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Abstract 

Metal defects detection has always been an essential task for the majority of various industries, moreover, it is the core 

element in the metal inspection too. This research paper explores the effectiveness of different deep learning algorithms for 

surface-defect detection in investment casting using the Inspection 4.0 approach. The study compared the performance of 

four popular deep learning algorithms, Fast R-CNN, Faster R-CNN, ResNet, and YOLO, using the accuracy metric as a 

performance evaluation measure. The results show that ResNet achieved the highest accuracy rate of 95.89%, followed by 

Faster R-CNN with 90.23%, Fast R-CNN with 89.21%, and YOLO with 86.43%. The findings of this research demonstrate 

that ResNet and Faster R-CNN are effective deep-learning algorithms for automated surface-defect detection in investment 

casting. On the other hand, Fast R-CNN and YOLO exhibited lower accuracy rates. 

The outcomes of this study provide valuable insights into the effectiveness of deep learning algorithms for surface-defect 

detection in investment casting. The high accuracy rate achieved by ResNet and Faster R-CNN can guide the development of 

automated inspection systems for investment casting in various industries such as aerospace, automotive, and medical. 

© 2023 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

Investment casting is a manufacturing process widely used 

in various industries such as aerospace, automotive, and 

medical for producing complex metal components with high 

precision. Surface defects are common in investment casting 

and can lead to component failure or reduced lifespan. 

Therefore, surface inspection is crucial in the production 

process to ensure quality control. Artificial Intelligence AI has 

shown high impact on the accuracy of detecting defects and 

made measurements more efficient and reliable [1]. Other AI 

applications of AI in manufacturing includes development of 

lean manufacturing of garment [2], machining parameter 

optimization [3],[4], calculating the overall equipment 

maintenance in steel products [5], [6] and shape modification 

of electric vehicles [7] and strengthening metallic composite 

alloys [8]. 

With the development of Industry 4.0, the inspection 

process can be automated using advanced technologies such as 

deep learning. Deep learning is a subfield of machine learning 

that uses artificial neural networks to learn from large datasets. 

It has demonstrated promising results in various applications, 

including image recognition and object detection. In recent 

years, Convolutional Neural Networks (CNNs) have emerged 

as a promising solution for defect inspection in various 

industries, including investment casting[9]. CNNs are effective 

in detecting and classifying surface defects in investment 

castings. These networks can accurately identify defects, such 

as cracks, blisters, and pinholes. 

Furthermore, they can also distinguish between different 

types of material, allowing them to recognize defects in 

complex geometries. By utilizing CNNs, manufacturers can 

quickly and accurately detect surface defects and ensure the 

highest possible quality of their products. They have been 

trained on large datasets of investment casting images, 

allowing them to learn the relevant features for defect detection 

automatically. This has led to high accuracy rates and the 

ability to detect even subtle defects[10], [11]. Many studies 

have used pre-trained CNN models such as VGG or ResNet 

and fine-tuned them on investment casting datasets to improve 

accuracy. This has proven to be a cost-effective approach, 

resulting in good performance compared to training from 

scratch. Some studies have used a combination of CNNs and 

traditional image processing techniques for improved results, 

followed by morphological operations for refinement, such 

image processing techniques are combined with neural 

networks[12], with YOLO algorithm[13], and the engagement 

with the convolutional autoencoders CAE to improve the 

learning quality and mitigate the need of larger subsets of 

data[14], [15].Other YOLO-based models have been developed 

for industrial defect detection in general. Li J et al.[13] have 

used an improved YOLO for steel strip surface detection, and 
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they have achieved a 99% detection rate; their network can 

predict the location and scale information of the entire 

production line. There were also many versions of YOLO as 

optimized extensions of this algorithm, such as YOLO-v2[16], 

YOLO-v3[17], YOLO-v4[18], and YOLO-v5[19]. Some 

limitations of YOLO are that it cannot detect too minor defects 

and makes more localization errors compared to Faster R-

CNN. Also,  

While CNNs have successfully detected surface defects, the 

need for large amounts of annotated data and computational 

resources can limit their practicality in industrial settings. 

