

this study, since current is the major influencing parameter, the 

micrographs of the machine surface were taken for the three 

levels of the current. From the above said figures, it is 

observed that the recast layer enhances and more 

microparticles deposit with the increase of current. As the 

current increases, high energy discharges are applied by 

electrode and powder particles. It helps to deposit the material 

at faster rate than the discharge made by low value of current. 

Hence the spreading of recast layer increases. On the other 

hand, at high energy discharge the powders are deflected far 

from the spark gap with the help of plasma pressure which 

prevents the formation of globules and reduces the deposition 

on the surface. 

Fig. 12 (b), (d) and (f) represent the magnified view of the 

surface focusing the microcracks on it. The cracks are 

generated due to the thermal stress formed when sudden 

contraction takes place during the cooling period. Also the 

formation of hard recast layer on the surface creates the 

thermal stress. Due to which, the cracks are normally found at 

the periphery of the recast layer. The quantitative analysis was 

done on each surface by measuring the crack width at two 

arbitrary points of the crack and shown the average of the 

measurement on the figures. The average crack width are 

found 1.151 µm, 1.568 µm and 1.865 µm for 4 A, 8 A, 12 A 

respectively. As discussed earlier, high thermal energy 

generates when current increases and the thermal stress 

developed on the surface increases. This causes severe 

contraction on the surface. As a result, the crack width 

increases with the increase of current value. Controlling the 

current at optimum level and increasing the graphite 

concentration can reduce the width of the microcracks.  

3.8. Analysis of XRD pattern 

Fig. 13 represents the X-ray diffraction (XRD) study of 

different crystallographic planes present in Inconel 625 

machined surface. The super alloy consists mainly two phases. 

Such as ɤ austenitic phase consists the solid solution of iron 

and chromium in nickel matrix (Ni-Fe-Cr) and ɤ’’ intermetallic 

precipitating phase consists Ni3Nb phase [42]. In the Fig. 13 

(a), different XRD patternshave been plotted against 2θ angel 

ranged from 00 to 800 for the samples machined by three levels 

of current. The peaks correspond to the lattice plane of (111), 

(200) and (220) are identified for all the three samples and it 

consists both the matrix and intermetallic phases of the alloys 

[42]. From the Fig. 13(a), it is observed that the peaks are 

placed at their proper position which determines there is no 

severe deformation takes place in the crystallographic planes 

during the machining. But a little right shift is observed in all 

the peaks which indicates a little deformation occurs in crystal 

structures.

(a) 

 (c) 

(b) 
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Figure 12. SEM micrography of the machined surface generated at 4 A with a magnification of (a) 500× and (b) 5000×; at 8 A with a magnification of 

(c) 500× and (d) 5000×  and at 12 A magnification of (e) 500× and (f) 5000×. 
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Figure 13. XRD pattern of samples machined under 3 levels of current showing (a) complete view of all the planes (b) enlarged view of (111) plane 

However, an enlarged view of the lattice plane (111) has 

further been plotted and shown in Fig. 12 (b). In the figure, it 

can be investigated that the peaks have been shifted at right 

side continuously when the current increases from 4 A to 12 A. 

The right shift of the peak implies the angle of diffraction for 

the particular lattice plane has been increased. According to 

Bragg’s law, increase of angle reduces distance of the lattice 

planes. This can beexplained as the formation of lattice 

distortion caused by increased internal energy of the crystal 

structure. During the machining, when current increases the 

energy of the electrical spark also increases. This increases the 

temperature of the surface which is responsible for the 

vibration of the atoms at higher frequency and longer period of 

time. During this time, atoms having large atomic radius like 

niobium, molybdenum get dissociated from the crystal 

structure and small atoms like chromium and iron occupy the 

void portion [43]. In this way, the lattice distance reduces and a 

slight transformation from ɤ’’ or Ni3Nb double austenitic phase 

to ɤ or Ni-Fe-Cr single austenite phase has happened when the 

increases during the machining. However, the changes of 

phases is very small which does not affect the ratio of two 

phases of the alloy. 

4. Conclusion 

In the present study, the processing of Inconel 625 using 

graphite mixed electric discharge machining has been 

investigated by the ANN predictive model and RSM 

desirability optimization approach. Along with these, the study 

of surface characteristics and phase analysis after machining 

have been performed using AFM, FESEM and XRD analysis. 

The conclusion of the above study can be drawn in following 

way- 

Firstly, the effects of graphite powder have been 

investigated on the MRR, TWR and SR after machining in 

EDM. Since the electrical conductivity of graphite is high, 

addition of its powder in the dielectric fluid increases the 

induced electrical energy in the discharge column and the 

material removal enhances. Along with that the uniform 

discharge and reduction of temperature on the electrode surface 

reduces the SR and TWR respectively. The study clearly 

indicates that the addition of powder improves all the 

responses continuously which in turns conclude that compare 

to normal EDM, graphite mixed EDM can enhance the 

productivity and quality during the Inconel 625 processing. 

(a) 

 (b) 
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The ANOVA result of this study found that current and 

powder concentrations are the common significant parameters 

for all the responses viz. MRR, TWR and SR. Also, the square 

of the current and the conjugate interaction of current and 

powder concentration are found significant for them. The 

analysis further found that an improvement of all the output 

parameters had happened mostly by increasing the current and 

the graphite concentration during the machining.  The RSM 

regression model for all the responses are found adequate since 

the R2 value for each equation is around 90%. The p values of 

lack of fit test during ANOVA of three responses came greater 

than 0.05 which determined the RSM model fits the 

experimental data satisfactorily. 

The 3 layer ANN model provides an outstanding predictive 

model for the prediction of all the responses. The mean error of 

prediction by this network for MRR, TWR and SR are 5.95%, 

7.30% and 6.40% respectively. R value of the model was 

found at 0.94509. However, the accuracy of the ANN model is 

found satisfactory and can be accepted for the prediction in 

industrial application. The convergence of the model reaches at 

a very small computational time with 11 epochs only. 

Using desirability function approach, the optimal solution 

of MRR, TWR and SR has been derived at current = 8.6082 A, 

pulse on time = 35 µs, duty cycle = 0.5029, powder 

concentration = 8 g/l and mesh size 35 µm. The value of MRR, 

TWR and SR is 26.1358 mm3/min, 0.08 mm3/min and 5.8182 

µm. The validation test has been conducted with the nearest 

possible valuesand found the deviationsas 1.03%, 4.50% and 

6.73% for MRR, TWR and SR respectively. The closeness of 

the optimize result with validation test makes the optimization 

process adequate to use in the practical field.  

In the SEM micrography, it has been observed that the 

recast layer density increases and the deposition of globules 

decreases with the increase of current. The width of the micro-

crack has also been increased with the increase of current. 

Analysis of XRD pattern reveals that a little right shift has 

been observed for each peak of the crystallographic plane. The 

further analysis confirms that a small transformation from 

Ni3Nb to Ni-Cr-Fe austenitic had happened at the higher value 

of current due to the shifting of niobium from the lattice 

structure.  
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