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Abstract 

The present paper proposes self-adaptive multi-population elitist (SAMPE) Rao algorithms and chaotic Rao algorithms 

for design optimization of selected mechanical engineering components. The proposed algorithms are applied to 25 

benchmark problems and 15mechanical engineering design optimization problems to examine their performance. The 

Friedman rank test is utilized to demonstrate the significance of the proposed algorithms and the algorithms are ranked 

according to their performance. The results obtained using the proposed algorithms are compared with the results obtained 

using other advanced optimization algorithms to demonstrate the effectiveness of the proposed algorithms. It is observed that 

the performance of the proposed algorithms is either better or competitive to the basic Rao algorithms and the other advanced 

optimization algorithms. 
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1. Introduction 

Engineering design is a process of decision-making to 

achieve certain goals while satisfying the constraints and 

human needs[1]. The optimum engineering design topic is 

very important to achieve the best product in terms of 

performance parameters related to the product. In the field 

of Mechanical engineering design optimization problems, 

the designers consider specific objectives, such as 

deflection, wear, strength, weight, corrosion, etc. A 

complete mechanical system design optimization leads to a 

complex mathematical formulation with many design 

variables. Thus, the optimization techniques are applied to 

individual components than a complete mechanical 

system[2].The mathematical model formulation in 

engineering design optimization is a complex task for 

researchers and designers. The design optimization 

problems include design variables (continuous, integer and 

discrete variables)and design constraints. For the good 

performance of engineering elements, design constraints 

must be satisfied.  

In the present study, the proposed algorithms are 

applied to 25 benchmark problems and 15 standard design 

optimization problems. The design optimization problems 

are difficult to solve as they depend on many design 

variables and must satisfy certain design constraints. The 

design optimization problems solved in the present work 

are from mechanical engineering. To solve any design 

optimization problems, first the mathematical model of 

that problem is formulated. The mathematical model 

consists of the design objective, design variables and 

design constraints associated with the problem. In the 

present work, the mathematical models of design 

optimization problems are taken from the literature and the 

proposed algorithms are applied to those problems. 

The researchers have developed different metaheuristic 

algorithms to solve design optimization problems. 

However, any single optimization algorithm cannot solve 

all the problems efficiently. So, researchers try to develop 

new algorithms or modify the existing algorithms to get 

more efficient results. They have proposed multi-

population optimization algorithms based on different 

advanced optimization algorithms. The sub-population-

based algorithms divide the population into the number of 

sub-population and thus increase the diversity of the search 

process. The number of sub-populations changes 

adaptively according to the improvement in solution after 

each iteration. The diversity of the search process can 

further be improved by the inclusion of elitism approach in 

multi-population based Rao algorithms[3]. So, in the 

present study the concept of elitism is integrated with 

multi-population based Rao algorithms.   

In recent times, researchers have found that the 

solution’s quality can be improved by combining 

optimization algorithms. Chaos is one of the techniques 

that can be combined with different optimization 

algorithms to solve optimization problems of various 

engineering fields. Chaotic systems are nonlinear 

dynamical systems that are very sensitive to their initial 

conditions. Chaos search is a powerful technique for 

hybridization because of its dynamic characteristics. Chaos 
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can be included in advanced optimization algorithms in 

three ways (1)by substituting the random numbers of the 

algorithm with chaotic numbers generated using chaotic 

maps,(2)by using the chaotic map function for the local 

search approaches, (3)by chaotically generating the control 

parameters of algorithms. In the present work, chaos is 

incorporated in Rao algorithms by replacing the random 

numbers with the chaotic sequence that is produced by the 

Chebyshev chaotic map. 

 The rest of the paper has the following structure: 

section 2 presents the previously proposed advanced 

optimization algorithm with the concept of multi-

population and hybridization to solve optimization 

problems. Section 3 describes the Rao, SAMPE Rao and 

Chaotic Rao algorithms. Section 4 describes the 

application of the proposed algorithms to solve benchmark 

problems and design optimization problems. Section 5 

discusses the results obtained after applying the proposed 

algorithms to different problems. Section 6 presents the 

conclusions of the present study. 

2. Literature Review 

Rao and Saroj [3]presented self-adaptive multi-

population elitist (SAMPE) Jaya algorithm to solve 

engineering optimization problems. The elitism concept 

was used to improve the search mechanism of the 

proposed algorithm. SAMPE Jaya algorithm was applied 

to benchmark problems, mechanical design optimization 

problems and micro-channel heat sink design optimization 

problem to evaluate its performance. Alatas[4]proposed 

Harmony Search (HS) algorithm that uses chaotic maps for 

parameter adaptation. The classical HS algorithm was 

integrated with seven chaotic maps and they were applied 

to benchmark function to test their performance. The 

results demonstrated that the quality of the solution was 

improved for some optimization problems and in some 

cases global searching capability of the algorithm was 

enhanced. Zhang and Ding[5]presented a Multi-Swarm 

Self-Adaptive and Cooperative Particle Swarm 

Optimization (MSCPSO)algorithm. MSCPSO divides PSO 

into four sub-swarms. All sub-swarms update the records 

adaptively and cooperatively. It enhances the diversity of 

the search method and prevents the premature convergence 

of the algorithm. Gandomi et al.[6]presented a firefly 

algorithm(FA) with chaos. FA with 12chaotic maps was 

employed to find the optimum results for benchmark 

functions. FA mimics the social behavior of fireflies based 

on flashing and attraction characteristics of fireflies. FA 

with chaos increases the effectiveness of the search 

process to find the global optimum. 

Rao and Patel [7]presented a modified teaching 

learning based optimization (TLBO) algorithm. They 

applied it to solve the multi-objective optimization of shell 

and tube heat exchanger and plate-fin heat exchanger. The 

cost minimization of the exchanger and maximization of 

heat exchanger effectiveness are two objectives. The 

results proved the effectiveness and accuracy of the 

proposed algorithm are better than other algorithms. Rao 

and Saroj [8]presented a self-adaptive multi-population 

based Jaya (SAMP-Jaya) algorithm to solve optimization 

problems. The exploration and exploitation rates were 

controlled by dividing the population into sub-populations. 

The proposed algorithm was applied to benchmark 

problems and plate-fin heat exchanger optimization 

problem. The results indicated the effectiveness of the 

SAMP Jaya algorithm. Farah and Belazi [9] presented 

chaotic Jaya algorithm by implementing three new 

mutation strategies. The chaotic sequence generated using 

the proposed 2D chaotic map was integrated with Jaya 

algorithm. The performance of the proposed algorithm was 

evaluated using sixteen benchmark functions. The 

Comparisons of results with other algorithms showed the 

enhancement in results by using proposed algorithm.  

Yu et al. [10]proposed multi-population chaotic Jaya 

algorithm (MP-CJAYA) to solve the economic load 

dispatch. In the proposed algorithm, the method of multi-

population and chaotic optimization algorithm were 

applied on the original Jaya algorithm. The comparisons of 

results with other algorithms indicated that MP-CJAYA 

performs better than all the other algorithms. Arora et al. 

[11]presented a modified butterfly optimization algorithm 

to solve mechanical design optimization problems and 

validated the algorithm for three engineering design 

problems.Chakraborty et al. [12]proposed an enhanced 

whale optimization algorithm and solved six engineering 

optimization problems. 

Rao and Pawar [13]proposed Self-adaptive multi 

population Rao algorithms and investigated the algorithms 

on 14 design optimization problems. Rao and Pawar 

[14]solved the chosen mechanical system components 

design optimization problems using Rao 

algorithms.Talatahari et al. [15]developed a material 

generation algorithm and implemented itfor the optimum 

design of engineering problems. Azizi et al. [16]proposed 

an atomic orbital search metaheuristic optimization 

algorithm. The performance of the proposed algorithm was 

tested on constrained design problems from different 

engineering fields.  

