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Abstract 

Bending is one of the widely used forming processes for sheet metals. However, due to the metal elasticity, the springback 

characteristic is unavoidable, leading to deviations from the desired final shapes and causing cumulative fitting problems in 

the assembly stages. Thus, precise predictions of the springback responses will enhance the sheet metal forming and the 

overall manufacturing processes. This is achieved by employing tree-based machine learning algorithms. These algorithms 

are used for their simplicity, preciseness, and consistency. Based on the tree-based algorithms, many prediction models are 

constructed and evaluated. First, experimental setup is established to measure the springback angles for different 

manufacturing conditions such as: the bending angle, the sheet metal’s width and thickness, the machine settings, etc. Then, 

these data sets are divided into training and testing groups for the prediction models. This division is carried randomly, where 

90 % of the data sets are used for training, and 10 % are left for testing the models’ accuracy. The models are evaluated by 

comparing their predicted springback angles with the experimental values. The deviation errors are measured using the Mean 

Square Error (MSE), the Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE).It isrevealed that the 

LightGBM prediction model is the most accurate model with 0.42 deg., 0.26 deg., and 0.52 deg. for MAE, MSE, and RMSE, 

respectively. The Gradient boosting comes in the second place with 0.66 deg., 0.760 deg., and 0.80 deg. for MAE, MSE, and 

RMSE, respectively. 
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1. Introduction

Sheet metal processes had enormous growing in the last 

few decades for different industrial and commercial 

applications. Automobile industry is an example where steel 

sheet metals with high specific strength and high specific 

toughness are required to enhance the structure to maximize its 

load capacity and to minimize the fuel consumption [1]. 

Various sheet metal processes are used such as shaping, 

drawing, and piercing. Besides, bending is used and considered 

as a most common process [2]. In the bending process, the 

sheet is forced to occupy the cavity between the die and the 

punch. The value of the press load is adjusted in the range of 

the yield strength and the ultimate strength to re-shape the 

sheet metal permanently without damage. The bending process 

produces compression and tension on the inner and the outer 

faces, respectively (Fig. 1). 

The widely used bending operation is the V-bending, where 

the sheet metal is forced to bend according to the V-shape of 

the punch and die (Fig. 2). The bending angles can vary widely 

from very sharp to wide angles depending on the required 

process and on the metal characteristics.  

During the V-bending operation and once the punch is 

retracted back, the sheet metal tends to partially recover due to 

its elastic characteristics. This behavior of the metal is known 

as springback (see Fig. 3). The sheet metal responds according 

to the tensile characteristic where the springback can either be 

positive or negative. In other words, the sheet metal recovers 

outward or inward for positive or negative springback, 

respectively. 

Figure 1. Basic sheet metal bending 
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Figure 2. V-bending operation (a) before and (b) after punching 

Figure 3. Illustriation of Springback in sheet-metals 

Analytical formulations for the bending behavior of simply 

supported plates using Higher Order Shear Deformation 

Theory were presented by S. Redddy et al. [3]. Another study 

conducted by Dong-Juan et al. investigated the effect of the 

neutral axis shifting, the sheet metal thickness, the bending arm 

length, and the contact pressure [4]. An analytical model was 

established to relate these input parameters with the springback 

response based on Hill yield criterion under plane strain 

conditions. The springback response was also investigated by 

other researchers at varying temperatures ranging from room 

temperature to 300 oC on steel sheet metal [5]. Also, the 

temperature variations during a U bending process and its 

influence on the spring back response for Aluminum alloy 

(AA6082) was experimentally investigated by Cai et al. They 

noticed that the springback decreases with the temperature 

increase [6].  

Furthermore, a comparative study was conducted by Da 

Silva et al. to explore the differences in the springback 

responses between the existing materials of high tensile 

strength with those of higher tensile strength [7]. Yang et al. 

conducted experimental research to predict the springback 

response in DP780 during an air bending process. This was 

challenging due to the fluctuation of the elasticity modulus of 

the advanced high strength steel during the load application 

[8]. Another model was established by Jung et al. to 

investigate the anisotropic behavior and to predict the 

springback response of dual-phase steelsin a U bending process 

[9]. Experimental validations of the model were conducted.  