Additionally, the ability of CNNs to generalize to new types of 

defects can be limited. There is a need for further research in 

this area to address the limitations of current methods and 

improve the generalizability of CNNs for investment casting 

defect detection. This could involve the development of more 

efficient and effective architectures or using unsupervised or 

semi-supervised learning methods. 

This research paper investigates the effectiveness of 

different deep learning algorithms in surface-defect detection 

for investment casting using the Inspection 4.0 approach. We 

evaluate the performance of four popular deep learning 

algorithms, namely Fast R-CNN, Faster R-CNN, ResNet, and 

YOLO, in terms of accuracy. 

The findings of this study can guide the development of 

automated inspection systems for investment casting, which 

can significantly reduce inspection time and improve 

production efficiency. The successful implementation of an 

automated inspection system can also improve product quality 

and safety, reduce costs, and increase customer satisfaction. 

2. Review of literature 

In 2015, Joseph Redmon et al.[20] proposed the You Only 

Look Once (YOLO) algorithm, which divides an input image 

into a grid of S×S cells. Each cell predicts the detection of an 

object's bounding box and its corresponding score. Moreover, 

detection should include class classification. Therefore, YOLO 

also predicts the conditional class probability of the detected 

object within a cell. The convolutional layers at this network 

are responsible for defects feature extraction. For each cell in 

the grid, YOLO determines if it contains a defect or not, 

considering the defect class too according to the defect’s 

features. Fast R-CNN was introduced right after R-CNN[21] 

for object detection. Moreover, it is considered an improved R-

CNN architecture with some modifications. Fast R-CNN has 

added an ROI Pooling layer to extract feature vectors from all 

proposals (ROI). 

Due to using multiple stages, R-CNN was slower because 

training each stage takes its place and requires more time, but 

Fast R-CNN has only a single stage, which means faster 

training. On the other hand, metal defect detection tasks have 

primarily utilized the Faster R-CNN model, which has 

undergone various optimizations through modifications. As an 

example, Zhao et al.[22], in order to enhance the modelling 

capabilities of the network for steel defect detection, 

deformable convolutions were introduced by Zhao et al. Ren et 

al. [23]Ren et al. have suggested a somewhat smaller 

architecture of Faster R-CNN for real-time detection of steel 

strip defects, which has demonstrated superior performance 

compared to traditional image processing techniques and other 

deep learning-based methods.[15]. The architecture proposed 

by Ren et al. consists of three main components: a feature 

extraction network, a regional proposal network (RPN), and a 

regional CNN. The feature extraction network is responsible 

for extracting the features from the defective images, which are 

then utilized by both the RPN and R-CNN to identify the 

regions of interest (ROI). The ROIs are further processed 

through pooling and fully connected layers. A non-maximum 

suppression algorithm is subsequently employed to eliminate 

the frames with lower scores and retain those with higher 

scores, similar to the approach used in the YOLO algorithm. 

Please refer to Figure 5 for a visual representation of this 

architecture. Goyal A et al [24] have used AI for measuring 

temperature caused by metal cutting. 

One of the commonly sued model for defects detection is 

ResNetwhich is a sophisticated neural network architecture 

with exceptional performance in various computer vision 

applications, such as image classification, object detection, and 

semantic segmentation. ResNet was introduced in 2016 by 

Kaiming He et al.[25]. One of the significant innovations of 

ResNet is the utilization of residual connections, which enables 

the network to learn residual mappings instead of direct 

mappings. This technique helps to overcome the vanishing 

gradient problem that often arises in intense neural networks 

and allows for training much deeper networks. The ResNet 

architecture consists of multiple blocks that comprise 

convolutional layers, batch normalization, and ReLU activation 

functions. The residual connections are added between the 

blocks, enabling the input to be directly transmitted to the 

output of the block, bypassing the convolutional layers.[25], 

[26]. 

