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Abstract 

The goal of this project is to use CNC end milling operations to process AL 6063 composites reinforced with varying 

weight percentages of Nano TiO2 (1, 3 and 5). The composites are made using the stir casting technique in an electric melting 

furnace. Due to their superior wear and corrosion resistance, low density, and outstanding mechanical qualities as compared 

to other metals and alloys, aluminum alloys are utilized extensively in the aerospace and automotive sectors. 

For study and optimization using Taguchi's method, analysis of variance (ANOVA) was used to determine the importance 

of process factors on the response variable. Cutting forces and surface roughness are the factors that are taken into 

consideration during machining. Cutting forces and surface roughness have been examined for the CNC end milling study 

parameters, which include rotating speed, cutting speed, TiO2 addition content, end mill cutting edges number, depth of cut, 

and feed rate under dry lubrication conditions. To develop mathematical models for all parameters as functions of significant 

process factors, Response Surface Methodology (RSM) is applied. The results of analyses of variance indicate that the cutting 

force is best at the center level of rotating speed (25 m/min), low level of cutting speed (500 rpm), center level of the number 

of flutes on the cutting edges, and highest levels of feed rate and depth of cut. 

In accordance with the determined optimal level, experimental data is gathered, interest-area mathematical models are 

developed, and process model optimization is performed. 

© 2023 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

One of the most significant advancements in material 

engineering in recent years is the use of composite materials. 

MMCs are presently employed in a wide range of technical 

applications, including automotive, aerospace, marine, and 

turbine compressors. Their low weight, strong strength, high 

rigidity, and high temperature resistance are their key 

advantages [1-6]. Many types of Metal matrix materials exist 

such as magnesium, aluminum, zinc and copper. The hard 

reinforcement can be (SiC), titanium oxide (TiO2) and 

aluminum oxide (Al2O3). Many polymeric matrix materials in 

different fields have been developed using Nano fillers as 

materials [7-10].Metal matrix materials come in many 

varieties, including those made of magnesium, aluminum, zinc, 

and copper. The hard reinforcement can be made of silicon 

carbide (SiC), titanium oxide (TiO2), or aluminum oxide 

(Al2O3). Numerous researchers have looked into the 

importance of improving processing parameters, as choosing 

effective processing parameters is a top priority in the 

manufacturing sector and operational efficiency is crucial in 

today's cutthroat marketplace. Modern production relies 

heavily on Computer Numerical Control (CNC) devices 

because of its  These machines—as well as the CNC 

machinists trained to use them—are quick, precise, and 

versatile, and they are essential to many significant sectors in 

the state. Typically[11].Al and its alloys are used to make 

MMC. Aluminum and its alloys have drawn the greatest 

attention as the matrix material in MMCs in most technical 

applications owing to its exceptional mechanical qualities, 

superior ductility, and strong corrosion resistance [12-13]. 

Figure 1 shows how AL-MMCs are used. The utilization of 

AL-MMCs for diverse industrial applications is significantly 

influenced by their mechanical characteristics.  

 
Figure 1. Different Applications of AL-MMC’s [13] 
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Due to the determination of the quality parameter, it is vital 

and crucial to optimize the process parameters [14–15]. Metal 

removal techniques include the use of end mills and face mills. 

Surface roughness and material removal rate are factors in the 

end milling process because of the high-quality surfaces, 

machining efficiency, process dependability, and dimensional 

correctness [16–17]. When producing pockets, slots, and 

precise molds and dies, end milling is employed in a few 

industrial sectors, including aerospace and automotive [18-

19].Nowadays, the word surface roughness is increasingly 

being replaced by the Ra parameter when studying 

theprocessing of novel materials or when managing intricate 

machine parts[20]. The ideal feed rate that provided a 

maximum material removal rate under the provided surface 

roughness restriction may be chosen via a bisection approach, 

according to research by Dae Kyun Baeket et al. [21] utilizing 

a surface roughness model, M.S. A genetic algorithm was used 

by Shunmugam et al. [22] to examine the selection of ideal 

circumstances in multi-pass face-milling.According to 

Arokiadas R et al. [23], metal matrix composites can be made 

using a variety of techniques that are divided into solid-state, 

semisolid-state, and liquid state depending on the types of 

materials used, the required strength, the shape of the finished 

product, and the size of the reinforced particle. Although liquid 

state procedures are more cost-effective and have a closer net 

shape, solid-state approaches provide the greatest mechanical 

qualities. The most popular approach for optimization in 

design of experiments (DOE) methods, which save money, 

time, and resources, is the Taguchi method, according to Ting-

Cheng Chang et al. [24]. Dynamic experiments are a 

straightforward, systematic, and more effective way of 

determining the ideal machining settings. To produce nano-

crystalline structured chips from High Carbon Steel (HCS), 

Ilangkumaran M. et al. [25] examined the impact of machining 

settings on the machining parameters. The machining process 

with multi-response performance characteristics is studied 

using an orthogonal array, multi-response performance index, 

signals-to-noise ratio, and analysis of variance. When Dwivedi 

et al. [26] used the Taguchi robust design technique to examine 

how the surface roughness of an A356/SiC composite material 

affected the electromagnetic stir casting process, they found 

that the procedure significantly enhanced the microstructure. 