The metaheuristic algorithms have been used since last 

few decades to solve various engineering optimization 

problems and these algorithms have been found successful 

[17-19]. The metaheuristic algorithms have their benefits, 

but most of them rely on algorithm-specific parameters 

besides the general controlling parameters like the 

population size and the number of iterations. These 

algorithm-specific parameters must be tuned correctly to 

get better results, otherwise it adversely affects the 

algorithm’s performance. The perfect tuning of the 

algorithm-specific control parameters is tiresome process, 

and it increases the computational efforts. So, considering 

the above points, Rao[20]introduced three simple, 

algorithm-specific parameter less and metaphor-less 

optimization algorithms, known as Rao algorithms. 

From the above literature, it is observed that by using 

subpopulation-based elitist optimization algorithms and by 

using chaos in metaheuristic algorithms, the performance 

of an optimization algorithm can be improved. So, the 

objectives of the present study are:  

 To propose SAMPE Rao and Chaotic Rao algorithms. 

 To examine the performance of the proposed 

algorithms on benchmark problems.  

 To examine the performance of the proposed 

algorithms on 22 engineering optimization problems. 
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3. Rao, SAMPE Rao and Chaotic Rao algorithms 

3.1. Rao algorithms 

Rao algorithms are recently developed advanced 

optimization algorithms[20].There are three versions of 

Rao algorithms, Rao1, Rao2 and Rao3 algorithm. They 

utilize the best and the worst candidate solutions from the 

whole population to get an optimal solution during the 

search process. In Rao2 and Rao3 algorithms, the 

candidate solutions interact randomly during thesearch 

process. Let f(x) is the objective function,the number of 

design variables is‘m’ and the number of candidate 

solutions (population size) is ‘n’. Let us assume, for any 

iteration number ‘q’, the variable ‘p’ corresponding to the 

best and worst solutions are𝑥p,best,q and 𝑥p,worst,q 

respectively. The value of the variable ‘p’ for the candidate 

‘r’ during the iteration ‘q’ is xp,r,q.Then the following 

equation are used to modify the value of xp,r,q, 

𝑥'𝑝,𝑟,𝑞=𝑥𝑝,𝑟,𝑞+r1,p,q(𝑥𝑝,best,q-𝑥𝑝,worst,q) (1) 

𝑥'𝑝,𝑟,𝑞=𝑥𝑝,𝑟,𝑞+r1,p,q(𝑥𝑝,best,q-

𝑥𝑝,worst,q)+r2,p,q(|𝑥𝑝,𝑡,𝑞 or 𝑥𝑝,𝑠,𝑞|-|𝑥𝑝,𝑠,𝑞 or 𝑥𝑝,𝑡,𝑞|) 
(2) 

𝑥'𝑝,𝑟,𝑞=𝑥𝑝,𝑟,𝑞+r1,p,q(𝑥𝑝,best,q-|𝑥𝑝,worst,q|)+ 

r2,p,q(|𝑥𝑝,𝑡,𝑞 or 𝑥𝑝,𝑠,𝑞| -(𝑥𝑝,𝑠,𝑞 or 𝑥𝑝,𝑡,𝑞)) 
(3) 

where, 𝑥'𝑝,𝑟,𝑞is the updated value of 𝑥𝑝,𝑟,𝑞 .r1,p,q and 

r2,p,q are random numbers in the range [0, 1] for thevariable 

‘p’ during the iteration ‘q’. 

𝑥new=x
old

+ r1(xbest-xworst) (4) 

𝑥new=xold+ r1(𝑥best - 𝑥worst)+ r2(|𝑥old or 
𝑥random|-|𝑥random or 𝑥old|) 

(5) 

𝑥new=xold+ r1(𝑥best- |𝑥worst|)+ r2(|𝑥old or 𝑥random|-
(𝑥random or 𝑥old)) 

(6) 

3.2. Self-Adaptive Multi Population Elitist (SAMPE) Rao 

algorithms 

 In SAMPERao algorithms, the whole population 

is divided into the number of sub-populations based on the 

fitness function value. Each sub-population takes charge 

for the exploration or exploitation of the search space. 

Then the concept of elitism is used to further enhance the 

diversity of the search process.The number of sub-

populations is changed based on the improvement of the 

fitness valueafter every iteration. The flowchart of SAMPE 

Rao algorithms is shown in Fig. 1. 

The steps of the SAMPERao algorithms are as follows:  

1. Decide the number of design variables (m), 

populationsize (n), elite size (ES) and termination 

criterion. The maximum number of function 

evaluations or the number of iterations orrequired 

accuracy may be considered as a termination criterion.  

2. Generate the random initial candidate solutions. 

3. Divide thepopulation into the number of sub-

populations according to the fitness function value of 

candidate solutions(initially number of sub-populations 

=2). Then substitute the ‘ES’ number of the worst 

solutions of the inferior group by thebest solutions of 

the superior group. 

4. Modify the solutions in each sub-populationsusing 

equations of Rao algorithms independently. The 

modified solutions are kept if there is an improvement 

from the old solutions. 

5. Combine all sub-populations. If there is an 

improvement in the current best solution compared to 

the previous best solution, then increase the number of 

sub-population by 1 for exploration, otherwise decrease 

the number of sub-population by 1 for exploitation.  

6. Check the termination criterion. If it is fulfilled, then 

report the best optimum solution. Otherwise, repeat 

steps 2 to 6 again. 

3.3. Chaotic Rao algorithms 

 The working of the Chaotic Rao algorithms is 

like that of the Rao algorithms. In the present study, the 

initial population is generated randomly and then the 

chaotic sequence generated using the mathematical 

equation of a chaotic map is used to update the candidate 

solutions in each iteration by replacing random numbers 

with chaotic numbers. For example, if Chebyshev map 

chaotic function is used, then Eq. (7) is used for the 

chaotic random number generation. 

𝑥𝑖+1 =  | 𝑐𝑜𝑠( 𝑘 𝑐𝑜𝑠
−1( 𝑥𝑖))|, 𝑥𝑖 ∈ [0,1],  𝑘 > 1           (7) 

where, 𝑥𝑖+1 and 𝑥𝑖 are (i+1)th and ith term of a chaotic 

sequence, respectively.  

 Many chaotic maps are available for chaotic 

number generation like logistic map, Bernoulli shift map, 

sine map, Chebyshev map, etc. The performance of 

chaotic Rao algorithms is observed using the above-

mentioned maps for benchmark functions and design 

optimization problems. Chaotic Rao algorithms using 

Chebyshev chaotic map give better results than those using 

other maps. So, in the present study Chebyshev chaotic 

map is used for benchmark functions and design 

optimization problems in chaotic Rao algorithms. The 

flowchart of chaotic Rao algorithms is shown in Fig. 2. 
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Figure 1. Flowchart of the SAMPE Rao algorithms 

 

Figure 2. Flowchart of chaotic Rao algorithms 
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4. Application of the proposed algorithms 

4.1. Benchmark problems 

The mathematical formulations of benchmark problems 

are given in appendix A [20].The performance results for 

25 unconstrained benchmark problems are obtained using 

the proposed modified Rao algorithms. The proposed 

algorithms are run for 30 times with 500000 function 

evaluations for each benchmark function and the statistical 

results are presented in Table 1. The optimization results 

for the same benchmark functions using Rao algorithms 

presented in[20] are compared with the results attained 

using the proposed algorithms.The improvement in the 

results using the proposed Rao algorithms is highlighted in 

bold for each benchmark function. In terms of best (B) and 

mean (M) results of the benchmark problems, the proposed 

algorithms have obtained either the same or better results 

compared to the corresponding Rao algorithms. In terms of 

the mean function evaluations (MFE), it is observed that 

the performance of the proposed algorithms is better 

except the performance of SAMPE Rao1 algorithm for 

functions f8, f10 and f11, SAMPE Rao 2 algorithm for 

functions f7 and f11, SAMPE Rao3 algorithm for function 

f7 and Chaotic Rao2 algorithm for functionsf7 and f22.  

