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Abstract 

One of the most important problems that largely determine the effectiveness of modern metal cutting control systems is 

the problem of ensuring such cutting modes in which the durability of the cutting tool will be maximum. In this article, a new 

mathematical apparatus is proposed that allows linking the stability of the dynamics of the cutting process with the predicted 

residual durability of the cutting tool. The aim of the study is to develop a methodology for determining the best processing 

speed mode, which ensures maximum stability of the cutting system in the space of processing speed parameters and the 

degree of wear of the cutting wedge. The study consists of a series of experiments on the STD201-1 measuring stand, as well 

as modeling in the Matlab mathematical software package. Based on this, the main method underlying the research is the 

method of numerical modeling in the Matlab environment. The results show that the most important factor limiting the 

stability of the cutting system in the space of the parameters of the processing speed and the degree tool wear is the factor of 

thermal expansion of the cutting metal being processed. 
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1. Introduction 

The most important factor determining the quality of the 

metal cutting process on metal-cutting machines, as well as 

the durability of the cutting tool, is the factor of the cutting 

process dynamics stability.   Despite the development of 

modern control systems for cutting processes on metal-

cutting machines, which organically absorb almost all 

achievements of scientific and engineering thought, the 

vibrational activity of the tool remains a problem in 

metalworking today. The vibrations of the tool accompanying 

the cutting process are largely determined by the regeneration 

of vibrations when cutting along the “trace”, what was called 

the regenerative effect [1-6]. In general, it was found that the 

main factor influencing the regenerative effect is the so-

called time delay [7], that is why it has a decisive effect on 

the stability of the process dynamics. In addition to the 

regenerative nature of self-excitation of the cutting system 

vibration dynamics,  the vibration stability of the cutting tool 

is affected by: the temperature in the contact zone of a tool 

and a workpiece [8], changes in the force reaction from the 

cutting process to the shaping movements of the tool [9], the 

value characterizing the degree of wear of the cutting wedge, 

etc. [10]. 

All enumerated above determine the vibration stability of 

the cutting control system, which means its ability to respond 

to limited control and disturbing effects in a limited way. At 

the same time, the higher the stability margin of cutting 

system dynamics, the more limited the vibration response of 

the system will be, and the lower the vibrations of the cutting 

wedge are, the better the quality of the surface to be treated 

and, in many ways, the greater the residual resistance of the 

tool. In this regard, the task arises of synthesizing current 

mathematical models of cutting processes dynamics and the 

methodology for determining the assessment of the stability 

reserves of cutting systems based on them. 

Mathematical models of cutting control systems in 

metalworking have the property of nonlinearity and at the 

same time are quite complex, since the cutting force and 

cutting temperature are nonlinear functions of the 

deformation displacements coordinates of the tool [11], in 

which such evolutionary characteristics as the wear of the 

cutting tool are important factors [12]. In the work of V. P. 

Astakhov [13], the relationship between the cutting 

temperature and the wear of the cutting tool is described, the 

relationship of vibrations, temperature and the evolution of 

the cutting wedge is shown here. The interconnectedness of 

the cutting process through the disclosure of its evolutionary 

changes is examined more deeply in the works [14] and [12]. 

One of the factors of the complexity of the model is taking 

into account the time delay in the formation of the area of the 

cut layer. Here I will note that in the process of linearization 

of a system of equations, we will have to deal with an 

element containing a lagging argument. Such an element will 

not allow an analysis of the system of differential equations 

of the cutting control system using a linearized model in the 
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vicinity of the equilibrium point based on algebraic criteria, 

such as Hurwitz criterion [15] or Raus criterion [16]. 

As a solution to the problem outlined above, the use of 

frequency stability criteria, such as the Nyquist criterion [17-

18], or its Soviet counterpart, the Mikhailov criterion [19-21], 

can be used. The Nyquist criterion itself, applied to 

mathematical models of metal cutting control systems, is well 

considered in the works of V.L. Zakorotny [11], but 

Mikhailov's criterion, well-known in the American 

engineering school for a long time [21], has not been widely 

used today in solving problems of dynamics of cutting 

control systems on metal-cutting machines. 