The feed, cutting speed, and depth of cut were discovered to 

affect surface roughness, and the ideal combination of the 

parameters was established to produce the surface roughness of 

3.15 m. When turning AISI 52100 bearing steel with a CBN 

tool.S. A. Hussain et al. [27] they discover that the model may 

be utilized for predicting the surface roughness (Ra) of turning 

GFRP composites. By using Design of Experiments (DOE) 

L25 orthogonal array on an all-geared lathe. The cutting 

parameters considered were the cutting speed, feed, depth of 

cut, and workpiece (fiber orientation).Varaprasad et al. [28] In 

the hard turning of AISI D3 steel, the effects of the cutting 

speed, feed rate, and depth of cut on the surface roughness 

were examined. A mixed ceramic tool was used to process 

AISI D3 steel that had been hardened to 62 HRC. Response 

Surface Methodology (RSM) was used to develop 

mathematical models for surface roughness. A Central 

Composite Design (CCD) is utilized as the experimental 

design. Twenty tests were performed using a mixed ceramic 

tool of Al2O3/TiC with a corner radius of 0.8 mm and six 

center points.Khamel et al. [29] investigated the effects of 

speed, feed, and depth of cut on tool life, surface roughness, 

and cutting forces. Using ANOVA, they examined how 

process restrictions affected performance attributes. They 

concluded that feed rate and cutting speed significantly affect 

tool life and surface roughness. In high-speed ball-end milling 

of Al2014-T6.Mithilesh K. Dikshit et al. [30] created empirical 

mathematical models for cutting forces and surface roughness 

under the influence of axial depth of cut, feed, radial depth of 

cut, and cutting speed. Based on the response surface approach, 

central composite design has been used to organize ball-end 

milling trials. To improve surface roughness, we employed 

coated carbide tools and the Taguchi approach for machining 

characteristics optimization while milling GFRP at high 

speeds. The L9 orthogonal array has process parameters 

including feed, speed, and the surface roughness response 

parameter. Analyzing the results of the optimization process 

using the S/N ratio. ANOVA results show that feed rate 

significantly affects surface roughness. The GFRP milling 

method enhanced its performance in terms of surface 

roughness by 90.3%[31].Tomov et al. [32] Using DOE to 

validate a close relationship between the primary, waviness, 

and roughness profiles in a reliable hard turning process. The 

models were created based on empirical data gathered with a 

CNC lathe to manufacture special rings made of steel EN C55 

(AISI 1055) with a hardness of 53.1 HRC.Through extensive 

experimentation, Xu et al. [33] investigated the comprehensive 

effects of milling process parameters and robot posture on 

machining results. Based on their findings, they successfully 

decreased the cutting forces to improve the surface quality of 

the milling process.Numerous engineering problems based on 

modelling and optimization impacted by experimental factors 

can be resolved using the RSM collection of statistical  

techniques. To determine the best performance for the 

situation, this technique  concurrently examines the effects of 

many parameters and the relationship between variables 

[34,35,36].Parameter optimization techniques are critical to 

improve the efficiency and effectiveness of machining 

processes. In recent years, several studies have been conducted 

to examine and improve these techniques[37]. 

2. MATERIALS AND EXPERIMENTAL WORK 

The 6063 Al-alloy matrix material was utilized in this work. 

Table1 lists the chemical make-up of the matrix material. 

Figure 2 shows a scanning micrograph of TiO2 nanoparticles, 

and Table 2 lists the supplier's specifications for nanoparticles. 

TiO2 nanoparticle additions of 1, 3, and 5 wt% are used as 

reinforcement materials. Stir casting is used to create the 

composites. In an electric melting furnace, the aluminum alloy 

is melted for 40 minutes at a temperature of 785oC. The molten 

aluminum alloy is then progressively combined with hot Nano 

powder that has reached temperatures of up to 450oC, and the 

combination is then agitated for five minutes at a speed of 300 

rpm to achieve homogeneity. The liquid is put into a metal 

mold that has been preheated to 350 to 400oC and agitated with 

a 500oC stirrer. 

Table 1. Chemical composition of Al-6063 alloy (wt. %) 

Element Mg Si Fe Zn Ti Mn Cr Cu Al 

Present%  0.45-0.9 0.2-0.6 0.35 0.10 0.10 0.10 0.10 0.10 Balance 
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Molds measuring 100 mm x 100 mm x 50 mm are filled 

with molten material. The experimental setup together with the 

schematic diagram of the experimental setup is represented in 

Figure 3. The 4-axis vertical SINUMERIK 802D CNC 

machine was used for all studies Figure 4. The blades are made 

of HSS. End mills have been used for dry cutting with varying 

numbers of cutting edges. The values of the input parameters 

are shown in Table 3 for rotational speed, cutting speed, TiO2 

addition content, number of cutting edges, depth of cut, and 

feed rate. The responses are cutting force and surface 

roughness. For testing, the orthogonal array L27 is used. When 

measuring surface roughness using the Surface Roughness 

Tester (TAYLOR-HOBSON-SURTRONIC), the root mean 

square value parameter (Ra) is employed. A KISTLER 

dynamometer type (5806 A) is used to measure cutting forces. 

For slot machining, end-mill cutting tools with two, three, 

and four flutes made of HSS are employed. Figure 5 provides 

an illustration of the study work's technique. In the present 

work, then the resultant cutting force (Rcf) for the forces (Fx, 

Fy, and Fz) is determined as follows. 

𝑹𝑪𝑭 = √𝐹𝑥
2 + 𝐹𝑦

2 + 𝐹𝑧
2                                                 (1) 

 

3. TAGUCHI METHODOLOGY  

In the 1980s, Genichi Taguchi created a three-stage 

technique [39,40]. Systems design, parameter design, and 

tolerance design are the three phases. The study methodology 

is shown in Figure 5. The Taguchi method based L27 

orthogonal array is used for the studies. L27 (313) contains 13 

columns at three levels and 27 rows with the same number of 

levels as tests (26 degrees of freedom). The experiment 

consists of 27 tests, with the first column representing 

rotational speed (rpm), the second column representing cutting 

speed (m/min), the third column representing addition 

percentage, the fourth column representing the number of 

cutting edges, the fifth column representing feed rate of cut 

(mm/min), the sixth column representing depth of cut (mm), 

and the remaining tests being interactions between these 

variables, as shown in Figure 6. The Taguchi technique is used 

to reduce the 81 trials to only 27. At three levels, six criteria 

are used. Table 3 lists the parameters that were examined and 

the levels that were given to them. 

