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Abstract 

This study explores the effect of Vee bending process parameter on the springback (SB) behavior of aluminum (AA5052) 

alloy at sheet thickness of (2 and 3mm) with die-opening (22, 35, and 50 mm) and punch-holding time (0, 5 and 10 second) 

which were experimentally examined. Furthermore, to see the relative effect of process parameter on SB behavior, a 

qualitative approach of analysis of variance (ANOVA) was used, whereas multi linear regression (MLR) and artificial neural 

network (ANN) were applied to optimize the SB behavior on specified process parameters. The experimental results revealed 

that as punch holding time and sheet thickness increase, SB behavior reduced, whereas in case of die opening, opposite 

phenomena observed.   ANOVA results revealed that punch-holding time had the greatest effect on SB, followed by die 

opening and sheet thickness. Two-way parametric interactional effects between punch-holding time and dieopening had a 

significant effect on SB behavior. By contrast, the interactional effects of sheet thickness were insignificant. The comparative 

study of MLR and ANN shows that The ANN has better (99% SB predictability) as compared to MLR (73% SB 

Predictability). Furthermore, the predicted results of both models were compared with actual experimental results. It was 

observed that the predicted results were approximately near with actual measurements, whereas the performance of MLR and 

ANN model were measured from sum of absolute error and the sum of the absolute error of ANN was about 12% of that of 

MLR model. Therefore, ANN produced a superior SB prediction performance compared with MLR. This work demonstrates 

the formability of AA5052 aluminum alloy in cold work where Vee bending was performed with a punch radius of 0.8 

mm.The bend specimens showed no cracks, checking, and surface roughness. 
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1. Introduction 

Aluminum is the most abundant metallic element in the 

Earth’s crust.Over the past five decades, it has been second 

only to iron in terms of industrial applications. The 

material properties of aluminum and its alloys, such as 

density, high strength-to-weight ratio, electrical 

conductivity, corrosion resistance, high workability, cast 

ability, weldability, aesthetic appeal, and high 

recyclability,allow numerous applications in various 

sectors of any national economy[1]. The utilization of 

aluminum alloys in the transportation industry (aviation, 

aerospace, and automobile industries) offers better fuel 

economy, reduction in CO2 emissions, and better material 

efficiency[2, 3].The usage of transportation industry is 

expected to increase as a result of environmental, 

regulatory, and competitive pressures[4, 5]. Lightweight 

material such as aluminum has a long history in designing, 

assembling, fabricating and metal forming [6, 7]. Sheet 

metal-forming operations constitute the array of 

manufacturing processes, chiefly cutting, drawing, and 

bending, performed on relatively thin metal sheets ranging 

from 0.4 mm to 6 mm in thickness using a stamping press, 

which involves a machine tool called punch and die of the 

various sheet metal-forming operations, bending has the 

most applications in the automotive and aviation industries 

and in the production of other metal sheet products [8]. 

Some of the material constitutive models used in FEA 

forming software programs are the kinematic hardening 

model, isotropic hardening models, yield functions (von 

Mises, Gotoh’s biquadratic yield function, and Barlat 

Yld2000-2d, Hill’48), and their hybrids. Sheet metal-

forming operations using FEA software programs consist 

of accurate modeling of the forming operation in the FEA 

simulation environment (i.e., accurate tool configuration 

and specifications of the forming process, e.g., die and 

punch radii, die and punch clearance, blank holding force, 

speed of deformation, and friction effects) and the 

selection of appropriate constitutive material models that 

adequately account for material behavior during the 

forming operation. Uemori et al.[9], validated an accurate 

kinematic hardening model coupled with suitable 

anisotropic yield function in an FEA simulation software 

to improve overall SB prediction reliability by using LS-

DYNA (ver.971) in U and Hat bending of A5052-O and 
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AA6016-T4. They ranked the following four yield 

functions that describe material anisotropy from most to 

least with respect to their SB predictability: von Mises, 

Gotoh’s biquadratic yield function, Barlat Yld2000-2d, 

and Hill’48[9]. Toros[10], sought to improve SB 

predictability via optimization of the Yoshida–Uemori 

model parameters by using LS-DYNA in Vee and 

Ubending of 5754-H22, 5083-O and, 5005-O Al-

alloys[10]. Lee et al. [11], proposed and validated a yield 

criterion by using data of AA5182-O, AA6022-T43, 

MP980, and 718AT.The yield criterion describes 

anisotropy hardening through the combination of quadratic 

and nonquadratic yield functions by following a non-

associative flow rule. The proposed model accounts for 

better material anisotropic hardening than the Barlat 

Yld2000-2d and Hasford 1972 models[11]. 