An analytical model built by Leu and Zhuang enabled the 

prediction of the springback response for materials of high 

tensile strength. Their model focuses on many input parameters 

as the material strength, the sheet metal thickness, and the 

punch radii [10]. The springback response was also 

investigated during stamping and successive quenching 

processes for steel sheets of ultra high tensile strength by 

Nakagawa et al. [11]. They were able to decrease the 

springback response through many ways by adopting the 

holding technique during the bending process.  

Other studies adopted the analysis of variance (ANOVA) 

for air V-bending experiment [12]. The obtained data was 

analyzed to investigate the springback response of different 

sheet metals according to the workpiece geometry, tools 

geometry, and the sheet metal materials. 

The finite element method (FEM) was also employed for 

the springback predictions. For example, Ramezani et al. 

employed the FEM to predict the springback response in a V-

bending process [13]. This was accomplished for steel sheet 

metal of high tensile strength by modelling its kinetic friction. 

FEM was also used by Slota and Jurcisin to predict the 

springback response for steel sheet metals in an air bending 

process [14]. Another FEM prediction model was established 

by Choi et al. to investigate the springback response of high 

tensile steels after a U bending process. They concluded that 

the loading does not have a proportional effect on the 

springback response [15]. Noma et al. built a finite element 

model for the investigation of the elastic recovery response in 

sheet metals by including the strength differentials 

incorporated from experimental results [16]. Many other FEM 

models were established to predict the springback response for 

different sheet metals [17 – 20].  

Many other researchers employed the Artifical Neural 

Network (ANN) and the machine learning algorithms to 

predict the springback response. They showed that the ANN 

and the machine learning can provide more accurate and 

reliable results in comparison with the FEM or the regression 

models [21 – 25]. Liu et al. presented a machine learning

model for the prediction of springback in QP1500 steel, where 

his core objective was to incorporate the Bachinger effect in 

the sprigback model [26]. Asmael et al. also worked on the 

machine learning for the prediction of springback in AA50552 

Aluminum Alloys during the V-bending process [27]. 

As can be observed from the preceding literature, two main 

approaches are normally used to predict and simulate the 

springback response in sheet metals after bending loading; 

these are the machine learning and the FEM. However, FEM 

cannot be used simultaneously in the production stages to 

adapt for the springback due to its inherited efficiency [28]. 

Moreover, FEM are used for limited type of materials as the 

high strength steels[1, 29]. On the other side, the machine 

learning has many drawbacks as many previous attempts used 

the ANN where huge amount of data is normally needed to 

train the system, and the results can be quite difficult, or even 

not possible, to be explained or justified. 

Overall, for the increasing demands on competitive and 

high-quality products, creating final products with exact 
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geometries compared with their designs is very essential. 

Hence, the springback behavior of the sheet metals should be 

accurately predicted and compensated during the 

manufacturing stages to ensure final products with accurate 

matching with their designs. Thus, to predict this behavior, a 

new approach based on the machine learning is developed and 

introduced in this article. 

As the name implies, the machine learning provides the 

system with the ability to learn and adapt for optimal linking 

between the inputs and the outputs.  A fast and efficient family 

of the machine learning algorithms is the tree-based algorithms 

which can provide reliable and accurate results at a short time. 

To elaborate more, the machine learning based on the tree-

based algorithms are adopted in this article where small data 

can be sufficient to provide high level of accuracy for the 

predicted results. These data were obtained experimentally 

during a V-bending process for high strength sheet metals. The 

process includes bending the sheet metals to different angles 

(60, 90, and 120 degrees). The final angles after the springback 

recovery are measured using a digital bevel gauge. 

The sheet metal conditions should be monitored as the 

surface finish and the corrosion influence the sheet metals 

stiffness and their springback behaviors [30]. It is worth to tell 

that the prediction approach introduced in this work can be 

extended to be utilized for other materials as composite sheets 

under bending loads [31]. 