Table 2. Specification of TiO2 Nano particles [38] 

Property Value 

Assay ≥99.9% 

Form Nano particles 

Particle size 50 nm (TEM) 

Surface area 20-40 m2/g 

Density 4.23 g/cm3 

Color white 

Melting point 1850 °C 
 

Figure 2.SEM micrographs of TiO2 Nano particles 

 

Figure 3. Experimental setup 
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Figure 4.CNC milling machine set up 

 

Figure 5. Methodology of the research work 

 
Figure 6. Search graph for L27 OA [41] 

 

 

Table 3 displays the numerical values of these 

characteristics. During one cutting operation, the roots mean 

square values of three variables are measured. 

The Taguchi parameters design approach is utilized in this 

work to identify the best machining parameters for reducing 

cutting forces (Fc) and surface roughness (Ra). Six control 

elements are taken into consideration: X1, X2, X3, X4, X5, and 

X6, as well as certain squared terms and interaction terms like 

X1.X1, X2.X3, X1.X4, X2.X3... and X1
2 interactions [40]. The 

experimental findings are further translated into a lower S/N 

ratio, which is better for measuring surface roughness. The S/N 

ratio also expresses the dispersion around the goal value; the 

smaller the scatter, the higher the S/N ratio value. Other quality 

traits could exist, depending on the experiment's goals. It is 

preferable to have a smoother surface. For LB type features, 

the Surface Roughness Mean Square Deviation (MSD) from 

the target value may be stated as [42]. 

𝑴𝑺𝑫 = −10𝐿𝑜𝑔(1
𝑛⁄ ) (∑ 1/𝑦𝑖

2)                                          (2) 

Where n is the number of observations 

y is the observed data. 

Based on up mention equation it is found that the better 

surface roughness at the higher the S/N ratio. 

Table 3. Input process parameters and levels used in the designed 

experiments. 

Symbol 
Input 

parameters 
Unit Level 1 Level 2 Level 3 

X1 Rotational 
speed 

rpm 500 1000 1500 

X2 Cutting speed m/min 15 25 40 

X3 Additions wt.% 1 3 5 

X4 Cutting edges No. 2 3 4 

X5 Feed rate mm/min 200 400 600 

X6 Depth of cut mm 0.4 0.8 1.2 

4. RESULTS AND DISCUSSIONS 

4.1. ANALYSIS OF EXPERIMENTAL RESULTS 

A statistical method known as analysis of variance 

(ANOVA) is used to quantitatively estimate the proportional 

contribution of each control factor to the total measured 

response. F-ratios or percentage contributions are often used to 

express the relative importance of factors [41]. The goal of this 

study's design was to link the effect of control variables to each 

response that was assessed. The influence of variables and their 

interactions are determined by analyzing experimental data, 

which also helps to establish optimal levels and validate 

experimental findings using the signal-to-noise ratio. Analysis 

of variance and mean (ANOM). Table 4 displays the results of 

cutting forces and average surface roughness responses (three 

repeated values). 
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Table 4. Experimental design using L27OA. 

 

L27 (3
13) 

Experimental Control FactorsL27OA Cutting Forces (N) Ra (µm) 

X1 X2 X3 X4 X5 X6 
X1. 

X2 

X1. 

X3 

X1. 