Table 1. Statistical results of proposed algorithms for 25 benchmark problems 

Function 
 

Rao1[20] Rao2[20] Rao3[20] 
SAMPE 

Rao1 

SAMPE 

Rao2 

SAMPE 

Rao3 

Chaotic 

Rao1 

Chaotic 

Rao2 

Chaotic 

Rao3 

f1 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 499976 499791 277522 499968 499631 264202 499913 499435 277174 

NP,ES/CS1  NA  NA  NA 30,2 30,2 20,1 30,0.2 30,0.2 12,0.2 

f2 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 499975 499851 276556 499968 499674 242812 499895 499538 273111 

NP,ES/CS1  NA  NA  NA 60,2 60,2 20,2 30,0.2 30,0.2 12,0.2 

f3 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 9805 7612 7325 2998 2472 2218 7927 3729 5275 

NP,ES/CS1  NA  NA  NA 10,2 10,2 10,2 20,0.8 10,0.6 15,0.6 

f4 B -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 

M -5.67E-01 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -7.00E-01 -1.00E+00 -1.00E+00 

W 0.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 0.00E+00 -1.00E+00 -1.00E+00 

SD 5.04E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.66E-01 0.00E+00 0.00E+00 

MFE 3010 11187 14025 992 919 842 2607 3222 2860 

NP,ES/CS1  NA  NA  NA 10,2 10,2 10,2 20,0.8 10,0.2 10,0.2 

f5 

 

B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 77023 110544 143088 19863 76908 99996 26514 43283 49149 

NP,ES/CS1  NA  NA  NA 10,2 20,2 20,2 10,0.2 10,0.2 10,0.2 

f6 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 1.80E-24 7.87E-27 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 5.35E-23 1.32E-25 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 9.76E-24 2.61E-26 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 385066 477753 488127 164446 238352 239369 59000 80542 78871 
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NP,ES/CS1  NA  NA  NA 15,2 15,2 15,2 15,0.2 15,0.2 15,0.2 

f7 B -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 

M -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 

W -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 17485 37209 34796 15535 50948 48648 11470 55908 31416 

NP,ES/CS1  NA  NA  NA 15,2 15,2 15,2 15,0.2 6,0.2 6,0.2 

f8 B -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 

M -2.10E+02 -3.09E+01 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -1.38E+02 -2.10E+02 

W -2.10E+02 1.17E+03 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 9.30E+02 -2.10E+02 

SD 0.00E+00 4.13E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.74E+02 0.00E+00 

MFE 48231 144156 142253 89054 194142 130167 15966 92515 138122 

NP,ES/CS1  NA  NA  NA 20,2 20,2 20,2 10,0.2 10,0.7 15,0.2 

f9 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 345615 499767 258451 304884 347959 153980 318355 35444 242684 

NP,ES/CS1  NA  NA  NA 25,2 15,2 15,2 20,0.2 10,0.3 12,0.2 

f10 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 301513 499849 144367 499996 499724 127782 232622 499469 144354 

NP,ES/CS1  NA  NA  NA 20,1 30,2 20,2 15,0.2 30,0.2 12,0.4 

f11 B 8.95E-26 1.86E-16 1.40E-14 2.17E-10 5.93E-12 3.87E-15 1.66E-28 3.60E-18 1.97E-18 

M 6.64E-01 7.40E-01 7.40E-01 4.07E+00 3.99E-01 6.82E-03 1.33E+00 1.33E-01 4.64E-08 

W 3.99E+00 2.22E+01 2.22E+01 6.98E+01 4.01E+00 1.78E-01 3.99E+00 3.99E+00 1.39E-06 

SD 1.51E+00 4.05E+00 4.05E+00 1.26E+01 1.22E+00 3.25E-02 1.91E+00 7.28E-01 2.54E-07 

MFE 489811 478410 478420 491910 492311 491894 462326 496479 498527 

NP,ES/CS1  NA  NA  NA 20,1 20,1 20,1 20,0.2 30,0.2 30,0.2 

f12 B 6.67E-01 2.81E-30 6.67E-01 1.86E-26 1.82E-30 2.42E-30 4.38E-30 1.90E-30 6.67E-01 

M 6.67E-01 2.89E-01 6.67E-01 5.78E-01 3.56E-01 6.00E-01 6.44E-01 4.89E-01 6.67E-01 

W 6.67E-01 6.67E-01 6.67E-01 6.67E-01 6.67E-01 6.67E-01 6.67E-01 6.67E-01 6.67E-01 

SD 0.00E+00 3.36E-01 7.39E-05 2.30E-01 3.38E-01 2.03E-01 1.22E-01 3.00E-01 0.00E+00 

MFE 75427 113638 159231 208609 294330 139129 92647 274361 344089 

NP,ES/CS1  NA  NA  NA 20,2 30,2 30,2 30,0.2 30,0.2 30,0.2 

f13 B 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 

M 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 

W 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 

SD 1.05E-05 1.03E-05 1.44E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 102785 41263 80683 2059 4673 71397 1188 2456 46560 

NP,ES/CS1  NA  NA  NA 10,2 10,2 15,2 10,0.2 10,0.2 10,0.2 

f14 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 3129 4751 3425 1166 3573 1289 1127 1849 1512 
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NP,ES/CS1  NA  NA  NA 15,2 15,2 15,2 10,0.2 10,0.2 10,0.2 

f15 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 2963 4272 3191 1096 1457 1126 1082 1673 1254 

NP,ES/CS1  NA  NA  NA 15,2 15,2 15,2 10,0.2 10,0.2 10,0.2 

f16 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 4725 12337 6821 1886 3658 2843 1572 4422 2352 

NP,ES/CS1  NA  NA  NA 15,2 15,2 15,2 10,0.2 10,0.2 10,0.2 

f17 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 5583 4485 4312 1348 1207 1168 2031 2362 2289 

NP,ES/CS1  NA  NA  NA 10,2 10,2 10,2 10,0.2 10,0.2 10,0.2 

f18 B -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 

M -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 

W -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 -1.80E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 3863 2694 2751 1091 1037 1239 1397 2704 2587 

NP,ES/CS1  NA  NA  NA 10,2 10,2 10,2 10,0.2 10,0.2 10,0.2 

f19 B -4.69E+00 -4.69E+00 -4.69E+00 -4.69E+00 -4.69E+00 -4.69E+00 -4.69E+00 -4.69E+00 -4.69E+00 

M -4.67E+00 -4.43E+00 -4.49E+00 -4.68E+00 -4.54E+00 -4.57E+00 -4.68E+00 -4.63E+00 -4.64E+00 

W -4.54E+00 -3.12E+00 -3.50E+00 -4.65E+00 -3.91E+00 -3.66E+00 -4.54E+00 -4.48E+00 -4.50E+00 

SD 3.09E-02 3.60E-01 2.79E-01 1.27E-02 1.63E-01 1.89E-01 3.05E-02 6.01E-02 5.14E-02 

MFE 39710 67252 58401 158680 109073 91618 23677 131485 99287 

NP,ES/CS1  NA  NA  NA 20,2 20,2 30,2 30,0.2 30,0.2 30,0.2 

f20 B 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 

M 3.00E+00 5.70E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 

W 3.00E+00 8.40E+01 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 

SD 0.00E+00 1.48E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 180121 180121 353893 91753 87284 326782 55361 103526 333562 

NP,ES/CS1  NA  NA  NA 10,2 10,2 10,2 10,0.2 15,0.2 15,0.2 

f21 B 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

M 1.45E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

W 3.71E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 6.78E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 82792 3139 4453 2065 2047 1809 2349 1671 2947 