In the works of famous specialists in the field of 

metalworking, among other things, the fact of the existence 

of some best processing mode associated with the cutting 

speed is noted [22-23]. In these works, the optimal mode is 

understood as ensuring the minimum roughness of the treated 

surface and the maximum dimensional stability of the cutting 

tool. For example, A.D. Makarov, in his monograph [22], 

formulates the following statement: “the most important 

factor determining the characteristics of the cutting process is 

the average contact temperature determined by the cutting 

mode (processing speed)”. In this and other works, the tool 

contact temperature is determined by the current power 

released during the cutting and converted into heat, which 

linearly depends on the cutting speed. However, in the article 

[8] published in Materials, it was proved that during the 

formation tool wear along the back face, an additional 

thermodynamic feedback is formed, which pre-warms the 

cutting zone for the period up to the current moment of 

cutting. Such heating will lead to a thermal expansion of 

workpiece material,  which will increase the value of the 

force pushing the tool. This factor, the restructuring of the 

force reaction, which is confirmed by experimental studies 

[9], was not previously taken into account when forming 

mathematical models of cutting systems. 

In this regard, the aim of the study was to assess the 

influence of the thermal expansion of metals associated with 

the evolution of the cutting wedge (wear) on the stability of 

the vibration dynamics of metal cutting control systems in 

metal-cutting machines, with the development of a 

methodology for assessing stability based on the Mikhailov 

frequency criterion. 

2. Research methodology 

2.1. Experiment at the stand STD. 201-1 

Preliminary heating of the cutting zone, as a result of the 

energy transfer mechanism action identified in the work [8], 

will lead to the thermal expansion of the processed workpiece 

material, which will affect the value of the pushing force. To 

determine the dependence of the buoyant force on the 

magnitude of the contact temperature of the tool and the 

workpiece, a series of experiments were carried out using the 

experimental setup STD.201-1 (STD - System of technical 

diagnosys), which involves adjusting the weight coefficients 

to calculate the cutting temperature based on the values of the 

removed natural thermal electromotive force (EMF) STD. 

STD.201-1 measures the force along the axes of deformation, 

temperature and vibration.To do this, the research 

methodology provides for a whole setup procedure, which 

includes a double measurement of the contact temperature, a 

measurement using a natural thermal EMF and measurements 

carried out next to the contact with a calibrated 

thermocouple. The connection example for the case of 

measuring the effect of contact temperature on the buoyant 

force, for the case of steel 45, is shown in Figure 1. 

As a tool, the holder MR TNR 2020 K11 and a five-sided 

plate 10113-110408 T15K6 were used, with an angle in the 

upper part (angle of attack) y0 = 35°, the main angle in terms 

of φ = 80°.  

The measurement results are presented by the software 

interface of the system, the external view of which is shown 

in Figure 2. 

The results of experiments to assess the influence of the 

contact temperature on the value of the force pushing the tool 

out of the cutting zone, for the case of processing steel 45, are 

shown in Table 1. 

Table 1. experiments contact steel 45 

Steel C Si Mn Cr Ni Ti S P 

12Х18Н10Т 
0,42-
0,50 

0,17-
0,37 

0,50-
0,80 

0,030 0,035 0,25 0,30 0,30 

 

Figure 1. Experimental setup prepared to assess the effect of contact 

temperature on the buoyant force 

 

Figure 2. Interface of the stand STD201-1 

A graphical representation of the experimental results 

presented in Table 2 is shown in Figure 3. 

Table 2. Dependence of Fy on contact temperature  

Q, 
oC 

30 40 50 60 70 80 90 100 110 120 130 

Fy, 
N 

9.5 9.7 10.3 10.9 11.5 12.2 12.8 13.4 13.8 14.3 14.6 
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Figure 3. Results of the experiment on steel 45 

As can be seen from the Figure 3, the buoyant force 

almost linearly depends on the contact temperature, which is 

quite understandable from the point of view of the linear 

nature of metals expansion with the increase in their 

temperature. The average coefficient of linear increases in the 

buoyant force with the increase in the contact temperature 

, for the case of steel 45, was 0.05625. 

A similar experiment was conducted for the case, when 

the processed part is heat-resistant and heat-resistant steel 

12X18H10T. 