Lee et al. [12], proposed an improvement to the 

kinematic hardening model that simultaneously accounts 

for anisotropic hardening and asymmetric plastic behavior 

of sheet metals unlike previous kinematic models. The 

proposed kinematic hardening model was obtained by 

coupling the Chaboche kinematic hardening model 

(Chaboche 1986) with the condition function, which 

replaces the material constants of the kinematic hardening 

model using data of AA5182-O, 719B, and 780R AHSS 

materials.The coupling enabled the accounting of 

mechanical properties in different rolling 

directions[12].Chen et al. [13]demonstrated that FEA 

simulation models using ABAQUS with 6016-T4 

aluminum alloy in Vee bending according to a material 

constitutive model with varying elastic modules results in 

better SB prediction than models with a constant elastic 

modulus. However, these models showed limitations in 

reliable prediction of radius and included bend angle 

compared with the other models[13-15].Several computing 

tools,such as genetic algorithms, fuzzy logic, and artificial 

neural networks (ANN), are used in metal forming in the 

fields of optimization, design, and 

prediction.However,these computing tools must be aided 

by sufficient reliable data about the forming process, 

proper tool selection, and appropriate utilization of 

computational models[16, 17]. 

Baseriet al.[18]proposed a fuzzy learning back 

propagation (FLBP) algorithm for SB prediction where the 

focal process parameters are material thickness, sheet grain 

orientation, and punch tip radius in a Veebending 

operation of CK67 steel sheets with a punch and die angle 

of 60°. Their FLBP obtained the least mean absolute error 

compared with constant learning rate back propagation and 

variable learning rate back propagation in terms of training 

and testing and was thus the most capable ANN in SB 

prediction. Amdar et al. [19]demonstrated that aback 

propagation ANN is more capable of SB prediction with 

an error margin of ±2° for a 90° bend angle in an air Vee 

bending.They stated that better predictabilitycanbe 

obtained with substantially large training data.Dezelak et 

al. [20]developed a hybrid methodology for improving 

FEM SB predictability that involves coupling existing 

FEM models with machine learning algorithm tools (linear 

regression, isotonic regression, least medium square, 

SMO, Gaussian processes, and multilayer perceptron) for a 

draw bending-forming process with restraint force, 

friction, and tool radius as the main process variables. A 

modeling software called Pam-Stamp was used to create 

the model of the forming operation, the materials and their 

respective parameters of which were adopted by some 

researcher [20, 21]. 

It is worth mentioning that the main reason of using 

ANN based models rather than analytical based techniques 

is that analytical methods are mainly quite clumsy (which 

means sometime nonlinear partial differential equation is 

required for solving problem) and require many 

simplifying assumptions whereas ANN based methods 

proved to be more useful tool to model various 

engineering systems under real word conditions without 

involving complicated mathematical models. In recent 

decades, ANN based modeling has gained increasing 

importance in the materials joining field. ANN is a 

powerful modeling tool that mimics the natural behavior of 

human brain and is used to model complex problems of a 

non-linear nature in various engineering applications[22].  

ANNs are able to learn nonlinear relationship between the 

process inputs and outputs with excellent generalization 

capabilities without involving in solving complex 

mathematical models using numerical and analytical 

approaches [23]. ANNs have the generalization capability 

as they can handle unseen data faster and simpler than 

other classical methods after a learning process using few 

measured data sets. Therefore, ANN-based methods have 

attracted the attention of scientists and researchers in 

different engineering and industrial disciplines, for 

instance, for modeling and identification of mechanical 

properties [24].Miranda et al. [25]applied ANN to provide 

a quick and reliable evaluation of punch displacement 

required to obtain a desired bend angle for a defined sheet 

metal considering two geometric parameters, namely, 

punch radius and die opening. The bending process was 

simulated for two different materials, namely, the 

structural steel HC220 and the dual-phase steel DP590 by 

using ABAQUS coupled with Python script to generate the 

array of results necessary for training (67.56%), testing 

(16.22%), and validation (16.22%).Many of the studies in 

the literature focused on understanding the influence of 

various operational parameters on SB behavior. Studies 

showed that increasing the values of die gap and the die 

gap to sheet metal thickness ratio (w/t) results in an 

increase in SB in air Veebending and Vee bending[26-28]. 

Decreasing the values of die and die corner radius and of 

punch–die clearance and punch radii leads to a decrease in 

SB in both L and Vee bending[29-36], also Metals with a 

low elastic modulus results in a high SB[37].SB decreases 

as the warm forming temperatures increase for the same 

combination of forming parameters [32, 33, 36, 38-41]. 

Many researches showed that a realistic account of 

frictional effects during forming simulations results in a 

goodforming and SB predictability of FEA software, 

whereasa high frictional coefficient results in a low SB[21, 

34, 42-44]. 