X4 
FX Fy Fz 1st trial 2nd trial 3rd trial 

1 1 1 1 1 1 1 1 1 1 21.95 73.74 137.01 4.25 4.12 4.63 

2 1 1 2 2 2 1 2 2 2 89.55 81 119.15 4.21 4.09 4.42 

3 1 1 3 3 3 1 3 3 3 73.3 61 116.49 4.66 4.02 4.42 

4 1 2 1 2 3 2 1 2 3 44.97 55.96 123.89 3.99 3.89 3.93 

5 1 2 2 3 1 2 2 3 1 69.3 87 121.44 4.44 4.05 4.02 

6 1 2 3 1 2 2 3 1 2 92.06 71.03 102.75 4.04 4.34 4.16 

7 1 3 1 3 2 3 1 3 2 59.96 87.36 105.56 2.35 2.84 2.74 

8 1 3 2 1 3 3 2 1 3 94.54 101.12 65.89 2.22 2.63 2.80 

9 1 3 3 2 1 3 3 2 1 86.42 98.5 90.34 2.78 2.94 2.92 

10 2 1 1 1 1 2 2 2 2 94.21 65.21 84.97 3.94 4.10 4.05 

11 2 1 2 2 2 2 3 3 3 79.21 68.3 90.92 4.08 3.96 4.13 

12 2 1 3 3 3 2 1 1 1 45.03 74.15 86.43 4.29 4.11 4.24 

13 2 2 1 2 3 3 2 3 1 65.32 85.1 92.75 2.62 2.52 2.47 

14 2 2 2 3 1 3 3 1 2 94.81 81.6 91.09 2.71 2.51 2.64 

15 2 2 3 1 2 3 1 2 3 60.94 65.21 80.54 2.85 2.63 2.77 

16 2 3 1 3 2 1 2 1 3 88.85 67.78 90.76 3.98 4.10 4.16 

17 2 3 2 1 3 1 3 2 1 103.59 96.97 96.98 4.32 4.11 4.42 

18 2 3 3 2 1 1 1 3 2 76.09 65.34 88.09 4.42 4.22 4.30 

19 3 1 1 1 1 3 3 3 3 87.21 74.05 96.38 2.88 3.12 3.06 

20 3 1 2 2 2 3 1 1 1 84.97 76.87 100.44 2.90 3.25 3.15 

21 3 1 3 3 3 3 2 2 2 102.97 97.98 86.98 3.41 3.13 3.12 

22 3 2 1 2 3 1 3 1 2 94.8 86.75 67.98 2.31 2.22 2.38 

23 3 2 2 3 1 1 1 2 3 101.41 81.1 96.17 2.72 2.16 2.50 

24 3 2 3 1 2 1 2 3 1 95.61 105.17 109.18 2.71 2.33 2.49 

25 3 3 1 3 2 2 3 2 1 56.78 98.04 108.67 2.43 2.21 2.32 

26 3 3 2 1 3 2 1 3 2 67.57 98.26 95.98 2.13 2.34 2.30 

27 3 3 3 2 1 2 2 1 3 97.95 113.3 108.9 2.08 2.30 2.28 

 

4.1.1. SURFACE ROUGHNESS 

There are many variable factors that affect the 

surfaceproperties in CNC milling [43]. Based on S/N ratios 

and ANOM values, respectively, Tables 5 and 6 provide the 

ANOVA results for surface roughness. Rotational speed, 

cutting speed, addition, and X1.X2 interaction are important 

variables impacting S/N ratio at 99% confidence level when 

using surface roughness and S/N ratio transformation. At 

whatever degree of confidence, the interactions X1.X3 and 

X1.X4 have no meaningful impact. According to mean values 

and surface roughness as the response, rotating speed, cutting 

speed, additions, and X1.X2 are all statistically significant at 

99%. At any degree of confidence, the variables edge count, 

feed rate, depth of cut, X1.X3 and X1.X4 are not significant. 

Several characteristics are shown to be unimportant while 

making a sizable contribution to the statistical sum of squares 

overall. 

4.1.2. CUTTING FORCES 

The sole significant component for the rotating speed is X1, 

which accounts for 32.87% of the entire variance, according to 

the ANOVA findings for cutting forces (Table 7). With 

38.78%, X1.X3 is the contributor who comes in second. The 

quantity of cutting edges, the depth of cut, and X1.X4 all 

contribute at considerably lesser levels. 

4.2. OPTIMUM LEVELS 

Table 8 and Figure 7 depict the impact of various 

operational parameters on the S/N ratio, which makes up the 

Ra. It is obvious that the rotational speed at level 3 (1500 rpm), 

cutting speed at level 3 (40 m/min), additions at level 1 (1 

wt.%), number of cutting edges at level 2 (2 flutes), feed rate at 

level 3 (600 mm/min), and depth of cut at level 3 (1.2 mm) are 

the best levels for various control factors to achieve minimum 

Ra. The response graph of the S/N ratio for the process 

parameters and the three levels shows the rotating speed (X11, 

X12, X13), cutting speed (X21, X22, X23), addition (X31, X32, 

X33), number of flutes (X41, X42, X43), feed rate (X51,X52,X53), 

and depth of cut (X61,X62,X63). According to the graph, the 

ideal settings for rotating speed, cutting speed, addition, 

number of flutes, feed rate, and depth of cut are level 3, level 2, 

level 1, level 2, and level 3, respectively. The major impact of 

interactions on the Ra is shown in Figure 7 by the S/N ratio. 
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Table 5. Analysis of Variance (ANOVA) for the surface roughnessa. 

Source Seq. SS Df Adj. MS F
calculated P (%) 

Rotational speed (X1) 50.441 2 25.221 423.88 39.81 

Cutting Speed (X2) 8.407 2 14.204 238.72 22.42 

Additions (X3) 0.85 2 0.418 7.03 0.66 

No. of Edges (X4) 0.128* 2    

Feed rate (X5) 0.116* 2    

Depth of Cut (X6) 0.304* 2    

X1. X2 46.074 4 11.518 193.58 36.36 

X1. X3 0.109* 4    

X1. X4 0.248* 4    

Error 0.9517 16   0.75 

Total 126.720 26   100 

a Df: degrees of freedom; SS: sum of squares; MS: Variance; P: percent contribution. * Pooled, Tabulated F-ratio at 99% confidence level:F0.01, 2, 

16= 6.23. 

Table 6. Analysis of Means (ANOM) for the surface roughnessa 

Source Seq. SS Df Adj. MS F
calculated P (%) 

Rotational speed (X1) 6.9530 2 3.3410 498.66 39.19 

Cutting Speed (X2) 3.7064 2 1.8148 270.86 20.89 

Additions (X3) 0.1195 2 7.67 7.67 0.67 

No. of Edges (X4) 0.0147* 2    

Feed rate (X5) 0.0081* 2    

Depth of Cut (X6) 0.0462* 2    

X1. X2 6.8521 4 1.6779 250.43 38.63 

X1. X3 0.0161* 4    

X1. X4 0.0176* 4    

Error 0.1077 16   0.62 

Total 17.3795 26   100 

a Df: degrees of freedom; SS: sum of squares; MS: Variance; P: percent contribution. * Pooled, 

Table 7. Analysis of Variance (ANOVA) for the Cutting Forces a 

Source Seq. SS Df Adj. MS F
calculated P (%) 