NP,ES/CS1  NA  NA  NA 10,2 10,2 10,2 10,0.2 10,0.2 15,0.2 

f22 B 1.51E-14 7.99E-15 4.44E-15 7.99E-15 7.99E-15 4.44E-15 7.99E-15 7.99E-15 4.44E-15 

M 5.67E-01 1.04E-14 6.69E-15 1.20E-01 1.02E-14 6.34E-15 7.04E-01 1.33E+01 5.63E-15 

W 2.22E+00 1.51E-14 1.51E-14 2.66E+00 2.22E-14 1.51E-14 2.00E+01 2.00E+01 7.99E-15 

SD 7.41E-01 3.14E-15 2.38E-15 5.09E-01 3.79E-15 2.42E-15 3.64E+00 9.57E+00 1.70E-15 

MFE 129392 417741 76352 410787 358564 161576 443238 325673 173332 
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NP,ES/CS1  NA  NA  NA 90,2 40,2 120,2 80,0.2 25,0.2 60,0.2 

f23 B 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 

M 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 

W 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 18839 95983 243748 3812 58484 236463 3711 63048 239722 

NP,ES/CS1  NA  NA  NA 10,2 10,2 8,2 15,0.2 15,0.2 40,0.2 

f24 B -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 

M -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 

W -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MFE 4459 3022 3271 3077 2811 2280 2303 2198 3185 

NP,ES/CS1  NA  NA  NA 15,2 20,2 15,2 15,0.2 10,0.6 15,0.2 

f25 B 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 

M 1.47E-03 5.79E-02 1.60E-02 7.32E-04 4.71E-03 9.42E-03 1.10E-03 1.35E-32 2.17E-03 

W 1.10E-02 1.60E+00 1.41E-01 1.10E-02 9.74E-02 9.74E-02 1.10E-02 1.35E-32 2.10E-02 

SD 3.80E-03 2.91E-01 3.50E-02 2.79E-03 1.79E-02 2.44E-02 3.35E-03 0.00E+00 5.20E-03 

MFE 173661 115593 55637 422550 363520 195872 308780 390500 214620 

NP,ES/CS1  NA NA NA  80,2 80,2 80,2 60,0.2 60,0.2 60,0.2 

B-Best solution, M-Mean solution, W-Worst solution, SD-Standard deviation, MFE-Mean function evaluations, NP-Population size, ES-

Elite size, CS1-Initial value of chaotic sequence, NA- Not available 

The results attained by applying the proposed 

algorithms to the benchmark functions are used to perform 

the Friedman rank test[21].The Friedman rank test 

examines the statistical performance of one algorithm 

against other algorithms. The statistical results achieved 

using different algorithms for a function are compared and 

the algorithm which gives the best result gets rank 1 and 

then other algorithms are ranked in ascending order 

according to their performance. Similarly, the ranks are 

given to algorithms for every function and then the mean 

rank of each algorithm is computed. Table 2 shows the 

results of the Friedman rank test. From the average 

ranking, it is seenthat the Chaotic Rao1 algorithm 

performs better than the other algorithms. The rank of each 

algorithm according to its performance is also presented in 

Table 2. From the χ2 score value of 56.128, the p value is 

obtained, and it is much less than 0.05, which validates the 

better performance of the proposed algorithms. 

4.2. Mechanical engineering design optimization problems 

The proposed algorithms are appliedto15mechanical 

engineeringdesign optimization problems to test their 

performance. The mathematical models of these problems 

are described in the Appendix B. The detailed description 

of these problems is given in [16] and [22]. 

4.2.1. Four stage gear box: 

This problem is designed to minimize the total weight 

of gear box. The material of gears is aluminum–bronze, so 

the aim is considered as the minimization of the total gear 

volume. 22 design variables (eight integer and other 

discrete variables) consist of the blank thickness, the 

number of teeth and the gear and pinion position. The 86 

design constraints are related to the contact ratio, strength 

of the gears, size of gears, pitch, assembly of gears, and 

kinematics.   

4.2.2. Rolling element bearing: 

Fig. 3 shows schematic diagram of rolling element 

bearing. This problem is designed to maximize the load 

carrying capacity of a rolling element bearing. The ball 

diameter (Db), pitch diameter (Dm), total number of balls 

(Z), the raceway curvature coefficient (fi and fo) are five 

design variables and the design parameters of the rolling 

element bearing problem (β, ε, e, KDmin, KDmax, ) are other 

five design variables. All design variables excluding Z are 

continuous variables. The design constraints are related to 

kinematic and manufacturing considerations.   

Table 2. Friedman rank test results 

Algorithm Rao1 Rao2 Rao3 SAMPE 

Rao1 

SAMPE 

Rao2 

SAMPE 

Rao3 

Chaotic 

Rao1 

Chaotic 

Rao2 

Chaotic 

Rao3 

Friedman average 

rank 

6.52 7.32 6.68 3.92 4.72 3.68 3.4 4.44 4.32 

Rank for algorithm 7 9 8 3 6 2 1 5 4 

 
 



 © 2022 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 16, Number 5  (ISSN 1995-6665) 843 

4.2.3. Gas transmission compressor: 

This problem is designed to minimize the cost of gas 

pipeline transmission system to deliver 100 million cubic 

feet of gas per day. The distance between the compressor 

stations (x1, in miles) and the compressor ratio (x2, division 

of discharge pressure and flow rate), the pipe diameter (x3, 

in inches) and flow rate (x4, in ft3 /sec) are four design 

variables. This problem has one inequality constraint.   

4.2.4. Speed reducer: 

Fig. 4 shows schematic diagram of speed reducer. This 

problem is designed to minimize the total weight of the 

speed reducer. The face width (b), the number of teeth on 

pinion (Z, integer variable), the gear module (m), shaft 1 

diameter (d1), and the shaft 2 diameter (d2), the length of 

shaft 1 (l1), the length of shaft 2 (l2) are seven design 

variables. Except Z, all other design variables are 

continuous variables. This problem has eleven constraints 

associated with the surface stress, the bending stress in the 

gear teeth, the stresses in the shafts, and transverse 

deflections of the shafts.  

4.2.5. Pressure vessel: 

Fig. 5 shows schematic diagram of pressure vessel. 

This problem is designed to minimize the total cost of 

Material, welding and forming. The design variables are 

the shell thickness as Ts (x1), head thickness as Th (x2), 

shell inner radius as R (x3), and cylindrical section length 

of the vessel without considering the head as L(x4). Due to 

the constraint in the availability of rolled steel plates, Ts 

and Th must be multiple of 0.0625 in. The remaining two 

variables are continuous. This problem has four design 

constraints.  

 
Figure 3. Rolling element bearing[13] 

 
Figure 4. Speed reducer [25] 

 
Figure 5. Pressure vessel [13] 
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4.2.6. Tension/compression spring – case 1: 

Fig. 6 shows schematic diagram of 

tension/compression spring. This problem is designed to 

minimize the weight of a tension/compression spring. The 

wire diameter d (x1), mean coil diameter D (x2) and the 

number of active coils N (x3) are three continuous design 

variables. Four design constraints are associated with the 

shear stress, minimum deflection, surge frequency and 

limits on outside diameter and design variables. 

4.2.7. Tension/Compression spring – case 2: 

This problem is designed to minimize the volume of a 

compression spring under static loading. The mean coil 

diameter D (x2, continuous), the wire diameter d(x1, 

discrete), and the number of active coils N (x3, integer) are 

three design variables. The value of variable d is taken 

from Table 3.  

4.2.8. Piston lever: 

Fig. 7 shows schematic diagram of piston leaver. This 

problem is designed to minimize the oil volume by 

locating the piston components' position (H, D, B, and X) 

when the piston lever is raised from 0o to 45o. The 

inequality constraints imposed are related to equilibrium of 

forces, maximum bending moment of the lever, minimum 

piston stroke and geometrical conditions.  