Several studies investigated the effects of increasing 

yield strength on the same material subjected to different 

degrees of heat treatments of aluminum sheets ,such as AA 

2014 (O, T4, and T6) and AA3003 (O, H22, and 

H24).They reported the highest SB in the T6 and H24 

tempers and the least SB in the conditions yield strength is 

increased [45, 46].A large punch-holding time or 

bottoming minimizes SB [32, 36, 38].SB and bending load 
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decreases with increasing frequency, RMS, and peak 

current density because of the electroplastic effects of 

electric pulse during electricity-assisted forming.Electric 

pulse-assisted forming is less energy intensive compared 

with traditional warm forming processes[47-51]. Highly 

precise dimensions of the product in sheet metal-forming 

process are required to obtain a precise work piece. The 

same requirement is needed for Vee bending process. 

Applying mathematical modeling in SB prediction 

eliminates the need for simplifying assumptions as is the 

case inFEA simulation models. However, modeling 

requires sufficient experimental data to ensure 

accuracy[52]. 

The purpose of this study is to investigate the effect of 

process parameters on Vee bending SB behavior of 

aluminum AA5052 sheet metal. The results of this study 

will help the researchers and industry to understand the 

behavior of AA 5052 aluminum sheet on specified process 

parameters and the effect of mentioned factors such as 

punch-holding time, sheet thickness, and open die on 

springback behavior. Furthermore, multiple linear 

regression MLR, ANOVA, and ANN tools were utilized 

for SB prediction. The effect of punch-holding time, sheet 

thickness, and die opening size effect on SB behavior were 

considered in prediction. The prediction performance of 

these models were evaluated on the basis of sum of 

absolute % error. The detail discussion on MLR, ANOVA 

and ANN will be discussed further in their sections.  

2. Methodology 

In this study commercial AA5052-H36 alloys sheets 

were used. The dimensions of all Veebending specimens 

were 70 mm × 30 mm × 2/3 mm. The cutting of all 

specimens were done in rolling direction as-received sheet. 

Bending operation performed perpendicular to the rolling 

direction. The standard chemical compositions of the as-

received AA5052-H36 alloys sheets are presented in Table 

1.Their mechanical properties are listed in Table 2.The 

Vee bending sheet-forming operation was conducted on 

AA5052-H36 alloy sheet metals to investigate the effects 

of sheet metal thickness (2and 3 mm), die opening (22, 35, 

and 50 mm),and punch-holding time (0, 5, and 10 s) on SB 

behavior via multilevel factorial design of experiments 

(Table 3).The parameters punch and die angle (85°), punch 

speed (15 mm/sec), and punch radius (0.8 mm) were 

constant. The die used was an industrial multi-angle Vee 

die made of carbon steel.The working parts and ground 

were induction hardened to 55–60 HRC.The die had 

different die openings (50, 35, 22, and 16 mm) and a fixed 

angle of 85°. The punch had the same angle as the die 

(85°) with a punch radius of 0.8 mm (Figure 1). 

 
Table 1. Chemical compositions of AA5052-H36 (Almg2.5) alloy sheets (wt%) 

Si Fe Cu Mn Mg Cr Zn 
Others 

Al 
Each Total 

0.25 0.40 0.10 0.10 2.2–2.8 0.15–0.35 0.10 0.05 0.15 95.75–96.65 

Table 2. Mechanical properties of AA5052-H36 (Almg2.5) alloy sheets 

Density 2680 kg/m3 

Hardness (Brinell/Vickers) 73 / 83 
Tensile strength (ultimate) 275 MPa 

Tensile strength (yield) 240 MPa 

Elastic modulus (tension/shear/compression)  69.3 / 25.9 / 70.7 GPa 
Poisson’s ratio 0.33 

Shear strength 160 MPa 
Fatigue strength 130 MPa 

Table 3. L18 - 21  ×  32mixed-level factorial design (repeatability × 5) 

Run Order Part Type Blocks 
Process Parameters 

Die width (mm) Sheet thickness (mm) Punch holding time (s)  

1 1 1 22 2 0 

2 1 1 22 2 5 

3 1 1 22 2 10 

4 1 1 22 3 0 

5 1 1 22 3 5 
6 1 1 22 3 10 

7 1 1 35 2 0 

8 1 1 35 2 5 
9 1 1 35 2 10 

10 1 1 35 3 0 

11 1 1 35 3 5 
12 1 1 35 3 10 

13 1 1 50 2 0 

14 1 1 50 2 5 
15 1 1 50 2 10 

16 1 1 50 3 0 

17 1 1 50 3 5 
18 1 1 50 3 10 

Others experimental details: 

Punch radius: 0.8 mm (constant); punch and die angle: 85° 

Punch speed: 15 mm / sec  
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2.1. Experimental Procedure 

The experimental work consisted of adapting the 

Veebending punch and die assembly into a hydraulic press 

(Figure 2). All Vee bendswere performed with a constant 

punch velocity of 15 mm/sand a repeatability factor of 5 in 

accordance with the parameters defined in Table 3. Prior to 

the start of each bending operation, the surfaces of the 

sheet metals, punch, and die were thoroughly cleaned until 

free of debris or dirt.  