Table 3. Химический состав стали 12X18H10T 

Steel C Si Mn Cr Ni Ti S P 

12Х18Н10Т 0,12 0,80 2,00 
17,0-

19,0 

9,0-

11,0 

5,0-

8,0 
0,02 0,40 

The results of the experiment to determine buoyant force 

for steel case 12X18H10T, they are shown in Table 4 and in 

Figure 4. 

Table 4. Dependence of Fy on contact temperature 

Q, 
oC 

30 40 50 60 70 80 90 100 110 120 130 

Fy, N 9.1 9.6 10.3 11 11.4 11.8 12.1 12.5 12.9 13.2 13.6 

A graphical representation of the experimental results 

presented in Table 4 is shown in Figure 4. 

 
Figure 4. Results of the experiment on steel 12X18H10T 

The experiments have shown that the buoyant force, when 

cutting linearly depends on temperatures of the processed 

part for steel 12X18H10T it also amounted to 0.04231.  

  

2.2. Basic Mathematical Model Synthesis 

For an adequate interpretation of the synthesized model, 

we should consider the diagram of force reaction 

decomposition from the cutting process to the movements of 

the forming tool along the axes of deformation of this tool 

during the turning (see Figure 4). 

 
Figure 4. The structure of axes and forces 

In the diagram (Figure 4): x-axis—the axial direction of 

deformations (mm), y-axis—the radial direction of 

deformations (mm), and z-axis—the tangential direction of 

deformations (mm). Along the same axes, the force response 

is decomposed from the cutting process to the shaping 

motions of the tool (Ff, Fp, Fc (N)), Vf and Vc (mm/s) of the 

feed and cutting speeds.  

It is convenient to interpret the dependence of the cutting 

force on the temperature-speed factor of cutting in the form 

of a falling exponential dependence, as it is presented in the 

formula below: 

( )

0(1 )
c

dz
V

dte


  
 

  ,                           (1) 

where  is a certain minimum value of the coefficient 

 (the coefficient characterizing the chip pressure on the 

front face of the cutting wedge),  is the coefficient showing 

the increase of the value  to a certain maximum value,  

 is the coefficient of the value drop steepness ,  

( )
c

dz
V

dt
 is the instantaneous cutting speed.  

Taking into account the formula (1), as well as relying on 

the hypothesis of the cutting force proportionality of the cut 

layer area, the cutting force will be interpreted as: 

1 ( )

0 (1 )( ) ( )
c

v

tdz
V

dt
p f

t T

dx
F e a y V dt

dt



 
 



    (2) 

where ( )pa y  - instantaneous cutting depth, 

( )

v

t

f

t T

dx
V dt

dt


  - real feed. 

The ejecting force, an insturment from the cutting zone, 

depending on the wear of the tool along the back face, and 
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depending on the temperature expansion of the processed 

material, we consider as: 

0 3( ) ( ) hK xF

h Q h pF k Q h a y e    ,           ( 3 )  

where  is the tensile strength of the processed metal 

under compression in  , at the contact 

temperature along the back face of the tool and the workpiece 

 at zero degrees Celsius, is the coefficient 

characterizing the nonlinear build-up of the pushing force 

when the back face of the tool and the workpiece become 

closer. 

Through the main angle in the plan - φ, it is possible to 

decompose the buoyant force on the deformation axes x and 

y, as follows: 

( )

( )

cos

sin

x

h h

y

h h

F F

F F





 



.                               ( 4 )  

The force reaction on the back face of the tool in the 

direction of z coordinate is represented by the friction force, 

which can be represented as: 

( )z

h t hF k F ,                                     ( 5 )  

where  is the coefficient of friction, which, based on 

the reasoning given in [22], can be interpreted as: 

1 2

0 [ ] / 2f h f hK Q K Q

t t tk k k e e


   ,           ( 6 )  

where  is a constant minimum value of the coefficient 

of friction,  is the value of the increment of the 

coefficient of friction with a change in temperature in the 

contact zone,  and  the coefficients determining 

the steepness of the fall and growth of the coefficient of 

friction characteristics.  