3. Materials and Methods 

The methodology adopted for the implementation of deep 

learning models and Evaluation in the detection of casting 

defects is shown in Figure .1 

 
Figure 1. Methodology adopted for evaluation of different CNN 

architectures for inspection of surface defects in investment casting 

3.1. Data Acquisition 

Gathering data is a crucial step that impacts the accuracy of 

a trained model. In the case of deep learning, having a vast 

collection of images for training will result in better 

identification of objects, but there are other factors to consider. 

To achieve this, high-resolution images of investment castings 

were obtained from a foundry in Rajkot, India. The dataset 

consists of 12,000 standard casting images and 5,000 defective 

casting images, each with a 3472 x 3472 pixels resolution. A 

dataset comprising 3,600 defective casting images and 3,600 

non-defective casting images was created to ensure balanced 

results and strike balance between dataset size, class 

distribution, and adherence to establish deep learning practices. 

Though this approach ensures the fairness and robustness for 

the performance of casting defects. The dataset was then split 

into the train, validation, and test sets, consisting of 2,880, 540, 

and 180 images. Figure 2 displays some examples of the 

dataset. 
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Figure 2. Some samples of the dataset 

3.2. Preprocessing 

The enhancement of the investment casting images 

involved an intricate preprocessing phase that significantly 

elevated their overall quality. In pursuit of this objective, a 

comprehensive array of techniques was meticulously applied, 

rendering each image uniform in terms of background, color, 

size, orientation, and resolution. Moreover, Gaussian filtering 

was employed to reduce the noise and effectively enhance the 

visual clarity. Simultaneously, any images which were highly 

distorted are removed from the dataset. Moreover, to ensure a 

consistent appearance, a meticulous cropping process was 

done, to maintain a uniform background across all images. 

Furthermore, the images were resized, an astute decision aimed 

at reducing the computational demands while improving 

resolution standards, the uniform size of 520x520 pixels for 

each image was considered. 

Eventually, augmentation techniques were also 

implemented to enhance the model's generalizability and 

overall performance. These augmentation techniques comprise 

rotation with a 0.3 rate, flipping with a 0.2 rate, and scaling 

with a 0.2 rate. This judicious use of augmentation not only 

bolstered generalizability but also ensured a consistent 

orientation across the entire dataset, thus augmenting the 

overall quality and effectiveness of the investment 

casting image dataset. 

3.3. The proposed models 

3.3.1. YOLO 

The bounding box method is used in this algorithm; in other 

words, the YOLO algorithm detects objects within an image 

and surrounds the defect with a bounding box B, and a 

confidence value corresponds to each bounding box. The 

confidence value of the bounding box is given by: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑃𝑟(𝐷𝑒𝑓𝑒𝑐𝑡) × 𝐼𝑜𝑈𝐵−𝑏𝑜𝑥
 𝐺𝑇        (1) 

Where Pr(defect) is the probability of a defect being found 

in the grid, IoU: is the intersection over union metric; the 

algorithm calculates the intersection over union (IoU) between 

the ground truth (GT) and the bounding box (B-box) to 

determine their overlapping rate. To eliminate redundant boxes 

with lower confidence values for a specific object, the Non-

Maximum Suppression (NMS) method is employed. For each 

bounding box, the algorithm generates a final output that 

includes the centre coordinates of the defect (x, y) as well as 

the height (h) and width (w) of the bounding box. Additionally, 

the confidence value of the bounding box, as described earlier, 

is also included in the output. Finally, the probability of a 

defect belonging to a particular class is calculated to provide a 

class-specific confidence score for each box. Class confidence 

corresponding to a bounding box is encoded into a tensor of 

size [S×S×B × (x, y,h, w, c)], where B is the bounding boxes 

number, S×S is the grid cells dimensions, c is the confidence 

value of a bounding box correlated to the detected defect. 