Bending suffers the drawback of SB behavior. The 

phenomenon of SB is the partial elastic recovery 

experienced by the sheet metal upon removal of the 

applied load on conclusion of the forming operation as 

shown in Figure 3c. SB can be expressed as the difference 

between the final included angle of the formed part (α′) 

and the included angle of the forming tool or punch (α′
b) 

(Eqn: 1.1a or 1.1b) [53]. It is usually a cause for 

unsatisfactory bending since it results in loss of 

dimensional control in the formed part and it leads to 

problems that impacts cost and quality in downstream 

manufacturing processes following bending. This work 

seeks to evaluate the SB behavior of AA5052-H36 

aluminium alloy undergoing vee bending. 

SB = α′ − α′
b                                                        (1.1a) 

SB =
(𝛂′−𝛂′

𝐛)

𝛂′
𝐛

                                                          (1.1b) 

The Vee-bending experiment involved loading the test 

specimen onto the die surface and operating a control lever 

that depressed the punch into the die cavity to bend the 

sheet metals into a Vee shape Figure 3 (a, b) and according 

to the punch displacements specified in Table 4. 

Immediately after forming, the punch was retracted. The 

acceptability of the bends was based on the absence of 

evident surface cracking, excessive surface roughness, 

checking, and edge cracking as viewed under a 

30×magnification camera. The samples met the 

acceptability criteria (Figure 4). At the end of each 

experimental run, the bent test specimens were properly 

labeled and subjected to SB angle measurements by using 

an optical angle-measuring device. 

At the end of each experimental run, the bent test 

specimens are properly labelled, after which they are 

observed for forming defects and their SB angle measured 

using an optical angle measuring device as shown in 

Figure 5a. Validation SB angle measurement was done 

through digitizing the specimen and measuring the SB 

using an online angle / bevel protractor as shown in Figure 

5b. 

 
Figure 1. Cross section of the multi-angle Vee die and punch 

  

1- Punch guide sleeve, 2- Die, 3- Punch, 4- Guide shaft, 5- Base support, 6- Displacement control shims, 7- Sheet metal 

Figure 2. Vee bending punch and die assembly adapted to hydraulic press 
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(a) 

 
(b) 

 
(c) 

Figure 3. Punch displacement in the die cavity: (a) bending operation with 22 mm die openingfor a 2 mm AA5052-H36 sheet thickness; (b) 
bending operation35 mm die opening for a 2 mm AA5052-H36 sheet thickness (c) SB phenomenon[53]. 

Table 4. Punch Displacement in the die cavities 

Sheet thickness 22 mm die width 35 mm die width 50 mm die width 

2 mm 7.5 mm 14 mm 20.5 mm 

3 mm 6.5 mm 13 mm 19.5 mm 

 
(a) (b) 

Figure 4. A bentspecimen viewed under 30×magnification: (a) exterior; (b) Interior 

 
(a) 

 
(b) 

Figure 5. Measurement tool used to measure SB (a) Angle profile projector (b) Angle measurement with online angle / bevel protractor 
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3. Results and Discussion 

The specimens after bending are shown in Figure 6.The 

SB results are presented in Figures 7, 8, and 9 with 

different die openings, SB decreased as punch-holding 

time increased (Figures7 and 8). Moreover, SB clearly 

decreased as punch-holding time increased with the same 

die opening and sheet thickness. SB also increased as die 

opening increased. However, this trend was not observed 

at 5 spunch-holding time during which SB decreased 

between die opening of 22 and 35mmlikely because of 

noise or disturbances during the experimentation. Table 5 

shows the output results of experiments.  

 

Figure 6. Specimens with different die openings after bending 

Table 5. Final included angles after bending and their respective SB 

 
Exptal 

Runs 
Designation 

Experimental runs results (°) Experimental SB results (°) 

1 2 3 4 5 Av. 1 2 3 4 5 Av. 