4.2.9. Gear train: 

Fig. 8 shows schematic diagram of gear train. This 

problem is designed to minimize the gear ratio in the gear 

train. The number of teeth on the gears are four design 

variables. The given range for the number of teeth on each 

gear is considered as the constraints.  

 

Figure 6. Compression spring [13] 

Table 3. Wire diameter [24] 

Wire diameters (in) 

0.009 0.0095 0.0104 0.0118 0.0128 0.0132 0.014 

0.015 0.0162 0.0173 0.018 0.020 0.023 0.025 

0.028 0.032 0.035 0.041 0.047 0.054 0.063 
0.072 0.080 0.092 0.105 0.120 0.135 0.148 

0.162 0.177 0.192 0.207 0.225 0.244 0.263 

0.283 0.307 0.331 0.362 0.394 0.4375 0.500 

 

Figure 7. Piston lever [25] 

 

Figure 8. Gear train[16] 
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4.2.10. Corrugated bulkhead: 

This problem is designed to minimize the weight of a 

corrugated bulkhead used in tankers. The length (l), width 

(w), depth (h) and thickness (t) of the bulkhead are four 

design variables considered with six inequality constraints.   

4.2.11. Planetary gear train: 

Fig. 9 shows schematic diagram of planetary gear train. 

This problem is designed to minimize the maximum errors 

in the gear ratio of a planetary gear train. The number of 

teeth in the gears(Z1, Z2, Z3, Z4, Z5 and Z6- integer 

variables), the number of planet gears(Zp), module of the 

first gear(m1) and module of the second gear(m2) are nine 

design variables.P, m1, and m2 are discrete design 

variables. The design constraints (ten inequality 

constraints and one equality constraint) are related to 

various assembly and geometric restrictions. 

 

Figure 9. Planetary gear train [23] 

1: Small sun gear, 2,3: Broad planet gear, 4: Large  sun gear, 5: 

Narrow planet gear, 6: Ring gear 

 

4.2.12. Step cone pulley: 

Fig. 10 shows schematic diagram of step cone pulley. 

This problem is designed to minimize the weight of the 

step cone pulley.  The pulley diameter in each step(d1, d2, 

d3, d4) and width of the pulley(w) are five design variables. 

Eight inequality constraints and three equality constraints 

ensure that the belts have the same tension ratios, same 

belt length for every step and transmit same power. The 

step pulley transmits minimum 0.75 hp. 

4.2.13. Hydrostatic thrust bearing: 

Fig.11 shows schematic diagram of hydrostatic thrust 

bearing. This problem is designed to minimize the power 

loss related to bearing. Oil viscosity (µ),flow rate 

(Q),Bearing step radius (R) and recess radius (R0) are four 

design variables. Total seven constraints are related to oil 

film thickness, load-carrying capacity, rise in oil 

temperature, inlet oil pressure and some physical 

requirements. 

 

Figure 11. Hydrostatic thrust bearing[16] 

 

 

Figure 10. Step cone pulley [16] 
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4.2.14. Welded beam: 

Fig. 12 shows schematic diagram of welded beam. This 

problem is designed to minimize the fabrication cost of the 

welded beam. The weld thickness as h(x1), weld length as 

l(x2), the bar height as t(x3) and bar thickness as b(x4) are 

four design variables. This design problem has seven 

constraints associated with the shear stress (τ), the bending 

stress in the beam (σ), the bucking load on the beam (Pc), 

the end deflection of the beam (δ), and the side constraints. 

4.2.15. Multiple disk clutch brake: 

Fig. 13 shows schematic diagram of multiple disk 

clutch brake. This problem is designed to minimize the 

total mass of the clutch brake. The actuating force (F), 

outer radius (ro), inner radius (ri), disc thickness (t) and the 

number of contact surfaces (Z) are five discrete design 

variables. This problem has eight non-linear design 

constraints. 

5. Results and discussion 

 In the present work, the results are obtained with 

the R2019a version of the MATLAB tool. The laptop with 

the 1.80-GHz Intel Core i7-8550U processor and 8GB 

RAM is used for computation. Each design optimization 

problem is solved using Rao, SAMPE Rao and Chaotic 

Rao algorithms for25 times. The statistical results achieved 

using Rao, SAMPE Rao, Chaotic Rao algorithms and other 

advanced optimization algorithms presented in [16] and 

[22]are compared for each design optimization problem. 

[16] and [22] considered maximum functions evaluations 

as 200000 and 60000, respectively for design optimization 

problems presented in their respective papers. The best 

fitness function values and the statistical results achieved 

using the proposed algorithms are compared with 

thoseachieved using other advanced optimization 

algorithms in the previous studies. Different combinations 

of population size and elite sizes for SAMPE Rao 

algorithms and different combinations of population size 

and initial value of chaotic sequence are tested for all the 

problems, the combination which gives the best result for 

different algorithms is mentioned in the statistical results 

comparison tables. 

5.1. Four stage gear box: 

The maximum FEs in this problem is considered as 

50000. Table 4 compares the statistical results of this 

problem over 25 runs. The best fitness value obtained is 

𝑓(𝑥) = 36.26590769 cm3at 𝑥 = (19, 41, 19, 39, 18, 38, 18, 

38, 3.175, 3.175, 3.175, 3.175, 101.6, 63.5, 63.5, 88.9, 

88.9, 88.9, 76.2, 76.2, 50.8, 50.8) using SAMPE Rao1 

algorithm. Table 5 compares the best fitness value 

obtained in the present study and the same obtained by 

ABC-GA(Artificial Bee Colony-Genetic Algorithm), 

ABC-DE (Artificial Bee Colony-Differential Evolution), 

ABC-BBO(Artificial Bee Colony-Biogeography-based 

optimization), TLBO, ABC, and AOS. The best fitness 

value is obtained by SAMPE Rao1 algorithm. 

 

Figure 12. Welded beam [13] 

 

Figure 13. Multiple disk clutch brake [14] 

Table 4. Statistical results comparison for a four stage gear box design problem 

Algorithm B M W SD MFE 
NP, 

ES/CS1 

AOSa 37.4042245 52.83708891 90.81422082 1.190E+01 NA NA 

Rao1 37.35797821 72.20780915 156.2196704 3.320E+01 41396 25 

Rao2 36.5289327 103.3275184 240.5116744 4.620E+01 26237 25 

Rao3 37.28608556 68.17318794 151.9493665 3.100E+01 35015 25 

SAMPE Rao1 36.26590769 56.27290804 85.24647758 1.340E+01 40910 25,2 

SAMPE Rao2 36.443023 60.79267004 113.2822656 2.260E+01 42548 50,6 

SAMPE Rao3 36.29036038 54.07181791 106.5927524 1.750E+01 44856 50,6 

Chaotic Rao1 36.47490382 74.97541999 130.3131561 2.890E+01 38794 25,0.7 

Chaotic Rao2 36.48867434 168.5684829 618.2785095 1.350E+02 30084 29,0.6 

Chaotic Rao3 36.46666447 138.4370045 275.2995689 6.550E+01 30737 30,0.6 
a Results are taken from [16] 

Table 5. Comparison of best fitness value for a four stage gear box design problem 

Algorithm ABC-GAa ABC-DEa ABC-

BBOa 

TLBOa ABCa AOSb Present study 

Best result 55.494494 59.763563 46.623205 43.792433 49.836165 37.4042245 36.26590769 
a Results are taken from [2]; b Results are taken from [16] 
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5.2. Rolling element bearing: 

The maximum FEs in this problem is considered as 

25000. Table 6 compares the statistical results of this 

problem over 25 runs for TLBO, AOS, and the proposed 

algorithms. The best fitness value obtained is 𝑓(𝑥) = 

81859.741597 N at 𝑥 = (125.719056, 21.42559, 0.515, 

0.515, 11, 0.462578, 0.7, 0.809635, 0.3, 0.064782) by all 

the proposed algorithms and TLBO. The result given by 

AOS algorithm is inferior and it is an infeasible solution 

because the number of rolling elements was considered by 

[16] as a continuous variable.  