Rotational speed (X1) 195.06 2 975.53 19.73 32.87 

Cutting Speed (X2) 3.7064 2 94.00 1.9 3.17 

Additions (X3) 0.1195 2 223.09 4.51 7.52 

No. of Edges (X4) 0.0147* 2    

Feed rate (X5) 0.0081* 2 103.87 2.10 3.50 

Depth of Cut (X6) 0.0462* 2    

X1. X2 6.8521 4 86.486 1.75 5.83 

X1. X3 0.0161* 4 575.47 11.64 38.78 

X1. X4 0.0176* 4    

Error 0.1077 10   8.33 

Total 5935.54 26   100 
a Df: degrees of freedom; SS: sum of squares; MS: Variance; P: percent contribution. * Pooled, 

Table 8. Effect of factors on S/N (Ra) a 

a Optimum level 

 

 

Symbol Factors       S/N ratios (dB)   

  Level 1 Level 2 Level 3 

X1 Rotational speed 11.188 11.063 8.228a 

X2 Cutting speed 11.610 9.457 9.412 a 

X3 Additions 9.967a 10.120 10.392 

X4 No. of Edges 10.175 10.069a 10.235 

X5 Feed Rate 10.214 10.198 10.067a 

X6 Depth of Cut 10.304 10.124 10.051a 

file:///E:/Engineering/Doctors/Dr.Mohamed%20Hassan%20Gadallah/Master/Paper-Hany_PdfToWord.docx%23_bookmark7
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Figure 7. Main effect of CNC machine parameters and Interactions on S/N ratios (Ra) 

Overall, while it may be tempting to ignore interactions 

between variables [34,44,45,46], doing so can result in 

incomplete and potentially misleading conclusions others have 

ignored their effects. Careful consideration of interactions can 

help to reveal important relationships between variables and 

lead to a more complete understanding of the phenomenon 

under study. The interaction effects appear to be so negligible 

as to be ignored. Consequently, it is safe to investigate the 

primary storyline[47]. 

4.3. VERIFICATION OF EXPERIMENTAL RESULTS 

Once the optimal level of design parameters has been 

selected, the next stage is to check the improvement of quality 

characteristics using those parameters. The estimated optimum 

set of parameters is determined using the formula: 

Ypredicted =Ymean + ∑ [Yi- Ymean]                      (3) 

Where: 

Yiis the overall mean (S/N ratio and mean) response. 

Y meanis the optimal mean (S/N ratio and mean) response. 

Tables 9 and 10 compare the projected and actual cutting 

forces and average surface roughness for the primary design 

elements determining the quality characteristics. There is 

evidently good agreement between the expected and observed 

(S/N ratio and mean) responses. The answer for surface 

roughness varies most from mean and S/N ratio responses. 

Tables 9 and 10 show that, given the cutting forces under 

consideration, the experimental and projected responses are 

both extremely similar. Based on mean response and S/N ratio 

response, a comparable degree of agreement is shown. Average 

surface roughness results from experiments and predictions are 

similar. 

Table 9. Results of the confirmation experiment for S/N ratios values 

Cutting Forces 

 Prediction Experiment 

Optimal levels 

Cutting Forces S/N ratio (dB) 

X12, X21 X31, 

X53 

159.77 

X12, X21, X31, 

X53 

159.16 

Surface roughness 

Optimal levels 

Surface roughness S/N ratio (dB) 

X31, X23, X31 

-12.38 

X31, X23, X31 

-12.49 

Table 10. Results of the confirmation experiment for mean values 

Surface roughness 

 Prediction Experiment 

Optimal levels 

Surface roughness mean values 

X22, X41 

4.12 

X22, X41 

4.21 

5. RESPONSE SURFACE METHODOLOGY (RSM) 

Response Surface Methodology is utilized to examine how 

independent factors affect responses. A mathematical model's 

objective is to link process responses to process variables. The 

typical mathematical model for the process responses is shown 

as [33]: 

𝒀 =F (X1, X2, X3 …., Xn) +ε,                                                  (4) 

WhereX1, X2 . . . Xnare process parameters  

ε is the error term 

Which is normally distributed about the observed response 

Y. RSM-based coefficients of process parameters are shown 

as: 

[B] = Inverse ([Z]T
*[Z])*[Z]T

*[F]                                       (5) 

Where [B]: array of coefficients of process parameters 

 [Z]: orthogonal of the array values of selected process 

parameters 

 [F]: array of the measured response 

 [Z]T: transpose array of [Z]. 
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To determine to which level the anticipated model is 

accurate, Deviation percentage φiand average deviation 

percentage φ^ are defined as: 

φI = [(Absolute [R measured – R predicted]) / (R 

measured)]X100                                                                      (6) 

WhereφI: percentage deviation of single sample dataand R 

measured: measured response.                                                                               

R predicted: predicted response.  

φ^ = ∑φI/n                                                                           (7) 

Where φ^ is average percentage deviation of all sample data 

  n  is the size of sample data. 

5.1. Mathematical models for (Ra) 

Based on the mean response and S/N ratio found in 

equations (8 and 9) as well as the surface roughness, a 

mathematical model for surface roughness has been created. 

The observed vs. projected surface roughness based on the S/N 

ratio are shown in Figure 8. The average percentage accuracy 

of the surface roughness based on S/N ratio data is 86.81%, 

while the model deviance ranges from 0.23% to 41.60%. 

-3X0.106–20.1464X-1X0.00614–12.59–=S/NRa

(8)2                     
1+0.000005 X 2X1+0.000065X6+0.316X50.00037X 

 – 4+ 0.01 X 3+ 0.058 X 20.0638 X -14.38 + 0.00204 X=meanRa

 -3X.1X 0.000017 – 2.X1+ 0.000035 X60.126X- 5X 0.000106

)9( 2                                                                                                                 
1X 0.000002 

5.2. Mathematical model for (Fc) 

Based on the S/N ratio in Eq. (10), a mathematical model 

for the cutting forces has been created. According to figure 9, 

the model deviance ranges from 0.38% to 16.28%, whereas the 

average percentage accuracy is 94.53%. 
 