1 DO22-2mm-0sec 92.5 89.5 92.0 89.5 91.0 90.9 7.5 4.5 7 4.5 6 5.9 

2 DO22-2mm-5sec 89.8 90.0 90.5 90.6 91.1 90.4 4.8 5 5.5 5.6 6.1 5.4 

3 DO22-2mm-10sec 88.0 88.5 87.5 87.0 87.0 87.6 3 3.5 2.5 2 2 2.6 

4 DO22-3mm-0sec 91.5 89.5 90.0 88.0 90.0 89.8 6.5 4.5 5 3 5 4.8 

5 DO22-3mm-5sec 88.0 90.0 88.0 89.5 90.0 89.1 3 5 3 4.5 5 4.1 

6 DO22-3mm-10sec 87.0 86.5 87.5 88.0 87.0 87.2 2 1.5 2.5 3 2 2.2 

7 DO35-2mm-0sec 93.0 92.0 89.0 90.0 91.5 91.1 8 7 4 5 6.5 6.1 

8 DO35-2mm-5sec 89.7 90.0 89.5 87.0 91.0 89.4 4.7 5 4.5 2 6 4.44 

9 DO35-2mm-10sec 89.0 89.5 90.5 88.5 87.0 88.9 4 4.5 5.5 3.5 2 3.9 

10 DO35-3mm-0sec 88.5 91.5 89.5 90.8 89.0 89.9 3.5 6.5 4.5 5.8 4 4.86 

11 DO35-3mm-5sec 87.0 88.5 89.0 87.0 87.5 87.8 2 3.5 4 2 2.5 2.8 

12 DO35-3mm-10sec 86.0 85.7 88.5 88.0 87.0 87.0 1 0.7 3.5 3 2 2.04 

13 DO50-2mm-0sec 92.0 91.0 91.5 92.0 91.0 91.5 7 6 6.5 7 6 6.5 

14 DO50-2mm-5sec 90.5 92.3 92.0 90.0 91.5 91.3 5.5 7.3 7 5 6.5 6.26 

15 DO50-2mm-10sec 91.0 91.0 91.5 90.2 91.7 91.1 6 6 6.5 5.2 6.7 6.08 

16 DO50-3mm-0sec 91.5 90.0 91.0 91.7 92.0 91.2 6.5 5 6 6.7 7 6.24 

17 DO50-3mm-5sec 90.5 90.0 88.5 92.5 90.0 90.3 5.5 5 3.5 7.5 5 5.3 

18 DO50-3mm-10sec 89.0 88.5 90.4 89.5 91.0 89.7 4 3.5 5.4 4.5 6 4.68 
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Figure 7. SB across die openings of 22, 35, and 50 mm for a sheet with a thickness of 2 mm 

 

 
Figure 8. SB across die openings of 22, 35, and 50 mm for a sheet with a thickness of 3 mm 

 
Figure 9. SB averages and standard deviations for different experimental runs. 
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3.1. ANOVA 

The results of ANOVA are summarized in Table 6.The 

effects of sheet thickness, die opening, and punch-holding 

time on SB behavior was statistically significant (i.e., P-

value ≈ 0 < 0.05). The Pareto chart (Figure10) and the F-

values (Table 7) show that punch-holding time had the 

greatest effect on SB behavior (47.46%), followed by die 

opening (30.44%). By contrast, sheet metal thickness had 

the least effect (19.63%). 

The parametric interaction effects between die opening 

and punch-holding time were statistically significant 

(Table 6). Interactions involving sheet thickness were not 

statistically significant (P-value: 0.371, 0.707 > 0.05), 

which shows that the interaction effect of sheet thickness 

is minimal on SB behavior. The Pareto chart (Figure 11) 

and the F-values (Table 6) follow the same hierarchal 

order as that of ANOVA results (Table 5) and Pareto chart 

(Figure 11). However, the interactional effects between die 

opening and punch-holding time, occupying a fourth 

position after sheet thickness in terms of their combined 

impact on SB. 

Table 6. ANOVA without considering parametric interaction effects 

Source  DF Adj SS Adj MS F-Value P-Value 

Regression  3 142.49 47.496 32.61 0.000 

Sheet thickness  1 28.67 28.674 19.69 0.000 

Die opening  1 44.48 44.477 30.53 0.000 
Punch-holding time  1 69.34 69.337 47.60 0.000 

Error  86 125.27 1.457   

Lack-of-Fit  14 40.71 2.908 2.48 0.006 

Pure Error  72 84.56 1.174   

Total  89 267.76    

Table 7. ANOVA considering parametricinteraction effects 

Source DF Adj SS Adj MS F-Value P-Value 

Model 13 180.734 13.9026 12.14 0.000 
Linear 5 159.521 31.9042 27.86 0.000 

Sheet thickness 1 28.674 28.6738 25.04 0.000 

Die opening 2 61.442 30.7208 26.83 0.000 

Punch holding time 2 69.406 34.7028 30.31 0.000 

2-Way Interactions 8 21.213 2.6516 2.32 0.028 

Sheet thickness × Die opening 2 2.303 1.1514 1.01 0.371 

Sheet thickness × Punch-holding time 2 0.798 0.3988 0.35 0.707 
Die opening × Punch-holding time 4 18.112 4.5281 3.95 0.006 

Error 76 87.022 1.1450   

Lack-of-Fit 4 2.466 0.6164 0.52 0.718 

Pure Error 72 84.556 1.1744   

Total 89 267.756    

 

 
Figure 10. Pareto chart of parametric influence on SB behavior 

 
Figure 11. Pareto chart of parametric influence on SB behavior with parametric interactional effects 
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The effects of individual parameters on SB behavior 