5.3. Gas transmission compressor: 

The maximum FEs in this problem is considered as 

200000. Table 7 compares the statistical results of this 

problem over 25 runs. The best fitness value obtained is 

𝑓(𝑥) = 2964895.417 at 𝑥 = (50, 1.178281, 24.592121, 

0.388346) using all the proposed algorithms and the AOS 

algorithm.  

5.4. Speed reducer: 

The maximum FEs in this problem is considered as 25000. 

Table 8 compares the statistical results of this problem over 25 

runs obtained by CGO, SEA (Simple Evolutionary Algorithm), 

OASBS (Optimization Algorithm based on Socio Behavioural 

Simulation Model), CSA, and DSS-MDE (Dynamic 

Stochastic Selection-Multimember Differential Evolution). The 

best fitness value obtained is 𝑓(𝑥) = 2994.424466 kg at 𝑥 = (3.5, 

0.7, 17, 7.3, 7.715320, 3.350541, 5.286655) by all the proposed 

algorithms. The SEA, OASBS, and CSA have obtained inferior 

values. The Chaotic Rao1 algorithm requires the minimum FEs to 

reach an optimal solution.  

  

Table 6. Statistical results comparison for a rolling element bearing design problem 

Algorithm B M W SD MFE 
NP, 

ES/CS1 

TLBO a 81859.74 81438.987 80807.8551 6.600E-01 NA 50 

AOS a* 83918.49253 82175.21266 83826.38337 2.338E+01 NA NA 

Rao1 81859.741597 81564.87429 80807.82664 3.603E+02 10997 30 

Rao2 81859.741597 81817.666137 80807.855077 2.104E+02 11306 30 

Rao3 81859.741597 81817.66614 80807.85508 2.104E+02 11045 30 

SAMPE Rao1 81859.741597 81790.21112 80807.85508 2.090E+02 9909 40,2 

SAMPE Rao2 81859.741597 81859.741597 81859.741597 0.000E+00 9515 35,2 

SAMPE Rao3 81859.741597 81859.741597 81859.741597 0.000E+00 9588 35,2 

Chaotic Rao1 81859.741597 81859.741597 81859.741597 0.000E+00 8726 20,0.2 

Chaotic Rao2 81859.741597 81859.741597 81859.741597 0.000E+00 16201 30,0.3 

Chaotic Rao3 81859.741597 81859.741597 81859.741597 0.000E+00 15760 30,0.3 
a Results are taken from [16]; * Infeasible solution because the number of rolling elements was considered as a continuous variable 

Table 7. Statistical results comparison for a gas transmission compressor design problem 

Algorithm B M W SD MFE 
NP, 

ES/CS1 

AOS a 2964895.417 2965102.327 2966483.832 2.518E+02 NA NA 

Rao1 2964895.419 2964895.444 2964895.52 2.667E-02 162163 10 

Rao2 2964895.419 2999784.479 3626159.761 1.356E+05 153950 10 

Rao3 2964895.419 2995303.489 3147941.927 6.822E+04 127464 10 

SAMPE Rao1 2964895.417 2994126.234 3147941.927 6.340E+04 148446 10,2 

SAMPE Rao2 2964895.417 3026809.386 3358534.842 1.044E+05 121613 10,2 

SAMPE Rao3 2964895.417 3005984.840 3147941.927 7.315E+04 135558 10,2 

Chaotic Rao1 2964895.417 2964895.424 2964895.517 1.954E-02 151003 10,0.4 

Chaotic Rao2 2964895.417 4012200.787 12061229.75 2.653E+06 113224 10,0.3 

Chaotic Rao3 2964895.417 3119110.378 3771891.386 2.296E+05 110822 10,0.9 
a Results are taken from [16] 

Table 8. Statistical results comparison for a speed reducer design problem 

Algorithm B M W SD MFE 
NP, 

ES/CS1 

SEA a 3025.005 3088.7778 3078.5918 NA NA 100 

OASBS a 3008.08 3012.12 3028.28 NA NA 100 

CSA a 3000.981 3007.1997 3009 4.963E+00 NA 50 

DSS-MDE a 2994.471066 2994.471066 2994.471066 3.580E−12 NA 20 

CGO a 2994.443649 2994.465397 2995.504933 1.102E-01 NA NA 

Rao1 2994.424466 2994.424466 2994.424466 0.000E+00 6373.2 15 

Rao2 2994.424466 2994.424466 2994.424466 0.000E+00 12848 30 

Rao3 2994.424466 2994.424466 2994.424466 0.000E+00 12897 30 

SAMPE Rao1 2994.424466 2994.424466 2994.424466 0.000E+00 6270 15,2 

SAMPE Rao2 2994.424466 2994.424466 2994.424466 0.000E+00 9108 25,2 

SAMPE Rao3 2994.424466 2994.424466 2994.424466 0.000E+00 9540 25,2 

Chaotic Rao1 2994.424466 2994.424466 2994.424466 0.000E+00 3958 10,0.2 

Chaotic Rao2 2994.424466 2994.424466 2994.424466 0.000E+00 12621 25,0.8 

Chaotic Rao3 2994.424466 2994.424466 2994.424466 0.000E+00 12409 25,0.8 
aResults are taken from[22] 

https://www.sciencedirect.com/topics/engineering/stochastic-dynamic
https://www.sciencedirect.com/topics/engineering/stochastic-dynamic
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5.5. Pressure vessel: 

The maximum FEs in this problem is considered as 

10000. Table 9 compares the statistical results of this 

problem over 25 runs obtained by CPSO (Coevolutionary 

Particle Swarm Optimization), QPSO (Quantum behaved 

PSO), NM-PSO (Nelder–Mead PSO), MBA (Mine Blast 

Algorithm), and CGO (Chaos Game Optimization) 

algorithm. The best fitness value obtained is 𝑓(𝑥) = 

6059.714335 $ at 𝑥 = (0.8125, 0.4375, 42.098446, 

176.636596) by all the proposed algorithms. The results 

obtained by CPSO, QPSO, NM-PSO, and MBA 

algorithms violate the requirement that the variables Ts(x1) 

and Th (x2) are to be integer multiples of 0.0625 inch. The 

best mean fitness value is attained using the Chaotic Rao1 

algorithm.  

5.6. Tension/compression spring – case 1: 

The maximum FEs in this problem is considered as 

60000. Table 10 compares the statistical results of this 

problem over 25 runsfor CGA (Co-evolutionary Genetic 

Algorithm),  OASBS, STA (State Transition Algorithm), 

BA (Bat Algorithm) and CGO (Chaos Game 

Optimization). The best fitness value obtained is 𝑓(𝑥) = 

0.01266525 in3at 𝑥 = (0.0516173, 0.3549922, 

11.3910097) using Chaotic Rao1 algorithm. Even though 

the best fitness value obtained by BA and CGO seem to be 

slightly better, but these are to be considered infeasible due 

to violation of a constraint.  

5.7. Tension/Compression spring – case 2: 

The maximum FEs in this problem is considered as 

10000. Table 11 compares the statistical results of this 

problem over 25 runsfor AOS and the proposed 

algorithms. The best fitness value obtained is 𝑓(𝑥) = 

2.625281953 in3at 𝑥 = (0.263, 0.9048483122, 15) by all 

the proposed algorithms. Even though the best fitness 

value obtained by AOS algorithm seems to be slightly 

better, but this is to be considered infeasible due to 

violation of a constraint. The best mean fitness value is 

attained using Chaotic Rao3 algorithm.  