Moreover, for the class confidence score, it is given by: 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝐷𝑒𝑓𝑒𝑐𝑡) × 𝑃𝑟(𝐷𝑒𝑓𝑒𝑐𝑡) × 𝐼𝑜𝑈𝐵−𝑏𝑜𝑥
𝐺𝑇

= 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) × 𝐼𝑜𝑈𝐵−𝑏𝑜𝑥
𝐺𝑇  

 (2) 

3.3.1.1. YOLO Loss Function: 

The loss function for YOLO is a composite of two 

components: the bounding box localization loss and the 

classification loss for multi-class detection. Here, both losses 

use the sum of squares errors. In order to increase the loss of 

bounding box coordinates prediction (λcoord) and decrease the 

confidence score loss of bounding boxes without an object 

being detected (λbackground). In the original paper, down-

weighting the loss is contributed by bounding boxes with 

objects and bounding boxes of background, where λcoordwas set 

to 5, and λbackgroundwas set to 0.5. The loss function is given by: 

ℒ𝑙𝑜𝑐 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑑𝑒𝑓𝑒𝑐𝑡

[(𝑥𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

+ (𝑦𝑖 − �̂�𝑖)
2 + (√𝑤𝑖 − √�̂�𝑖)

2

+ (√ℎ𝑖 − √ℎ̂𝑖 )
2] 

 (3) 

ℒ𝑐𝑙𝑠 = ∑ ∑(𝕝𝑖𝑗
𝑑𝑒𝑓𝑒𝑐𝑡

+ 𝜆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(1

𝐵

𝑗=0

𝑆2

𝑖=0

− 𝕝𝑖𝑗
𝑑𝑒𝑓𝑒𝑐𝑡

))(𝐶𝑖𝑗 − �̂�𝑖𝑗)
2

+ ∑ ∑ 𝕝𝑖
𝑑𝑒𝑓𝑒𝑐𝑡

(𝑝𝑖(𝑐)

𝑐∈𝐶

𝑆2

𝑖=0

− �̂�𝑖(𝑐))
2
 

 (4) 

 

ℒ = ℒ𝑙𝑜𝑐 + ℒ𝑐𝑙𝑠  
 (5) 

Where 𝕝𝑖
𝑑𝑒𝑓𝑒𝑐𝑡

refers to the presence of the object at cell (i) 

and 𝕝𝑖𝑗
𝑑𝑒𝑓𝑒𝑐𝑡

 refers to the prediction of the jth bounding box at 

cell (i). The general format of yolo is shown in Fig.3. 

 
 

 



 © 2023 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 17, Number 4  (ISSN 1995-6665) 544 

3.3.2. Fast R-CNN 

Usually, Fast RCNN consists of CNN networks trained on a 

larger dataset (e.g., Image Net), but with replacing the last 

pooling layer with an ROI Pooling layer. Moreover, replacing 

the Fully Connected layer with two branches, one is for 

classification with a SoftMax output per the number of defects 

classes, and the second is a bounding-box regressor, as shown 

in Fig.4. 

In Fast RCNN, the SVM classifier is replaced by a SoftMax 

layer, which extends the neural network predictions and 

classification rather than creating another model for this task. 

This gives the network more consistency. 

3.3.3. Faster R-CNN Model: 

3.3.3.1. Faster R-CNN architecture: 

Modifying the RPN module to be a fully convolutional 

neural network which produces proposals (bounding boxes) 

with multi-scales and aspect ratios. RPNs could be considered 

as attention. It has the same concept because it tells the 

network where to look rather than focusing on non-important 

regions of the image; this can lead to better performance 

because it reduces the computation. In other words, Faster R-

CNN is combined with Fast R-CNN mentioned in the previous 

section, and the RPN module consists of convolutional layers, 

where both parts share the same CNN layers, making the 

training done only once. 

The RPN (Regional Proposal Network) operates on the 

feature map extracted from the last shared CNN layer with the 

Fast R-CNN model. It uses a sliding window approach with a 

specific size (n x n) to traverse the feature map. As a result, for 

each window, several region proposals are generated. These 

proposals are then filtered using an Objectness score based on 

the IOU (Intersection over Union) score, similar to R-CNN's 

filtering process. 