(Figure 12) shows that increasing punch-holding time and 

sheet metal thickness decreased SB. The present results 

were consistent with earlier findings[28, 29, 32, 35, 36, 38, 

45].The effects of punch-holding time on SB was largely 

due to its effect on the other factors, such as friction, 

bending moment, residual stresses arising from the 

bending operation, differences between tensile stress on 

the outer bend region and compressive stress on the inner 

bend region, and alteration of the geometric rigidity of the 

material. During the punch-holding time, the shape of the 

formed part was constrained, ensuring increased friction 

between the punch, sheet metal, and die. Hence, the sheet 

metal conformed well to the forming angles of the punch 

and die. The internal stresses from bending were relieved, 

thereby decreasing the elastic strains in the bending zone 

and increasing the permanent (plastic) strains. Moreover, 

the bending moment due to compressive load acting 

normally to the sheet decreased [54, 55]. 

The effects of process parameters were found 

prominent in this study such as when punch-holding time 

increases, a reduction in SB behavior was found. 

Similarly, the effect of sheet thickness on SB behavior is 

also vital,  and it is observed that SB increases as sheet 

thickness decreases. This phenomena applies on at least a 

thickness of 3mm attributed to the reduction in elastic 

sheet recovery due to the increase in bulk deformation of 

the sheet metals, as sheet thickness decreases the rigidity 

of material which minimizes the effect of elastic recovery 

stated by Leu et al[29]. According to Cruz et al [56] the 

die opening is significant factor in bending operation. 

Typically, the selection of die opening is dependent on 

sheet thickness. According to the author, the recommended 

industrial ratio of die-opeing/sheet-thickness ratio between 

6 and 10. As for the effects of die opening on SB behavior, 

the main effect is plotted in Figure 12, which shows that 

SB behavior slightly decreased when die opening was 

increased from 22 mm to 35 mm. In current study, it has 

been observed that SB behavior significantly increased 

when die opening increased from 35 mm to 50 mm 

whereas an increase in sheet thickness results as reduction 

in SB behavior as discussed by [57, 58]. Overall, an 

increase in die opening increased SB behavior whereas the 

combine effect of sheet thickness and die opening on the 

SB behavior is nominal as shown in figure 11. 

 
Figure 12. Main effect plot for SB behavior 

3.2. Springback Predictability: Multiple Linear Regression 

and Artificial Neural Network 

3.2.1. Multiple Linear Regression Analysis 

Regression analysis is useful in designed experiments 

to build a quantitative model relating the important factors 

to the response. Regression model is mostly used to 

investigate and model the relationship between the 

response variable and predictors. It is a common tool used 

for data analysis in experimental studies, when the 

response variable is continuous. MLR is widely used in 

different types of statistical analysis. Regression analysis is 

one of the frequently utilized technique in conventional 

prediction to show the relation between dependent and 

independent variables. Relation between dependent 

variable and predictor variable is represented by linear 

equation (5). The basic relationship of multi linear 

regression Equation (2) is driven from Montgomery [59]. 

Regression model shows the relationship between the 

output values and one or more input values. Multiple 

regression model is a parametric model. There are many 

statistic and machine learning methods to predict the 

results such as linear, generalized and nonlinear regression 

model[60]. Multi linear regression (MLR) is a classic 

method that has many advantages like interpretability, 

simplicity, easy accommodation during variable 

transformation, supposing the hypothesis of normality and 

many more[61]. In present study MLR model was driven 

by Matlab software tool. Regression analysis considered 

the averages of SB outputs of the experimental runs are 

presented in Table 8 and 9.The overall regression model 

was as follows: 

C = a + b1x1+b2x2 + . . . . +1bnxn + ε                           (2) 

C is a predicted response, a is constant and ε is the 

random error. Whereas, x1, x2, x3, . . .  .xnare the variable 

that effect the springback. b1, b2, b3, . . . . . bn are regression 

co-efficient that determine the contribution of the variables 

to the springback. 

B = (C –ε)                                                                   (3) 

So we can rewrite the equation 2 

B = a + b1x1+b2x2 + b3x3                                             (4) 

SB = 6.3834 – 1.1289 ST + 0.061446 DO – 

         0.2150 PHT                                                        (5) 

The P-values of the constant and independent variables, 

as well as the overall regression model (i.e., P-values << 

0.05), revealed significant correlation between SB 

behavior and the independent variables. The results 

indicated the reliability of the regression model in 

predicting SB. The overall SB prediction capability 

obtained using the regression model was 73.02% of the 

target SB value, demonstrating that the model was 

reasonably reliable. 
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3.2.2. Artificial Neural Network (ANN) 