Table 9. Statistical results comparison for a pressure vessel design problem 

Algorithm B M W SD MFE NP, ES/CS1 

CPSO a* 6061.0777 6147.1332 6363.8041 8.645E+01 NA NA 

QPSO a* 6059.7208 6440.3786 7544.4925 4.484E+02 NA 20 

NM-PSO a* 5930.3137 5946.7901 5960.0557 9.161E+00 NA NA 

MBA a* 5889.3216 6200.6477 6392.5062 1.603E+02 NA 50 

CGO a 6247.672819 6250.957354 6330.958685 1.075E+01 NA NA 

Rao1 6059.714335 6088.684774 6128.630739 2.020E+01 6413.0 30 

Rao2 6059.714335 6065.997125 6103.736305 1.240E+01 8943.0 30 

Rao3 6059.714335 6062.390819 6090.579595 6.600E+00 9142.0 30 

SAMPE Rao1 6059.714335 6073.607190 6097.912054 1.220E+01 5579.0 25,2 

SAMPE Rao2 6059.714335 6064.985476 6093.022428 1.030E+01 8850.0 30,2 

SAMPE Rao3 6059.714335 6061.806949 6090.526208 6.500E+00 9422.0 30,2 

Chaotic Rao1 6059.714335 6061.583912 6072.623805 3.810E+00 8345.0 20,0.3 

Chaotic Rao2 6059.714335 6063.910489 6095.724076 1.080E+01 9454.0 30,0.8 

Chaotic Rao3 6059.714335 6061.721305 6090.526309 6.290E+00 9435.6 30,0.8 
a Results are taken from [22]; * Infeasible solution because the variables Ts(x1) and Th (x2) are not integer multiples of 0.0625 inch. 

Table 10. Statistical results comparison for a tension/compression spring case-1 design problem 

Algorithm B M W SD MFE NP, ES/CS1 

CGA a 0.01270478 0.0127692 0.01282208 3.939E−05 NA NA 

OASBS a 0.0126692 0.0129227 0.0167172 5.198E−05 NA 30 

STA a 0.01266534 0.01266534 0.01272968 2.167E−05 NA 30 

BAa* 0.01266522 0.01266522 0.0168954 1.420E-03 NA 10 

CGOa* 0.01266524 0.012670085 0.012719055 1.090E−05 NA NA 

Rao1 0.012665712 0.012677199 0.012718743 1.168E-05 44440 10 

Rao2 0.012665495 0.012986421 0.017773158 1.014E-03 17214 10 

Rao3 0.012666085 0.012838545 0.01319258 2.262E-04 12070 10 

SAMPE Rao1 0.012665361 0.012682374 0.012719054 2.044E-05 45396 10,2 

SAMPE Rao2 0.012665459 0.012710172 0.012719054 1.879E-05 21958 10,2 

SAMPE Rao3 0.012665564 0.012702301 0.012721539 2.346E-05 15390 10,2 

Chaotic Rao1 0.01266525 0.012665568 0.012666418 3.000E-07 46446 10,0.2 

Chaotic Rao2 0.01266527 0.012803096 0.01319258 1.999E-04 10463 10,0.2 

Chaotic Rao3 0.012665349 0.012862042 0.01319258 2.322E-04 6939 10,0.2 
a Results are taken from [22]; * Infeasible solution due to violation of a constraint. 

Table 11. Statistical results comparison for a tension/compression spring case-2 design problem 

Algorithm B M W SD MFE NP, ES/CS1 

AOS a* 2.615360373 2.64371161 2.863796184 4.285E-02 NA NA 

Rao1 2.625281953 2.626052428 2.63408739 1.93E-03 5788 10 

Rao2 2.625281953 2.983025419 5.39453905 7.62E-01 1669 10 

Rao3 2.625281953 2.88088446 6.720428845 8.54E-01 1554 10 

SAMPE Rao1 2.625281953 2.62577663 2.631345549 1.39E-03 5573 15,2 

SAMPE Rao2 2.625281953 2.648636546 3.142985801 1.04E-01 2160 15,2 

SAMPE Rao3 2.625281953 2.648636546 3.142985801 1.04E-01 3195 15,2 

Chaotic Rao1 2.625281953 2.625281994 2.625282751 1.64E-07 4649 15,0.2 

Chaotic Rao2 2.625281953 2.785515745 5.104522609 5.64E-01 4648 15,0.7 

Chaotic Rao3 2.625281953 2.625281953 2.625281953 0.00E+00 4759 15,0.7 
a Results are taken from [16]; * Infeasible solution because number of active coils in a spring is considered as continuous variable. 
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5.8. Piston lever: 

The maximum FEs in this problem is considered as 

20000. Table 12 compares the statistical results of this 

problem over 25 runs obtained by HPSO (Hierarchy 

Particle Swarm Optimization), GA (Genetic Algorithm), 

DE, CS, MGA, and AOS algorithm. The best fitness value 

obtained is 𝑓(𝑥) = 8.412698 in3at 𝑥 = (0.05, 2.04151359, 

4.08302718, 120) by all the proposed algorithms. The best 

mean fitness value is attained using SAMPE Rao1 

algorithm.   

5.9. Gear train: 

The maximum FEs in this problem is considered as 

500. Table 13 compares the statistical results of this 

problem over 25 runs. The best fitness value obtained is 

𝑓(𝑥) = 2.70086E-12 at 𝑥 = (49, 19, 16, 43) by all the 

proposed algorithms. The best mean fitness value is 

attained using SAMPE Rao3 algorithm. Table 14 

compares the best fitness value obtained in the present 

study and the same obtained by CS (Cuckoo Search), 

ALO, MFO (Moth Flame Optimization), MVO (Multi 

Verse Optimizer), and AOS algorithms. Even though the 

best fitness value obtained by AOS algorithm seems to be 

slightly better, but this is to be considered infeasible 

because the number of gear teeth was considered as a 

continuous variable in [16].  

5.10. Corrugated bulkhead: 

The maximum FEs in this problem is considered as 

15000. Table 15 compares statistical results of this 

problem over 25 runs. The best fitness value obtained is 

𝑓(𝑥) = 6.84295801 at 𝑥 = (57.69230769, 34.14762035, 

57.69230769, 1.05) by all the proposed algorithms except 

CSA. The best fitness value obtained by CSA is infeasible 

as the corresponding values of 𝑥violates a constraint. The 

Chaotic Rao1 algorithm requires the minimum FEs to 

reach an optimal solution.  

Table 12. Statistical results comparison for a piston lever design problem 

Algorithm B M W SD MFE NP, ES/CS1 

HPSO a 162 187 197 1.340E+01 NA NA 

GA a 161 185 216 1.820E+01 NA NA 

DE a 159 187 199 1.420E+01 NA NA 

CSA a 8.4271 40.2319 168.592 5.906E+01 NA 50 

AOSb 8.419142742 33.7412759 60.66498628 9.347E+01 NA NA 

Rao1 8.412698 84.76151 167.4727 8.111E+01 6944 10 

Rao2 8.412698 103.8487 167.4727 7.953E+01 11207 15 

Rao3 8.412698 97.48632 167.4727 8.058E+01 9935 20 

SAMPE Rao1 8.412698 73.0191 167.4727 7.884E+01 8184 20,2 

SAMPE Rao2 8.412698 84.76151 167.4727 8.111E+01 7778 15,2 

SAMPE Rao3 8.412698 84.76151 167.4727 8.111E+01 7578 15,2 

Chaotic Rao1 8.412698 78.39911 167.4727 8.058E+01 5113 20,0.3 

Chaotic Rao2 8.412698 91.12391 167.4727 8.111E+01 11543 15,0.3 

Chaotic Rao3 8.412698 91.12391 167.4727 8.111E+01 9575 11,0.2 
aResults are taken from [15];  bResults are taken from [16] 