As the generalization of the force reaction from the 

cutting process to the shaping movements of the tool (see 

Figure 4), we obtain the following equations describing the 

force reaction: 

( )

1

( )

2

( )

3

x

f h

y

p h

z

c h

F F F

F F F

F F F




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
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
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,                                      (7) 

where  is a certain coefficient of general vector 

decomposition of reaction forces on the i–th axis of tool 

deformation, it should be noted here that this approach is 

widely used within the scientific school of Zakorotny V.L. 

[10]. 

The model of deformation movements of the tool tip, 

based on the approach used in the scientific school of 

Zakorotny V.L. [10, 11, 17], will have the following form: 

2

11 12 13 11 12 132

2

21 22 23 21 22 232

2

31 32 33 31 32 332

f

p

c
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m h h h c x c y c z F

dt dt dt dt

d z dx dy dz
m h h h c x c y c z F

dt dt dt dt


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
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


      


,                                          (8) 

where  [  ];  [  ];  [  ] – matrices of inertia coefficients, dissipation coefficients 

and stiffness coefficients, respectively. 
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The differential equation describing the transfer of 

temperature through the back face of the tool at the previous 

rotation of the spindle to the current contact zone of the tool 

and the workpiece [8] will take the following form: The 

differential equation describing the transfer of temperature 

through the back face of the tool at the previous rotation of the 

spindle to the current contact zone of the tool and the 

workpiece [8] will take the following form: 
2

1 2 1 22
( )h h

h

d Q dQ
TT T T Q kN

dt dt
    , (9) 

WhereT1, T2 -time constants,k - transfer factor, N - allocated 

power: 

    (10) 

Thus, the system of equations (8) and the differential 

equation (9), taking into account equations (7) and (10), will 

represent a mathematical model of the dynamics of the cutting 

system. 

2.3. The Mikhailov criterion and linearization of the 

mathematical model 

To assess the stability of the control system based on the 

Mikhailov criterion, the characteristic polynomial of the 

transfer function of the control system is used: D (p) 

= a0pn + a1pn-1 + …+ an-1p + an ,  where n is the degree of 

polynomial and it is also the order of the differential equation, 

for our case it is n=8. Assuming that p = jω, we transform the 

characteristic polynomial into a complex frequency 

polynomial: D(jω) = a0(jω)n + a1(jω)n-1 +...+ an-1(jω) + an . 

Depending on the degree of the number (jω)n, it is either real 

or imaginary. For this reason, the frequency polynomial splits 

into the real part U(ω) and the imaginary part V(ω), where 

U(ω) is an even function of ω, V(ω) is an odd function of ω. 

By setting any value of the frequency ω1, we get the 

numbers U(ω1) and V(ω1). Together they form a complex 

number D(jω1) . On the complex plane, it is denoted by the 

point M(U,V). The set of points M(U,V) corresponding to 

different frequencies form a curve called the Mikhailov 

hodograph. 

In the case of stable systems, the Mikhailov hodograph has 

the property of starting from the point U(0) = an , V(0) = 0. As  

ω increases from zero to infinity, the point M(U,V) moves to 

the left so that the curve tends to cover the origin of 

coordinates, while moving away from it. If we draw the radius 

vector from the origin to the point M(U,V), it turns out that the 

radius vector will rotate counterclockwise, continuously 

increasing. 

The Mikhailov criterion itself can be summarized as 

follows: if the frequency changes from zero to infinity, the 

Mikhailov hodograph starts on the real axis at the point an,  

sequentially passes counterclockwise n quadrants of the 

complex plane without passing through zero, and goes to 

infinity in the n-th quadrant, the system is stable. In the case of 

unstable systems, the curves do not cover the origin of 

coordinates, while the hodograph starts from the origin or 

passes through the origin, the system is on the boundary 

stability [18-20]. 

Thus, to assess the stability of the control system, it will be 

necessary to determine the characteristic polynomial of the 

control system described by a system of differential equations 

of the eighth order (system of equations (9) and equation (10)). 

As this system is nonlinear, it will be necessary to linearize this 

system of equations in some vicinity of the equilibrium point. 