Neural network (NN) is branch of statistical machine 

learning and has been utilized in prediction of various kind 

of tasks. ANN is inspired by natural neutron[60]. ANN 

consists of a number of processing elements or units called 

neurons. ANN is buildup of interconnecting artificial 

programmed neurons that imitate the properties of 

biological neurons[62].ANN for SB prediction, which was 

conducted with MATLAB,consideredtheaverages of SB in 

each experimental run as the target output. There are many 

various types of algorithms and architectures are available 

to us in ANN. In this present workaback propagation 

algorithm, namely, feed-forward back propagation 

network (nftool) were used to train the model, which is the 

most common network structure developed to predict the 

SB. In this technique neurons are organized into layers and 

have only forward connection. The first layer is input layer 

and consist of number of neuron which are usually equal to 

the number of input. The last layer is called output layer 

and contain number of computational neurons. All layers 

between the input and output are called hidden layers, 

which contains many computational neurons and transfer 

functions[63].In recent years many researcher [64-68] are 

applying ANN in prediction of spring back results.  

Furthermore, there is no specified methods to select the 

number of hidden neurons. Thus, mostly the selection of 

hidden neurons depend on minimum mean square error 

(MSE). There are many various types of algorithms that 

are available for training the model input data. The 

selection of algorithm was based on the performance and 

learning speed which can provide the best fit to the data. 

Therefore, Levenberg-Marquard (LM) backpropagation 

algorithm was selected to train the model. LM was 

especially constructed for quicker convergence in back 

propagation algorithms. The presented technique is the 

quickest technique, and it supports the numerical solution 

to obtain mean square error [69].  
In this study a Levenberg–Marquardt optimization 

training algorithm, was applied in modeling the neural 

network. The gradient descent with momentum weight and 

bias learning function was chosen as the adaption-learning 

function. The structure of the neural network consisted of 

two layers, a hidden layer and an output layer, together 

with the three inputs (i.e., sheet thickness, die opening, and 

punch-holding time) and the output from the network (the 

corresponding average SB output) (Figure 13).In 

developing the neural network, 70% of the data was used 

for training the network, 15% for validation, and 15% for 

testing. ANN model with two input and one output with 

hidden layer which include eight nodes, beginning with 

one node to fabricate and evaluate by using Levenberg-

Marquard procedure. The unseen nodes employ the 

sigmoid transfer function and the outcome node employed 

the linear transfer function. The model trained multiple 

time to obtain optimal predicted results. The overall SB 

predicted results of AA 5052 show that correlation 

coefficient of training data is 0.99647. Also, the coefficient 

correlation value of R-square for validation and testing are 

0.99979 and 1 respectively. The closeness of correlation 

training data and validation data indicates that the 

prediction efficiency of the model is acceptable. The 

overall correlation coefficient value of R-square of the 

model was found to be 0.99637. Figure 14 shows that the 

prediction capabilities of the model are good because its 

correlation coefficient is relatively close to 1.  

 

Table 8. Coefficients of regression analysis (Multiple R: −0.8819; R-sq: −0.7778; R-sq(adj): −0.7302; R-sq(pred): −0.6424; SE: −0.762624) 

Term Coef SE Coef T-Value P-Value VIF 

Constant 6.3834 1.0966 5.821 4.4376e-05  

Sheet thickness −1.1289 0.3595 −3.1401 0.0072322 1.00 

Die opening 0.061446 0.015712 3.9108 0.0015679 1.00 
Punch-holding time −0.2150 0.04403 −4.883 0.00024185 1.00 

Table 9. ANOVA considering average SB values 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 28.498 9.4992 16.33 7.55e-05 

Residual 14 8.142 0.5816   

Total 17 36.640    

 
Figure 13. Structure of the neural network 
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Figure 14. SB prediction capability of the network 

3.2.3. Comparison amongexperimental, MLR, and ANN on 

SB prediction 

The performance of MLR and ANN in predicting SB 

was compared. The SB prediction capability of the ANN 

was superior to that of MLR(Table 10). The superiority of 

ANN results prediction compared to multi linear 

regression model were found [70]. Multi linear regression 

(MLR) model is a simple model, therefore to evaluate the 

results more, complex statistical modeling technique ANN 

were applied to get better results[71].In recent years some 

researchers[70, 72-74] applied MLR for similar datasets, 

however, in this study we used MLR to compare the 

performance of ANN, and as it evident from our analysis 

that ANN (99% SB predictability) produced superior SB 

prediction performance compared with MLR (73% SB 

Predictability). Furthermore, some author [60, 70, 75] has 

applied the MLR and ANN to predict the performance of 

the model and mostly they found that the ANN has better 

prediction result compare to regression model. To evaluate 

the performance of models some authors like 

Narayanasamy et al[70], Liu et al [59] and Asmael et al 

[18] has used the absolute % error as performance 

evaluation criteria to check the prediction capability of 

trained models. Therefore, in this study we also choose 

absolute % error as performance evaluator.As can be 

observed from Table 9. The prediction error of ANN 

model is much less than the MLR model. In this study the 

sum of the absolute error of ANN with respect to 

deviations from the experimental SB values was about 

12% of that of MLR. Optimizing the MLR regression 

model, wherein the objective function was the 

minimization of the sum of its absolute error, resulted in 

approximately 5% overall improvement of its SB 

prediction capabilities. The MLR model is expressed 

below: 