The article comprises of four sections. The first section had 

already presented the problem statement and the objective of 

the study. The following section demonstrates the research 

design and the experiment setup. Then, the results analysis will 

be provided in section 3. Finally, the conclusion will be 

presented in the last section. 

2. Methodology

To predict the springback response after the V-bending 

process, a main framework is established based on the machine 

learning algorithms (Fig. 4). The framework enables building 

accurate prediction models by relating the data acquired from 

the experimental setup with the springback response. The main 

steps are discussed in the following. 

2.1. Design of Experiment 

Four grades of sheet metals are considered in this study. 

These are the steel sheet metals JSC-440, JSH-440, JSC-590, 

and JSH-590. The geometric parameters (sheet thickness and 

width) and the process parameters (bend angle, bend load) are 

listed in Table. 1. Two types of machine press are used; these 

are the mechanical press and the hydraulic press. The holding 

time and the gap between the die and the punch are also 

considered to study their effect on the springback response of 

the sheet metals after the V-bending process. Once the bending 

process is completed and the punch is retracted, the final bend 

angle is measured using an accurate digital bevel gauge, and 

the springback angle is recorded. Different combinations of the 

input parameters are considered in this study, where each 

combination was run twice to ensure the reliability and the 

accuracy by adopting the two runs’ average value. A total of 

856 sheet metal bending processes under varying parameters 

and conditions led to 428 data sets. The data sets are composed 

of the input parameters listed in Table 1, as well as the 

corresponding measured values of the springback angles. Here, 

press #1 is a mechanical press, whereas press#2 is a hydraulic 

press used in the experiments. The length of the sheet metal 

strip is 170mm, whereas the internal and the external punch 

radii are 8 mm and 10 mm, respectively. 

Design of 

Experiment
Computing Plan

Data 

Pre-processing

Model SelectionModel evaluationTraining Model

Figure 4. Research Design 

Table 1. Controllable Process parameters for the V-Bending 

Process Parameters Press #1 Press # 2 

Applied Load, F (tons) 60  
75  

 Pressure, L (kg/cm2) of 30 and 180 
Load holding time, T (sec.) 0 0 or 10 

Die and punch gap, G 
= t 

  = 0.7t 
= t 

Sheet Material  JSC-440, JSH-440, JSC-590, and JSH-590 

Sheet thickness, t (mm) 1.0, 1.2, 1.4, and 1.6 
Width of sheet, w (mm) 20 and 50 

Bend angle (deg.) 60, 90 and 120 

hp
Sticky Note
Unmarked set by hp
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2.2. Computation Plan 

The computations were conducted using MacBook pro 

(Core i5 processor, 8GB DDR3, 3.1 GHz CPU). The 

programming language adopted was python with the following 

libraries (Table 2).  

Table 2. Python’s Libraries 

Library Revision

Pandas 1.1.3

NumPy 1.19.2

Scikit-learn 0.23.2

Matplotlib 3.3.2

LightGBM 3.2.1

Flaml 0.3.6

2.3. Data Preprocessing 

To simplify the model, instead of using the 7 varying 

parameters listed in Table 1, the machine parameters are 

combined to form a single parameter called “the machine 

settings”. Here, the machine settings combine the applied load, 

the holding time of load, and the gap between the die and the 

punch. To elaborate more, five parameters are considered in 

the prediction model, these are: (1) width of sheet metal, (2) 

thickness of sheet metal, (3) bend angle, (4) sheet metal 

material, and (5) the machine settings. While the first three 

parameters are treated as continuous parameters where scikit-

learn's Standard Scaler was used, the last two parameters are 

treated and encoded as integer arrays where scikit-learn's 

OrdinalEncoder was used.  

Regarding the continuous parameters, their data are 

transformed into a normal distribution with a mean value of 0, 

and a standard deviation of 1.  