FcS/N= 238.6 – 0.1647 X1- 0.28 X2 -3.96 X3- 0.0166X5 - 8.27 X6 

+0.000536X1X2 + 0.00517 X1X3+ 0.00007 X1
2                           (10)  

Figures 10(a-j) show response surface plots of surface 

roughness as a function of various process factors. Surface 

roughness response values (dB) are computed for a three-

dimensional surface as a function of X1, X2, X3, X5, X6, and 

X1.X2... X1.X5. Four of the six variables are held constant at the 

center level in each of these figures. Figure (10a) displays a 

surface plot for the cutting speed, rotational speed, and Ra 

relationship while accounting for additions. The feed rate and 

depth of cut are assumed to be constant at 3%, 400 mm/min, 

and 0.8 mm, respectively. The surface plot shows that cutting 

speed affects Ra's contour at various rotational speeds, while 

Figures (10 b–d) illustrate the impact of additions, feed rate, 

and depth of cut on Ra while maintaining a constant cutting 

speed. Additionally, it is noted that rotational speed at high 

levels results in relatively less surface roughness and that, 

when taking contour effect into account, Ra response varies 

greatly at high levels of cutting speed but only slightly at lower 

levels, relative to additions. In figure (10e), rotational speed, 

feed rate, and cut depth are all assumed to be constant at 1000 

rpm, 400 mm/min, and 0.8 mm, respectively. 

 

 
Figure 8. Measured vs. Predicted Ra at low S/N ratio 

 
Figure 9.Measured Vs. Predicted Fc 
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Figure 10. Effect of studied parameters on the Predicted Ra 
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Examining the 3D graph reveals that Ra gets better with 

higher cutting speeds while getting worse with higher feed 

rates. From this vantage point, it is possible to assert that the 

surface roughness is influenced by the cutting parameters. 

According to reports, increasing cutting speeds causes surface 

roughness values to drop [48]. 

In summary, the Taguchi technique can be effectively 

utilized as a powerful tool to investigate the effects of CNC 

process parameters on the mechanical quality of machined 

parts. By employing this methodology, manufacturers can 

optimize CNC processes, enhance product quality, and achieve 

greater efficiency in their manufacturing operations. 
 

6. CONCLUSIONS 

The Taguchi experimental design approach was used to 

evaluate the effects of rotating speed, cutting speed, additives 

(%wt.), number of edges, feed rate, and depth of cut process 

parameters on cutting forces and surface roughness during 

CNC machining of ALMMC/TiO2. Following were the 

inferences made from the statistical analysis: 

1. According to Taguchi optimization results, the best cutting 

forces are produced by rotating at 25 m/min, cutting at 500 

rpm, adding 1 weight percent, using three cutting edges, 

feeding at 600 mm/min, and cutting to a depth of 1.2 mm. 

Additionally, at a rotating speed of 40 m/min, a cutting 

speed of 1000 rpm, 1 weight percent additions, three edges, 

a high-level feed rate of 600 mm/min, and a depth of cut of 

1.2 mm, the average surface roughness is attained. 

2. Based on Taguchi analysis, it is discovered that in the 

operational range of machine parameters, rotating speed, 

cutting speed, additions, and feed rate all have a substantial 

impact on the cutting forces. 

3. Rotational speed, cutting speed, and their combined 

interaction effect are shown to have a considerable impact 

on average surface roughness. 

4. The validation of RSM models reveals that the mean 

percentage variation in the cutting force value is 5.47%, the 

mean surface roughness is 13.28%, and the mean surface 

roughness is calculated using the S/N ratio. 

5. To assign X1, X2, X3,X4,X5 and X6 and their corresponding 

interactions, use search graph approaches[43]. Even though 

others have neglected their effects, interactions may 

become significant if carefully examined. 

6. Validation of RSM models indicates that the average 

percentage deviation in cutting forcesand surface roughness 

ratio, based on S/N ratio values are 5.47 %and 13.19%. 

7. Individual and interaction effects should both be included in 

mathematical models (full models). It is wise to include all 

terms (individual and interaction effect) in the model 

creation phase as some studies would include the 

inconsequential effects as well as interaction effects (Meta 

models). 

Acknowledgements.  

Special appreciations are due to Egyptian Aluminum 

Company, Qena, Egypt for their sincere support with all 

required materials. 

REFERENCES  

1.Y. Guo, D. W. Yen, “A FEM study on mechanisms of discontinuous 

chip formation in hard machining,” Journal of Materials 

Processing Technology, vol. 155, 2004,1350-1356.  

2.K. K. Chawla, Composite materials: science and engineering: 

Springer Science & Business Media, 2012. 

3.F. C. Campbell Jr, Manufacturing technology for aerospace structural 

materials: Elsevier, 2011.  

4.H. Buhl, Advanced aerospace materials: Springer Science & 

Business Media, 2012. 

5.B. Parveez, M. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien,M. 

Umarfarooq, “Scientific advancements in composite materials for 

aircraft applications: a review,” Polymers, vol. 14, no. 22, 

2022,5007. 

6.Y. Liu, L. He, S. Yuan, “Wear Properties of Aluminum Alloy 211z. 

1 Drilling Tool,” Jordan Journal of Mechanical and Industrial 

Engineering, vol. 15, no. 1, 2021. 