Regression model: SB = 5.4948 – 0.8462 ST + 0.0658 

DO– 0.2201 PHT, 

Where the constant and coefficients of the original 

MLR model were subjected to the following constraints: 4 

≤ Co-eff. C ≤ 10; −2 ≤ Co-eff. ST ≤ −0.8; 0.02 ≤ Co-eff. 

DO ≤ 0.1; −0.4 ≤ −Co-eff. PHT ≤ −0.1 
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Table 10. Comparison of SB prediction performance of MLR and ANN 

# Exp. SB Av. MLR Predicted SB Av. MLR 

Predicted Error 

Optimized 

MLR 

Predicted 
SB Av. 

Optimized 

MLR 

Predicted 
Error 

ANN 

Predicted 

SB Av. 

ANN 

Prediction 

Error 

1 5.9000 5.4775 0.4225 5.2473 0.6527 5.8573 0.0427 

2 5.4000 4.4025 0.9975 4.1467 1.2533 5.3077 0.0923 

3 2.6000 3.3275 −0.7275 3.0462 −0.4462 2.6016 −0.0016 

4 4.8000 4.3486 0.4514 4.4011 0.3989 4.8157 −0.0157 

5 4.1000 3.2736 0.8264 3.3006 0.7994 4.1036 −0.0036 

6 2.2000 2.1986 0.0014 2.2001 −0.0001 2.6712 −0.4712 

7 6.1000 6.2763 −0.1763 6.1010 −0.0010 6.4418 −0.3418 

8 4.4400 5.2013 −0.7613 5.0005 −0.5605 4.4338 0.0062 

9 3.9000 4.1263 −0.2263 3.9000 0.0000 3.9012 −0.0012 

10 4.8600 5.1474 −0.2874 5.2549 −0.3949 4.8441 0.0159 

11 2.8000 4.0724 −1.2724 4.1544 −1.3544 3.0411 −0.2411 

12 2.0400 2.9974 −0.9574 3.0538 −1.0138 2.0401 −0.0001 

13 6.5000 7.1979 −0.6979 7.0862 −0.5862 6.4999 0.0001 

14 6.2600 6.1229 0.1371 5.9856 0.2744 6.2391 0.0209 

15 6.0800 5.0479 1.0321 4.8851 1.1949 6.1128 −0.0328 

16 6.2400 6.0691 0.1709 6.2400 0.0000 6.2404 −0.0004 

17 5.3000 4.9941 0.3059 5.1395 0.1605 5.3015 −0.0015 

18 4.6800 3.9191 0.7609 4.0389 0.6411 4.6041 0.0759 

Sum of absolute error 10.2126  9.7322  1.3649 

 

4. Conclusion 

This work demonstrated the cold formability of AA 

5052-H36 aluminum alloy. The Vee bends were performed 

with a punch radius of 0.8 mm. The bent specimens 

showed no evident cracks, checking, and surface 

roughness. The effects of sheet thickness, die opening, and 

punch-holding time on the SB behavior of AA5052-H36 

aluminum alloy undergoing Veebending were 

experimentally investigated. MLR and ANN tools were 

utilized for SB prediction. We arrived at the following 

conclusions: 

The effect of process parameters were investigated in 

current study, which leads to conclude that the punch-

holding time had the greatest effect on SB behavior, 

followed by die opening and sheet thickness. Furthermore, 

the increment of punch-holding time and sheet thickness 

led to the reduction SB behavior, whereas extension in die 

opening size brings improvement in SB behavior. 

Parametric interactional effects between punch-holding 

time and dieopening showed significant effects on SB 

behavior. SB was minimized further by optimizing the 

values of both parameters, i.e., increasing punch-holding 

time and reducing die opening within the limits imposed 

by the capabilities of the manufacturing system. 

Interactional effects of sheet thickness with either die 

opening or punch-holding time had no significant effects 

on SB behavior. 

MLR and ANN model were applied to predict the SB 

behavior and predicted results were compared with 

experimental results of SB behavior. MLR and ANN were 

proved to be reliable tools for SB prediction. ANN (99% 

SB predictability) produced superior SB prediction 

performance compared with MLR (73% SB 

predictability).The sum of the absolute error of ANN in SB 

prediction was about 12% of that of MLR. The overall 

predicted results of MLR and ANN are reasonably near to 

actual SB measurement results. Clearly, it is found that the 

ANN model correlates the SB with the aforesaid 

parameters with a good degree of estimation.  
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