The five parameters mentioned are spread over 2 - 6 

attributes of the features. For example, the width parameter has 

two attributes as only two values of width are considered, 

whereas the machine settings are spread over 6 attributes to 

cover all the different combinations. The detailed attributes are 

listed in Table 3. 

2.4. Model Selection 

Tree-based algorithms are adopted in this research for their 

wide capabilities of solving linear or non-linear, continuous or 

discrete problems with high precision and good consistency. In 

general, tree-based algorithms can adapt to establish mapping 

between the input parameters and the output results for any 

type of problems efficiently and simply. The prediction models 

constructed according to the tree-based algorithms and the 

corresponding libraries used are listed in Table 4. 

Table 4. Machine Learning Models according to the tree-based 

algorithms  

Machine Learning model Python’s Library 

Decision tree, D Scikit-learn 

Random forest, R Scikit-learn 

Extra tree, E Scikit-learn 

Light gradient boostingmachine (lightgbm), L Lightgbm 

Gradient boosting, G Scikit-learn 

2.5. Model Evaluation 

To evaluate the prediction models constructed and to assess 

their accuracy, statistical measures were performed. These 

measures are the MSE, MAE and RMSE. The mathematical 

expressions for these measures are expressed as 

2
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where ei is the difference error between the experimental result 

and the predicted result of the springback angle for each data

set i. N is the number of samples of the testing data.
In this work, these measures ( MSE, MAE, and RMSE) are 

considered for monitoring and evaluating the prediction 

model’s accuracy and performance. 

2.6. Model training 

For training purpose, 90% of the data sets are considered 

(i.e. 385 data sets). All the prediction models listed earlier in 

Table 5 were trained on these data sets using the corresponding 

libraries mentioned (i.e. the Scikit-learn and the Lightgbm 

libraries). Tuning the models’ parameters was conducted using 

hit and trial for both decision tree and Gradient boosting 

models, whereas flaml was used for the remaining models. The 

optimal values for the parameters of the different models after 

the tuning are listed in Table 5.   

Table 3. Controllable Parameters for the V-bending 

Feature parameter Attribute 

1 

Attribute  

2 

Attribute  

3 

Attribute  

4 

Attribute 

5 

Attribute 

6 

Material JSC-440 JCS-590 JSH-440 JSH-590 

Sheet thickness, t (mm) 1.00 1.20 1.40 1.60 

Sheet Width, w(mm) 20 50 

Bend angle, A (degree) 60 90 120 

Machine settings (M) 

Press#1 Press#2 

F =60 tons, 

G = t 

F =60 tons, 

G=0.7t 

F=75 tons,  

G = t,  

T=0 sec, 
HL=30 kg/cm2 

F=75 tons  

G = t 

T=10sec HL=30 
kg/cm2 

F=75 tons  

G = t 

HT=0 sec 

HL=80 kg/cm2 

F=75 tons  

G = t 

HT=10 
secHL=80 

kg/cm2 
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Table 5. Values for the machine learning  parameters after tuning 

Model name Parameters used Value 

Decision Tree Maximum depth of the decision tree 4 

Minimum nos. of samples to be in a leaf node 8 

Minimum weighted fraction to be in a leaf 0.0 (equal weight) 

Growth of tree up to maximum number of nodes 10,000 

Minimum cost complexity pruning 0.0 

Error criterion MSE 

Random Forest Control of sub-sample size with the maximum sample size True 

Error criterion MSE 

Minimum nos. of samples to be in a leaf node 1 

Minimum number of sample size to split an internal node 2 

Maximum features weights to decide the split 0.511992 

Number of trees 35 

Number of parallel jobs -1 

LightGBM Subsample ratio of columns in each tree 0.950267 

Learning rate 0.236847 

Number of bins to construct histogram 127 

Minimum data points needed in a leaf node 21 

Number of boosting stages to perform 49 

Number of leaves 

Objective 'regression' 