For subsequent analysis, it will be necessary to switch to the 

operator form of a linearized system writing, that is, to perform 

the Laplace transformation, assuming that the initial conditions 

are zero (p is the Laplace transform operator, under zero initial 

conditions ). After all mentioned above, it is possible 

to present a linarized system of differential equations in 

matrix-vector form: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

h

h

h

h

a p x p a p y p a p z p a p Q p

a p x p a p y p a p z p a p Q p

a p x p a p y p a p z p a p Q p

a p x p a p y p a p z p a p Q p

   


   


   
    

, 

 

(11) 

where the coefficients of matrix are 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a p a p a p a p

a p a p a p a p
A

a p a p a p a p

a p a p a p a p

 
 
 
 
 
 

,                                                                                                        (12) 

, i=1..4, j=1..4, are represented by the following formulas: 

d
p

dt


ija
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2

11 11 1 0 0 3 11

12 12 1 0 0 0 3 12

13 13 1 0 1 0 13
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21 21 2 0 0 3 21
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(13) 

Now we will move to the time domain by replacing p = jω, 

after which the characteristic polynomial of the control system 

will be represented as the determinant of the matrix A given in 

expression (12). It means that the characteristic polynomial of 

the control system and the Mikhailov vector is represented as 

follows: 

       (14) 

Thus, the equation (14) is the Mikhailov vector, which 

hodograph is under the study on the complex plane when the 

frequency ω changes from zero to infinity. 

3. Modeling results and discussion  

For the convenience of interpreting the results of numerical 

experiments, the simulation was carried out in the 

Matlab/Simulink 2014 package, where the system of equations 

(8-9) was directly modeled in Simulink, and the Mikhailov 

vector represented by expression (14) was calculated in a 

separate cycle in Matlab 2014 itself, where at every step of the 

cycle the determinant for a specific value of the frequency ω 

was considered, and the given value was postponed to the 

complex plane, then everything was repeated. In general, the 

value for ω was calculated from zero to 4000 Hz in increments 

of 0.01 Hz. The simulation results are shown below in a 

number of figures. 

To assess the stability of the cutting control system by the 

Mikhailov method, the variants of the control system, the 

variant of a stable and the variant of an unstable (at the 

boundary of stability) system were considered. As a factor 

affecting the stability of the cutting process, the amount of tool 

wear along the back face (h3) was used. On the basis of the 

Mikhailov criterion, the boundary of the stability area of the 

cutting management system was estimated in the processing 

speed (revolutions per minute) and the amount of wear (mm). 

In total, twenty possible cutting speed modes were 

investigated, in each of which the dynamics of the control 

system and the hodograph of Vetor Mikhailov were considered 

for five possible values of the wear value of the cutting wedge 

along the rear face, three variants characterize the stable 

dynamics of the cutting system, one variant -stability boundary 

and one variant -unstable behavior of the system. 

The parameters of the simulated control system were as 

follows: 

;  
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
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









0065,000

00065,00

000,0065

m
2 /kg s mm



 © 2023 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 17, Number 3  (ISSN 1995-6665) 351 

;  

. Tool orientation 

coefficients: 

, , . 

Technological modes: depth , submission for 

turnover ,  , 

radius of the workpiece , the main angle in the 

plan φ=80O. Matrices of stiffness coefficients and dissipation 

coefficients were obtained in a series of preliminary tests on 

experimental equipment during calibration of the stand STD. 

201-1. 

A variant of a stable cutting system for a variant of a system 

with a processing speed of 820 revolutions per minute and a 

wear value of 0.22 mm, in the form of transient characteristics 

of the deformation coordinates when the tool is embedded in 

the workpiece and the corresponding phase trajectories, are 

shown in Figure 5. 

As can be seen from Figure 5, for the case of cutting with a 

frequency of 820 revolutions per minute and the cutting wedge 

wear of 0.22 mm, the cutting system is stable. The phase 

trajectories, being rearranged at each period, are pulled 

together to some established periodic process, outwardly 

resembling an invariant torus. 

The Mikhailov vector hodograph, for the case of modeling 

a cutting system with a processing speed of 800 revolutions per 

minute and a wear value of 0.22 mm, is shown in Figure 6. 