 

Figure 3. YOLO architecture[27] 

 

Figure 4. Fast R-CNN architecture 

 

Figure 5. Faster R-CNN architecture 
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3.3.3.2. Deformable convolutions 

The ROIs are divided into k×k blocks by pooling layer, 

where each proposal (bounding box) has a size of w×h, then 

the output of a regular RPN is given by: 

𝑦(𝑖, 𝑗) = ∑
𝑥(𝑃0 + 𝑃)

𝑛𝑖,𝑗
𝑃∈𝑏𝑖𝑛(𝑖,𝑗)

  (6) 

Equation (6) shows the formula for the output of the 

characteristic graph after pooling. It calculates the sum of the 

values of pixels (x) in a specific region of interest (ROI) that is 

defined by the upper left corner pixel (p0) and the current pixel 

(p) at any position in a given coordinate (bin(i,j)). The pixel's 

value (ni,j) is a normalization factor. The deformable 

convolution technique adjusts the pin locations to generate 

feature maps and applies offsets of size (2×k×k). This 

enhanced offset region is then pooled to produce the feature 

map, and the deformable ROI formula is applied: 

 𝑦(𝑖, 𝑗) = ∑
𝑥(𝑃0 + 𝑃 + ∆𝑝𝑖,𝑗)

𝑛𝑖,𝑗
𝑃∈𝑏𝑖𝑛(𝑖,𝑗)

  (7) 

Where Δpi,j is offset at each location (i≥0, k>j). Deformable 

convolution compared to the regular convolution is shown in 

Fig.6. 

 

Figure 6. Normal and deformable convolutions 

Soft Non-Maximum Suppression is used the same as R-

CNN, which reduces the false detection rate in the final 

detected defects by eliminating the duplicate frames. 

3.3.3.3. RPN loss function 

The loss function for RPN is the sum of the classification 

loss and the anchor regression coefficients loss, and this 

formula gives it: 

 𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
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1

𝑁𝑟𝑒𝑔
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∗)

𝑖

 

 (8) 

Where “i” is the anchor index. Nclsis the class number, and 

Nreg is the regression coefficients number. Lcls is the binary 

classification loss of two classes (foreground, background). 

“pi” is the output score for classification of the ith anchor, and 

pi
* is the ground truth label (0 or 1). Leg (ti, ti

*) is the regression 

loss; it is active only when the anchor contains a defect ( pi
* is 

1), and it is the prediction output of the regression layer. 

The regression coefficients are calculated as follows: 

𝑡𝑥
∗ =

𝑥∗ − 𝑥𝑎

𝑤𝑎

 

𝑡𝑥
∗ =

𝑦∗ − 𝑦𝑎

ℎ𝑎

 

𝑡𝑤
∗ = log (

𝑤∗

𝑤𝑎

) 

𝑡ℎ
∗ = log (

ℎ∗

ℎ𝑎

) 

 (9) 

 
Where (x,y) is the anchor centre coordinates, and (w,h) is 

the width and height of the anchor. Ka, k* stands for anchor 

parameters and ground truth anchor parameters, respectively, 

where k є (x, y, h, w). Regression loss of the ith anchor is 

applied to the corresponding ithregressor if it has a positive 

abjectness score.The concept of anchor boxes has been 

introduced to detect objects at different scales and aspect 

ratios. Rather than relying on a pyramid of images or filters 

with varying scales and aspect ratios, anchor boxes are fixed 

with predetermined scales and aspect ratios. Regions mapped 

to these anchor boxes can detect objects at various scales and 

aspect ratios. Ratios. The shared convolutional computation 

within the RPN and R-CNN modules helps reduce the 

computations. 

Faster R-CNN deploys nine anchors (3 different scales at e 

different aspect ratios) for each location in the feature map, and 

it has 2×9 abjectness scores with 4×9 coordinates, Fig.7. 