Weights of regularization Alpha 0.2424801 

Weights of regularization Lambda 0.0009765 

Fraction of rows used per tree building 0.6374486 

Extra Tree Bootstrap False 

Maximum feature (in fraction) 0.61700764 

Number of trees 100 

Number of parallel jobs -1 

Error criterion MSE 

Minimum nos. of samples to be in a leaf node 1 

Minimum number of sample size to split an internal node 2 

Gradient 

Boosting 
Learning rate 0.1 

Error criterion Friedman MSE 

Loss Ls 

Maximum depth of the individual regression estimators 3 

Minimum nos. of samples to be in a leaf node 1 

Minimum number of sample size to split an internal node 2 

Number of trees 100 

Subsample 1.0 

Tolerance 0.0001 

Validation Fraction 0.1 

2.7. Discussion 

As the decision tree model is the core to all other tree-based 

models, understanding its role is important to understand the 

other prediction models. Training of the decision tree is 

performed using experimental data sets. In the training stage, 

the decision tree model continuously and iteratively generates 

split decisions which lead to cumulative branching until the 

success criteria or ending criteria is reached. This is carried 

using the binary recursive partitioning which is a part of 

python’s scikit-learn. As a result of the branching tree, the 

most significant predictor parameters are expected to be 

generated at the upper level of the tree. Whereas the non-

dominant parameters can appear on the lower levels or even 

completely disappear. For example, if the sheet thickness is a 

dominant factor for the prediction of the springback response, 

it comes on the top layers of the tree. 

One drawback of the decision tree model is its instability. 

That is; small variations in the values of the input parameters 

can lead to significant changes in the decision tree and in the 

results concluded. Hence, using one prediction model is not 

recommended, and several tree models can be established and 

combined to enhance the prediction process and to improve its 

stability and robustness. This combination is known as 

ensembling approach and it is used by all the tree-based 

models adopted in this work. There are two ensembling 

approaches; these are the boosting and the bagging approaches.  

In boosting approach, a series of small trees, normally with 

only one node, is established. Each tree is constructed by 

considering the net error of the previous tree. This will enhance 

the construction of the subsequent tree as it will be able to 

recognize the misclassified data points of the previous tree 

occurred during the branching. The final solution is the 

weighted average of all considered individuals. Gradient 

boosting and LightGBM models are famous extends of the 

boosting approach. 

The bagging is an approach for creating different decision 

tree models simultaneously by random replacement of the 

sampling data from the original data set. This leads to variety 
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in trees’ sizes and branching. Some of the famous bagging 

approaches are the extra tree and the random forest models. 

3. Discussion and Conclusion

As discussed earlier, the models are trained using 90% of

the data sets. Once these models are constructed, their 

predictions’ accuracy should be evaluated. A testing sample 

representing 10% of the main data sets (43 data sets) is used 

for evaluation. However, seeking abbreviations, a sample of 9 

data sets are used first as a demonstrative example. The results 

of the full testing sample will be discussed next. 

3.1. Demonstrative example for evaluation 

To validate the constructed models and to evaluate their 

accuracy, a sample of 9 random data setsisfirst considered. The 

springback predictions of these data sets were compared with 

the experimentally measured springback values. The data sets’ 

sample considered for this exampleis listed in Table 6. 

Using the input parameters for these 9 data sets, the values 

of the springback angles were predicted for the five models 

constructed in this work. These predicted values are listed in 

Table 7 along the experimental values for comparison.The 

letters in the Table is representing the initial letters of the 

model’s names. 

Considering the predicted values for the springback angles 

listed in Table 7. Their deviations from the experimental values 

can be described using many statistical measures such as the 

MAE, MSE, RMSE, etc. These measures are listed in Table 8. 

It is obvious that Lightgbm model has the least deviations from 

the experimental values in comparison with the remaining 

models regarding MAE, MSE, and RMSE. This indicates that 

Lightgbm can be adopted as the most accurate and reliable 

prediction model for the springback of sheet metals after the V-

bending process. However, before generalizing this conclusion, 

the full testing data sets’ sampleshould be evaluated first. 

Table 6. Data sets for the input parameters with the experimentally measured springback 

Set 

No. 

Thickness 

(mm) 

Width 

(mm) 

Initial 

angle 

(deg.) 