Here it should be noted that as a result of the hodograph 

dependence on the frequency, which varies in a wide range 

from 0 to 4000 Hz, it is impossible to consider the hodograph 

in one figure, as the events occurring at low frequencies will be 

invisible due to the scale of events at high frequencies. Based 

on this, the Mikhailov vector hodograph will be represented by 

two figures, the first figure reflects events at frequencies up to 

1400 Hz, the second- at frequencies above this frequency. 

As can be seen from Figure 6, the hodograph of the 

Mikhailov vector, for the case of a stable cutting system, 

begins with the positive part of the real axis, rotating around 

the origin in the direction opposite to the clockwise movement, 

never turning to zero, sequentially passes n quadrants, where n 

is the order of the differential equation or the order of 

characteristic polynomial of the system. Thus, the analysis of 

Figure 6 shows that to analyze the stability of the cutting 

system, it is sufficient to use the Mikhailov criterion, while 

relying on the determinant of the linearized system given by 

the expression (14). 

The stability limit of the cutting control system, for the case 

of processing at a speed of 820 revolutions per minute, is 

achieved with a wear value along the back face of 0.335 mm, 

the results of modeling the Mikhailov hodograph for this case 

are shown in Figure 7. 

 
Figure 5. For the case of wear h=0.22: a) x-coordinate deformations, b) y-coordinate deformations, c) z-coordinate deformations, d) x-coordinate 

phase trajectory, e) y-coordinate phase trajectory, f) phase trajectory, along the z-coordinate 
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a)                                                       b) 

Figure 6. The Mikhailov vector hodograph, stable system: a) The beginning of the Mikhailov vector, b) The end of the Mikhailov vector 

 

a)                                                       b) 

Figure 7. The hodograph of the Mikhailov vector, the boundary of the stability of the system: a) The beginning of the Mikhailov vector, b) The 
end of the Mikhailov vector 

As can be seen from Figure 7, the mechanism for 

displaying the loss of stability by the cutting system, for the 

case of processing at a speed of 820 revolutions per minute and 

a wear value of 0.335 mm, consists in the fact that the 

beginning of the Mikhailov vector shifts to the origin, in 

addition there is another touch point of the imaginary axis 

hodograph. This touch point shows the possibility of returning 

the characteristic from the second quadrant to the first, which 

would be a violation of the Mikhailov criterion. 

An example of an unstable version of the cutting control 

system, for the case of processing at a speed of 820 revolutions 

per minute and a wear value of 0.5 mm, is shown in Figure 8. 

The maximum stability of the cutting control system 

according to the criterion of wear of the cutting wedge is 

observed at a processing speed of 1620 revolutions per minute, 

it should be noted that this value is close to the calculated value 

of the processing speed obtained by analyzing the regeneration 

of vibrations in this system [Link from metal processing]. 

However, despite the fact that the maximum value is close to 

the optimal value determined by the regeneration of vibrations, 

it is still lower, moreover, there are no subsequent significant 

spikes in the stability region characteristic of the regeneration 

of vibrations in the cutting system. It means that changes in the 

model of the cutting system, the introduction of an additional 

thermodynamic equation into it and the formation through this 

equation of a positive feedback on the value of the pushing 

force distorts the regenerative nature of self-excitation of the 

cutting tool vibrations. 

For further analysis of the cutting control system, we will 

form into one table all the data obtained in experiments on the 

upper limit of the stability of the cutting control system 

according to the Mikhailov criterion (see Table 2). 
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a) 

b) 

Figure 8. The Mikhailov vector hodograph, unstable system: a) The beginning of the Mikhailov vector, b) The end of the Mikhailov vector 

Table 2. Stability limit of the cutting system 

h3(mm) 0.3 0.31 0.32 0.33 0.335 0.342 0.351 0.36 0.375 0.386 

n(rev/min) 360 460 660 760 820 900 1000 1100 1200 1300 

h3(mm) 0.397 0.41 0.43 0.46 0.47 0.44 0.43 0.42 0.418 0.41 

n(rev/min) 1400 1500 1560 1600 1620 1680 1700 1750 1800 1900 

It can be seen from Table 2 that the maximum of the 

stability of the cutting control system, in the space of the 

parameters of the processing speed and the amount of wear of 

the cutting wedge, is observed at a processing speed of 1620 

revolutions per minute. At this point, the amount of wear 

allowed from the point of view of ensuring the stability of the 

cutting process was 0.47 mm, which is significantly higher 

than the average value for the sample, which was h≈0.39 mm.  