7.M. Gallab, M. Taha, A. Rashed, A. Nabhan, “Effect of low content 

of Al2O3 nanoparticles on the mechanical and tribological 

properties of polymethyl methacrylate as a denture base material,” 

Egyptian Journal of Chemistry, vol. 65, no. 8, 2022, 1-9.  

8.A. Nabhan, G. Sherif, R. Abouzeid,M. Taha, “Mechanical and 

Tribological Performance of HDPE Matrix Reinforced by Hybrid 

Gr/TiO2 NPs for Hip Joint Replacement,” Journal of Functional 

Biomaterials, vol. 14, no. 3, 2023,140.  

9.A. Nabhan, M. Taha, N. M. Ghazaly, “Filler loading effect of 

Al2O3/TiO2 nanoparticles on physical and mechanical 

characteristics of dental base composite (PMMA),” Polymer 

Testing,vol.117, 2023,107848.  

10.A. Nabhan, A. Rashed, N. M. Ghazaly, J. Abdo, M. D. Haneef, 

“Tribological properties of Al2O3 nanoparticles as lithium grease 

additives,” Lubricants, vol. 9, no. 1, 2021,9. 

11.I. Gibson, D. W. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. 

Stucker, and M. Khorasani, Additive manufacturing technologies: 

Springer, 2021.  

12.A. K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskienė,C. 

Pinca-Bretotean, “A study of advancement in application 

opportunities of aluminum metal matrix composites,” Materials 

Today: Proceedings, vol. 26, 2020,2419-2424. 

13.P. Saini, and P. K. Singh, “Investigation on characterization and 

machinability of Al-4032/SiC metal matrix composite,” Surface 

Topography: Metrology and Properties, vol. 10, no. 2, 

2022,025007.  

14. M. Patel, and V. Deshpande, “Application of Taguchi approach for 

optimization roughness for boring operation of E 250 B0 for 

standard IS: 2062 on CNC TC,” International Journal of 

Engineering Development and Research, vol. 2, no. 2, 2014,2528-

2537.  

15. M. Rafighi, M. Özdemir, A. Şahinoğlu, R. Kumar, S. R. Das, 

“Experimental Assessment and Topsis Optimization of Cutting 

Force, Surface Roughness, and Sound Intensity in Hard Turning 

of AISI 52100 Steel,” Surface Review and Letters, vol. 29, no. 

11,2022,2250150.  

16. S. Patil, P. S. Rao, M. Prabhudev, M. Y. Khan, G. Anjaiah, 

“Optimization of cutting parameters during CNC milling of EN24 

steel with Tungsten carbide coated inserts: A critical review,” 

Materials Today: Proceedings, vol. 62,2022,3213-3220.  

17.M. Y. Khan, P. Rao, B. Pabla. A framework for surface 

modification by electrical discharge coating using variable density 

electrodes. In E3S Web of Conferences. EDP Sciences, Vol.309, 

No.01093,2021. 

18. M. Rizwee, P. S. Rao, M. Y. Khan, “Recent advancement in 

electric discharge machining of metal matrix composite 

materials,” Materials Today: Proceedings, vol. 37,2021, 2829-

2836.  

19. S. Paliwal, P. S. Rao, K. Mittal, “Study of electrochemical 

discharge machining of glass,” Materials Today: Proceedings, vol. 

37, 2021,1828-1833.  

20.Tian F.C., Jiang H., Chen C, Accurate Modeling and Numerical 

Control Machining for Spiral Rotor of Double Rotor. Jordan 

Journal of Mechanical and Industrial Engineering (JJMIE) , 

Vol.15, No.1,2021,15-21. 

21. D. K. Baek, T. J. Ko, H. S. Kim, “Optimization of feed rate in a 

face milling operation using a surface roughness model,” 

International journal of machine tools and manufacture, vol. 41, 

no. 3, 2001, 451-462.  



 © 2023 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 17, Number 4  (ISSN 1995-6665) 499 

22. M. Shunmugam, S. B. Reddy, and T. Narendran, “Selection of 

optimal conditions in multi-pass face-milling using a genetic 

algorithm,” International Journal of Machine Tools and 

Manufacture, vol. 40, no. 3, 2000,401-414. 

23. R. Arokiadass, K. Palaniradja,  N. Alagumoorthi, “Prediction and 

optimization of end milling process parameters of cast aluminum 

based MMC,” Transactions of Nonferrous Metals Society of 

China, vol. 22, no. 7, 2012,1568-1574.  

24. T.-C. Chang, F.-C. Tsai, J.-H. Ke, “Data mining and Taguchi 

method combination applied to the selection of discharge factors 

and the best interactive factor combination under multiple quality 

properties,” The International Journal of Advanced Manufacturing 

Technology, vol. 31, 2006, 164-174.  

25. M. Ilangkumaran, R. Sasikumar,G. Sakthivel, “Parametric 

optimization for the production of nanostructure in high carbon 

steel chips via machining,” Ain Shams Engineering Journal, vol. 

6, no. 3, 2015, 957-965. 

26. S. Dwivedi, S. Kumar, A. Kumar, “Effect of turning parameters on 

surface roughness of A356/5% SiC composite produced by 

electromagnetic stir casting,” Journal of Mechanical Science and 

Technology, vol. 26, 2012,3973-3979.  

27. S. Hussain, V. Pandurangadu, K. Kumar, and V. Bharathi, “A 

predictive model for surface roughness in turning glass fiber 

reinforced plastics by carbide tool (K-20) using soft computing,” 

Jordan Journal of Mechanical and Industrial Engineering, vol. 5, 

no. 5, 2011,433-438. 