Material Machinesettings 
Springback 

angle (deg.) 

1 1.2 20 60 JSC-440 Press#275 - 0 - 180 2.500 

2 1.6 50 60 JSH-590 Press#2  75 - 10 - 180 1.458 

3 1.4 50 120 JSC-440 Press#160 - 0.7t 0.333 

4 1.4 20 90 JSC-440 Press#1 60 -t 0.208 

5 1.2 20 120 JSC-440 Press#1    60 - 0.7t -3.333 

6 1 20 60 JSC-590 Press#1  60 - 0.7t -0.833 

7 1.2 50 120 JSC-440 Press#2  75 - 10 - 30 -3.083 

8 1 50 60 JSC-590 Press#1 60 - t 1.917 

9 1.2 20 60 JSC-440 Press#2  75 - 10 - 180 2.250 

Table 7. Predicted vs. experimental springback angles (in degree) 

Set R G L E D Exp. 

1 -0.280 0.682 1.650 1.876 -1.417 2.500 

 2 0.972 0.440 1.148 0.020 0.396 1.458 

3 0.310 0.596 0.614 1.393 -1.000 0.333 

4 1.418 0.680 1.051 1.409 1.750 0.208 

5 -3.977 -3.768 -3.132 -4.344 -3.417 -3.333 

6 -0.453 0.129 -0.662 -1.027 0.396 -0.833 

7 -2.767 -3.620 -2.895 -2.729 -3.417 -3.083 

8 2.732 1.984 1.661 2.127 0.396 1.917 

9 -0.765 -0.210 1.215 -0.051 -1.417 2.250 

Table 8. MAE, MSE, and RMSE measures of the predicted models (in degree) for 9 random data sets 

Prediction model MAE MSE RMSE 

Lightgbm, L 
0.459 0.317 

0.563 

Gradient boosting, G 
0.892 1.344 

1.159 

Random forest, R 
1.074 2.205 

1.485 

Extra tree, E 
0.932 1.283 

1.133 

Decision tree, D 
1.632 4.224 

2.055 
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3.2. Evaluating the prediction models 

Using the same statistical measures as had already been 

done in the previous section, however on all the testing data 

sets instead of 9 data sets, it was confirmed that the most 

accurate predictive machine learning model was the Lightgbm 

with values of 0.42, 0.26, and 0.52 for MAE, MSE, and 

RMSE, respectively. The Gradient boosting revealed values of 

0.66, 0.76, and 0.80 for MAE, MSE, and RMSE, respectively, 

placing it as the second reliable predictive model. The different 

models and their corresponding evaluation values are listed in 

Table 9. 

Table 9. MAE, MSE, and RMSE measures of the predicted models (in 

degree) for full testing data sets 

Prediction model MAE MSE RMSE 

Lightgbm, L 0.41667 0.25689 0.516 

Gradient boosting, G 0.66322 0.75954 0.803 

Random forest, R 0.70593 0.97595 0.875 

Extra tree, E 0.77252 1.01941 0.924 

decision tree, D 0.91667 1.69012 1.347 

This article introduced an approach which employs the tree-

based learning algorithms for the prediction of the springback 

response of the sheet metals after the V-bending process. The 

approach demonstrated good accuracy and reliability to be 

adopted as a predictive model for the springback response. 

Different combinations of the input parameters were 

considered. The outputs (springback angles’ values) were 

obtained through experimental setups. 90% of the data sets 

generated were randomly selected for training purposes. The 

remaining 10% were used for testing.The testing process 

revealed that the closest results to the experimental values was 

delivered by the lightGBM model. The statistical measures on 

the testing data revealed values of 0.42, 0.26, and 0.52 for 

MAE, MSE, and RMSE, respectively. Hence, LightGBM can 

be adopted for the springback prediction of the sheet metal 

after the V-bending process. Although this approach was 

dedicated for sheet metals of high-strength steel, different data 

sets can be fed to the model to establish prediction models for 

other sheet metal materials. 
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