Graphically, the interpretation of the data given in Table 1 

is shown in Figure 9. 

 
Figure 9. Areas of stable and unstable dynamics of the cutting control 

system 

As can be seen from Figure 9, in the area of the studied 

parameters of the cutting control system, it really has a 

pronounced local maximum at a processing speed of 1620 

revolutions per minute. Subsequently, there is a decrease in the 

boundary of the stability area, all this correlates well with the 

position put forward by A.D. Makarov [22]. At the same time, 

the increase in the stability limit of the cutting control system 

is explained by the influence of the temperature-speed factor 

[23], which is represented in the mathematical model by the 

expression (1). As can be seen from this expression, the 

coefficient (the coefficient characterizing the chip pressure on 

the front face of the cutting wedge) tends to stabilize the drop, 

and at cutting speeds above 1600 rpm, it does not decrease 

significantly. The value of the pushing force described by 

expression (4) continues to grow, with the increasing 

processing speed, the power of irreversible transformations 

increases, converted into contact temperature through the 

equation (10). In other words, there will be a restructuring of 

the cutting system, in which the cutting force will change 

slightly, and the pushing force will increase significantly. Such 

a restructuring leads to the loss of stability of the cutting 

control system, which is confirmed by a series of field 

experiments, the results of which are  given in [9]. 

To verify the proposed assumption about the significant 

effect of the adjustment of the force reaction from the cutting 

process on the stability of the shaping movements of the tool, 

let us consider the force reaction at a processing speed higher 

than the optimal value identified in Figure 9. The results of 

modeling the forces decomposed along the axes of deformation 

for the case of processing at the speed of 1700 revolutions per 

minute and wear values of 0.22 mm and 0.43 mm (the 

boundary of the stability of the cutting system) are shown in 

Figure 10. 
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Figure 10. Forces for a variant with a processing speed of 1700 rpm : a) Ff for h=0.22, b) Fp for h=0.22, c) Fc for h=0.22, d) Ff for h=0.43, e) Fp for 

h=0.43, f) Fc for h=0.43 

 

As can be seen from Figure 10, with the increase in the 

amount of wear of the cutting wedge, there is a significant 

restructuring of the force reaction of the cutting system, the Ff 

component increases by 5%, the Fp component increases by 

32%, and Fc -by 14%. For the case of processing at the speed 

of 1900 revolutions per minute, the average component of Fp, 

with a wear value of 0.41 mm, increases by 38%, which 

exceeds the average value of Fp calculated for the results of the 

experiment shown in Figure 10.  

Thus, the restructuring of the reaction forces due to the 

increase in the pushing force stops the growth of the upper 

boundary of the stability area of the cutting control system with 

the further increase in the processing speed after the maximum 

of the stability area. 

Many works have been devoted to the study of the stability 

of the cutting process, but nowhere before has the influence of 

the ejecting composing reaction forces been taken into account. 

It is taking into account this component of the reaction force 

that allows us to talk about the scientific novelty of the study, 

its main difference from all previous works. 

4. Conclusion 

The optimal value of the cutting speed (cutting 

temperature), when modeling dynamics of processing 

processes is determined by a combination of the following 

factors: the incident characteristic of the cutting force, the 

minimum coefficient of friction due to the transition of friction 

from adhesive to diffusion nature and the dependence of the 

force pushing the tool from the preheating of the processing 

zone, which is due to thermodynamic feedback. However, it 

should be added here that another important factor determining 

the optimality of the cutting process is the regenerative effect 

inherent in the model of the cutting control system, which also 

has a significant impact on the stability of the dynamics of the 

cutting system. 

All this taken together allows us to formulate the following 

scientific position: the most optimal mode, in terms of 

processing speed (cutting temperature), will be a mode with a 

cutting force close to the minimum, the coefficient of friction 

will be in some proximity to its local minimum, and the force 

pushing the tool will not exceed a certain set value, while the 

speed of cutting will fall into one of the petals of the 

regenerative effect stability. 
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