 
Figure 7. RPN with sliding window[28] 

3.3.3.4. Objectness Score 

It is a concept consisting of an IOU score, where while 

training the RPN, each anchor is assigned a positive or 

negative IOU score. For example, if An IOU score between an 

anchor and ground truth is more significant than 0.7, then the 

abjectness score is positive, and the anchor is classified as 

foreground (object). Moreover, for an IOU<0.3, the abjectness 

score is negative, and the anchor is classified as background. 

3.3.3.5. Faster R-CNN training 

Regression coefficients with RPN loss are applied for better 

localization accuracy of defects. All anchors are organized 

accordingly with their class sores; after that, NMS is applied to 

eliminate the anchors that do not satisfy the thresholding 

criteria mentioned earlier. The boundary anchors produced by 

the RPN are kept within the boundaries of the image. The RPN 

generates proposals that are then used to train the Fast R-CNN 

for object detection. All generated proposals are used during 

the training phase, but only the top N proposals are used during 

the testing phase. 

3.3.4. ResNet 

For the ResNet model, the categorical cross-entropy loss is 

utilized to assess the disparity between the predicted 

probability distribution and the actual probability distribution 

of the labels. Its purpose is to gauge the degree of dissimilarity 

between these two distributions. It is defined as: 

L = -1/N * sum (y * log(y_hat) + (1 - y) * log 

(1 - y_hat)) 
 (10) 

Where N is the number of samples, y is a one-hot encoded 

vector representing the actual labels, y_hat is a vector of 

predicted probabilities, and the log is the natural logarithm. 

The categorical cross-entropy loss encourages the network to 
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assign a high probability to the correct class and a low 

probability to the incorrect classes. The network adjusts its 

weights during training to minimize this loss function, 

improving classification performance. 

4. Result and Discussion  

All the previous models, including YOLO, Fast R-CNN, 

Faster R-CNN, and ResNet, were trained based on the 85% 

preprocessed images and validated on 10 %.Where the dataset 

splitting for training, validation, and testing was performed 

using random selection to ensure data representativeness and 

minimize potential biases. The hyperparameters of the training 

process were adjusted after deploying three ways of automated 

methods to find the optimal hyperparameters, including (Grid 

Search, Random search, and Bayesian optimization) as shown 

in Table.1, Table. 2, Table.3 and Table. 4. 

The best training architectures for each model were taken 

and tested based on the test dataset (5% of the dataset), the test 

dataset was randomly sampled 5% of the entire dataset while 

ensuring that the proportion of defective and non-defective 

casting images in the testing set reflected on the entire dataset. 

This approach helps ensure that the testing set is representative 

of the overall dataset and is not biased towards any specific 

class. 

and the result is shown in Fig.8.  

In this study, we evaluated the performance of four deep 

learning algorithms (ResNet, Fast R-CNN, Faster R-CNN, and 

YOLO) for the task of detecting surface defects in investment 

casting. The accuracy results of these algorithms are as 

follows: ResNet achieved the highest accuracy at 95.89%, 

followed by Faster R-CNN with 90.23%, Fast R-CNN with 

89.21%, and YOLO with 86.43%. 

To provide a more comprehensive discussion, we stated the 

details of each algorithm highlights and limitations, the 

comparison is shown in Table 5. 

 
Figure 8. Accuracy of different architectures on the testing set 

 

 