28. V. Bhemuni, and S. R. Chalamalasetti, “Statistical Model for 

Surface Roughness in Hard Turning of AISI D3 Steel,” Jordan 

Journal of Mechanical and Industrial Engineering, vol. 8, no. 6, 

2014,393-401. 

29. S. Khamel, N. Ouelaa, K. Bouacha, “Analysis and prediction of 

tool wear, surface roughness and cutting forces in hard turning 

with CBN tool,” Journal of mechanical science and technology, 

vol. 26, 2012, 3605-3616.  

30. M. K. Dikshit, A. B. Puri, A. Maity, “Modelling and application of 

response surface optimization to optimize cutting parameters for 

minimizing cutting forces and surface roughness in high-speed, 

ball-end milling of Al2014-T6,” Journal of the Brazilian Society 

of Mechanical Sciences and Engineering, vol. 39, 2017, 5117-

5133.  

31. S. M. F. B. S. Hassan, S. B. Shafei, R. B. A. Rashid, "Optimization 

of machining parameters in milling process for high-speed 

machining using Taguchi method for best surface roughness." 

Materials Science and Engineering, Vol. 864, No. 1,2020,012110. 

32.M. Tomov, B. Prangoski, P. Karolczak, “Mathematical Modelling 

and Correlation Between the Primary Waviness and Roughness 

Profiles During Hard Turning,” Jordan Journal of Mechanical and 

Industrial Engineering, vol. 15, no. 3, 2021.  

33.P. Xu, Y. Gao, X. Yao, Y. H. Ng, K. Liu, G. Bi, “Influence of 

process parameters and robot postures on surface quality in 

robotic machining,” The International Journal of Advanced 

Manufacturing Technology, vol. 124, no. 7, 2023, 2545-2561. 

34.Dwivedi SP, Sahu R. “Effects of SiC Particles Parameters on the 

Corrosion Protection of Aluminum-based Metal Matrix 

Composites using Response Surface Methodology”. Jordan 

Journal of Mechanical and Industrial Engineering. Vol. 12,no 

4,2018, 313-321. 

35.SK, Farooq; KUMAR, D. Vinay. “Optimization of Performance 

and Exhaust Emissions of a PFI SI Engine Operated with Iso-

stoichiometric GEM Blends Using Response Surface 

Methodology”. Jordan Journal of Mechanical & Industrial 

Engineering, ,Vol.15,no.2,2021. 

36.RIZVI, Saadat Ali; TEWARI, S. P. “Optimization of Welding 

Parameters by Using Taguchi Method and Study of Fracture 

Mode Characterization of SS304H Welded by GMA Welding”. 

Jordan Journal of Mechanical and Industrial Engineering, Vol. 

12.no.1,2018. 

37.M. Soori, M. Asmael, “A review of the recent development in 

machining parameter optimization,” Jordan Journal of Mechanical 

and Industrial Engineering, vol. 16, no. 2, 2022, 205-223. 

38. https://www.us-nano.com/inc/sdetail/7710 

39.P. J. Ross, “Taguchi techniques for quality engineering: loss 

function, orthogonal experiments, parameter and tolerance 

design,” 1988. 

40.J. L. Rosa, A. Robin, M. Silva, C. A. Baldan, M. P. Peres, 

“Electrodeposition of copper on titanium wires: Taguchi 

experimental design approach,” Journal of materials processing 

technology, vol. 209, no. 3, 2009,1181-1188.  

41. M. S. Phadke, “Quality Engineering Using Robust Design, PTR 

Prentice-Hall,” Inc., Englewood Cliffs, NJ, 1989. 

42. M. H. Gadallah, H. M. Abdu, “Modeling and optimization of laser 

cutting operations,” Manufacturing review, vol. 2, 2015,20.  

43.M. Jamil, N. He, W. Zhao, A. M. Khan, R. A. Laghari, “Tribology 

and machinability performance of hybrid Al2O3-MWCNTs 

nanofluids-assisted MQL for milling Ti-6Al-4 V,” The 

International Journal of Advanced Manufacturing Technology, 

vol. 119, no. 3-4, 2022,2127-2144. 

44.D. Kumaran, S. S. S. S. Paramasivam, H. Natarajan, “Optimization 

of high-speed machining cutting parameters for end milling of 

AlSi7Cu4 using Taguchi based technique of order preference 

similarity to the ideal solution,” Materials Today: Proceedings, 

vol. 47, 2021,6799-6804. 

45.Ü. A. Usca, S. Şap, M. Uzun, “Evaluation of machinability of Cu 

matrix composite materials by computer numerical control milling 

under cryogenic LN2 and minimum quantity lubrication,” Journal 

of Materials Engineering and Performance, vol. 32, no. 5, 

2023,2417-2431. 

46.L. Das, R. Nayak, K. K. Saxena, J. Nanda, S. P. Jena, A. Behera, S. 

Sehgal, C. Prakash, S. Dixit, D. S. Abdul-Zahra, “Determination 

of optimum machining parameters for face milling process of 

Ti6A14V metal matrix composite,” Materials, vol. 15, no. 14, 

2022,4765. 

47. L. Imani, A. Rahmani Henzaki, R. Hamzeloo, B. Davoodi, 

“Modeling and optimizing of cutting force and surface roughness 

in milling process of Inconel 738 using hybrid ANN and GA,” 

Proceedings of the Institution of Mechanical Engineers, Part B: 

Journal of Engineering Manufacture, vol. 234, no. 5, 2020, 920-

932. 

48.Ş. Karabulut, “Optimization of surface roughness and cutting force 

during AA7039/Al2O3 metal matrix composites milling using 

neural networks and Taguchi method,” Measurement, vol. 66, 

2015,139-149. 

 

 