Table 1. Hyperparameters of the Yolo algorithm 

Method 

Hyperparameters 
Training 

Accuracy 

Validation 

Accuracy 
Learning 

rate 

Batch size Number of 

epochs 

Confidence 

threshold  

Intersection over 

union  

Grid search 0.001 16 1000 0.7 0.9 84.45% 82.22% 

Random Search 0.001 4 1200 0.7 0.92 85.32% 83.51% 

Bayesian 

optimization 
0.012 64 3200 0.5 0.8 87.21% 86.43% 

Table 2. Hyperparameters of Fast R-CNN 

Method 

Hyperparameters 
Training 

Accuracy 

Validation 

Accuracy 
Learning 

rate 

Batch 

size 

Number of 

epochs 

Momentum Weight 

decay 

Non-Maximum 

Suppression 

Grid search 0.0001 16 120 0.93 0.0005 0.5 87.17% 85.67% 

Random Search 0.0001 16 750 0.91 0.0005 0.3 86.32% 86.00% 

Bayesian 

optimization 
0.0001 32 920 0.90 0.0005 0.5 89.43% 89.21% 

Table 3. Hyperparameters of Faster R-CNN 

Method 

Hyperparameters 
Training 

Accuracy 

Validation 

Accuracy 
Learning 

rate 

Batch 

size 

Number of 

epochs 

Momentum Weight 

decay 

Non-Maximum 

Suppression 

Grid search 0.001 32 100 0.95 0.0005 0.5 89.41% 88.13% 

Random Search 0.001 32 150 0.93 0.0005 0.3 93.76% 90.65% 

Bayesian 

optimization 
0.001 64 180 0.99 0.0005 0.5 91.43% 90.23% 

Table 4. Hyperparameters of ResNet 

Method 

Hyperparameters 
Training 

Accuracy 

Validation 

Accuracy 
Learning 

rate 

Batch 

size 

Number of 

epochs 

Weight decay Dropout rate  

Grid search 0.001 32 30 0.0005 0.35 98.7% 98.21% 

Random Search 0.001 32 50 0.0005 0.3 97.78% 95.32% 

Bayesian 

optimization 

0.001 64 35 0.0005 0.40 97.43% 95.89% 

Table 5. performance comparison of the discussed models 

Algorithm Accuracy (%) Strengths and Examples of Successful Detection Limitations 

ResNet 95.89 - Precise detection of intricate and subtle defects (e.g., 

micro-cracks, surface irregularities, porosity) 

- May have longer processing times 

Faster R-CNN 90.23 - Good balance between speed and accuracy - May struggle with smaller, less prominent defects 

Fast R-CNN 89.21 - Decent speed-accuracy trade-off - Challenges with complex textured defects, partial 

obstructions 

YOLO 86.43 - Real-time capabilities - Difficulty in localizing smaller defects, reliance on 
object size 
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The above table provides a clear comparison of the 

algorithms' performance, highlighting their respective strengths 

and limitations in detecting surface defects in investment 

casting. 

In summary, the choice of algorithm should be tailored to 

the specific requirements of the application. ResNet's accuracy 

makes it a strong candidate for intricate defect detection, while 

Faster R-CNN and Fast R-CNN strike a balance between speed 

and accuracy. YOLO is ideal for real-time scenarios but may 

require additional support for precise localization of smaller 

defects. 

These examples illustrate how each algorithm performs in 

detecting surface defects in investment casting, shedding light 

on their strengths and limitations. The results showcase the 

potential of deep learning in industrial applications, 

emphasizing the need for algorithm selection based on the 

nature of the defects and the operational context. 

Eventually, while the algorithms were not specifically 

evaluated for identifying the precise defect type, our study 

aimed to establish their effectiveness in the broader context of 

defect detection, which is a fundamental aspect of automated 

quality control in various industries. 

5. CONCLUSION: 

In conclusion, the results of this study demonstrate that 

deep learning algorithms can effectively detect surface defects 

in investment casting. Among the algorithms tested, ResNet 

achieved the highest accuracy rate of 95.89%, followed by 

Faster R-CNN at 90.23%, Fast R-CNN at 89.21%, and YOLO 

at 86.43%. The high accuracy rate achieved by ResNet can be 

attributed to its ability to learn features at different scales and 

to capture more complex relationships between features. 

However, it is essential to note that each algorithm has 

advantages and limitations in detecting defects in investment 

casting. Faster R-CNN and Fast R-CNN have a faster detection 

speed than ResNet but are less accurate in detecting more 

minor defects. YOLO has a faster detection speed but could be 

more accurate in detecting more significant defects. Overall, 

the results of this study provide valuable insights into the use 

of deep learning algorithms for surface defect detection in 

investment casting and can be used as a basis for further 

research in this area. 
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