Table 13. Statistical results comparison for a gear train design problem 

Algorithm B M W SD MFE NP, ES/CS1 

AOS a* 2.29E-19 6.25E-15 9.06E-14 1.260E-14 NA NA 

Rao1 2.70086E-12 2.44995E-08 2.38608E-07 4.734E-08 225 10 

Rao2 2.70086E-12 5.74147E-08 8.949E-07 1.781E-07 220 10 

Rao3 2.70086E-12 8.81838E-08 8.949E-07 2.437E-07 212 10 

SAMPE Rao1 2.70086E-12 1.36555E-08 8.92118E-08 2.005E-08 256 10,2 

SAMPE Rao2 2.70086E-12 1.68745E-08 1.76128E-07 3.482E-08 267 15,2 

SAMPE Rao3 2.70086E-12 1.14852E-08 7.80223E-08 1.732E-08 199 10,2 

Chaotic Rao1 2.70086E-12 2.08542E-08 1.5244E-07 3.778E-08 238 10,0.2 

Chaotic Rao2 2.70086E-12 5.30282E-08 5.04146E-07 1.223E-07 251 10,0.6 

Chaotic Rao3 2.70086E-12 6.0809E-08 8.949E-07 1.773E-07 244 15,0.4 
aResults are taken from [16]; 

Table 14. Best fitness value comparison for a gear train design problem 

Algorithm CSa ALOa MFOa MVOa AOSb* Present study 

Best result 2.701e-12 2.7009e-12 2.7009e-12 2.7009e-12 2.29e-19 2.70086e-12 
aResults are taken from [13]; bResults are taken from [16]; *Infeasible solution because number of gear teeth was considered as a continuous 

variable. 
Table 15. Statistical results comparison for a corrugated bulkhead design problem 

Algorithm B M W SD MFE NP, ES/CS1 

CSA a* 5.894331 5.988257 6.126749 6.436E-02 NA NA 

AOS a 6.84295801 7.060808377 7.066936186 6.491E-04 NA NA 

Rao1 6.84295801 6.84295801 6.84295801 0.000E+00 4290 10 

Rao2 6.84295801 6.84295801 6.84295801 0.000E+00 4573 10 

Rao3 6.84295801 6.84295801 6.84295801 0.000E+00 4260 10 

SAMPE Rao1 6.84295801 6.84295801 6.84295801 0.000E+00 4231 14,2 

SAMPE Rao2 6.84295801 6.84295801 6.84295801 0.000E+00 4326 10,2 

SAMPE Rao3 6.84295801 6.84295801 6.84295801 0.000E+00 4066 10,2 

Chaotic Rao1 6.84295801 6.84295801 6.84295801 0.000E+00 3442 10,0.2 

Chaotic Rao2 6.84295801 6.84295801 6.84295801 0.000E+00 4277 10,0.9 

Chaotic Rao3 6.84295801 6.84295801 6.84295801 0.000E+00 4132 8,0.6 
a Results are taken from [16]; * Infeasible solution due to violation of a constraint 
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5.11. Planetary gear train: 

The maximum FEs in this problem is considered as 

200000. Table 16compares the statistical results of this 

problem over 25 runs using the proposed algorithms, PSO 

(Particle Swarm Optimization), ABC(Artificial Bee 

Colony), PVS (Passing Vehicle Search), AOS, and QSA 

(Queuing Search Algorithm). The best fitness value 

obtained is 𝑓(𝑥) = 0.52325 at 𝑥 = 

(40,21,14,19,14,69,5,1.75,2) using all the proposed 

algorithms and AOS algorithm. The mean fitness values 

attained using the proposed algorithms are slightly higher 

than the same obtained using AOS algorithm.  

5.12. Step cone pulley: 

The maximum FEs in this problem, is considered as 15000. 

Table 17compares the statistical results of this problem over 25 

runs for TLBO (Teaching Learning Based Optimization), WOA 

(Whale Optimization Algorithm), WCA (Water Cycle Algorithm), 

MBA (Mine Blast Algorithm), and AOS. The best fitness value 

obtained is 𝑓(𝑥) = 16.63450485 kg at 𝑥 = (85.98624253, 40, 

54.76430076, 73.01317694, 88.42841982) by all the proposed 

algorithms.. Even though the result obtained by AOS appears to 

be better, but it is to be considered as an infeasible solution 

because the value of one design variable is out of the given range. 

The best mean fitness value is attained using the Chaotic Rao2 

algorithm.   

5.13. Hydrostatic thrust bearing: 

The maximum FEs in this problem is considered as 25000. 

Table 18compares the statistical results of this problem over 25 

runs for TLBO, AOS, and the proposed algorithms. Table 19 

compares the best fitness value obtained in present study and 

those obtained by PSO, GASO (Genetic Algorithm aided 

Stochastic Optimization), GeneAS (Genetic Adaptive Search), 

ABC, TLBO, and AOS algorithm. Even though the result 

obtained by AOS appears to be better, but it is to be considered as 

an infeasible solution because of the violation of a constraint. The 

best fitness value is obtained by SAMPE Rao1 algorithm, and the 

value is 𝑓(𝑥) = 1625.031214 btu/s at 𝑥 = (5.955330, 5.388607, 

2.269248, 0.000005358845). 

Table 16. Statistical results comparison for a planetary gear train design problem 

Algorithm B M W SD MFE NP,ES/CS1 

PSOa 0.53 0.5361934 NA NA NA 50 

ABCa 0.525769 0.5272922 NA NA NA 50 

QSAa 0.525589 0.525589 NA NA NA 30 

PVSa 0.525588 0.53063 NA NA NA NA 

AOSb 0.52325 0.529848233 0.537058824 3.894E-03 NA NA 

Rao1 0.52325 0.534683372 0.553181818 6.143E-03 12459 30 

Rao2 0.52325 0.588581422 1.87875 2.689E-01 9880.8 30 

Rao3 0.52325 0.545598896 0.805652174 5.460E-02 14033 35 

SAMPE Rao1 0.52325 0.531301937 0.549705882 6.245E-03 10611 20,2 

SAMPE Rao2 0.52325 0.53330837 0.549849108 5.618E-03 9283 20,2 

SAMPE Rao3 0.52325 0.532603237 0.545064935 5.561E-03 11022 40,2 

Chaotic Rao1 0.52325 0.53293644 0.549705882 5.719E-03 11623 25,0.6 

Chaotic Rao2 0.52325 0.54700953 0.805652174 5.436E-02 9379.2 40,0.2 

Chaotic Rao3 0.52325 0.536461805 0.549311686 5.899E-03 14137.6 40,0.4 
aResults are taken from [15]; bResults are taken from [16] 

Table 17. Statistical results comparison for a step cone pulley design problem 

Algorithm B M W SD MFE NP,ES/CS1 

TLBOa 16.63451 24.0113577 74.022951 3.400E-01 NA 50 

WOAa 16.6345213 20.93829477 24.8488259 3.349E+00 NA 20 

WCAa 16.63450849 17.53037682 18.83302997 9.229E-01 NA 20 

MBAa 16.6345078 16.702535 18.3237145 2.627E-01 NA 20 

AOSa* 16.08558875 16.29548945 16.80334816 1.772E-01 NA NA 

Rao1 16.63450485 16.72640748 17.59405649 2.198E-01 12845 20 

Rao2 16.63450485 16.74252202 17.51387727 2.471E-01 12888 20 

Rao3 16.63450485 16.78532149 18.01364527 3.673E-01 13249 20 

SAMPE Rao1 16.63450485 16.69646353 17.25819841 1.400E-01 12812 30,2 

SAMPE Rao2 16.63450485 16.70155067 17.30303274 1.598E-01 13647 25,2 

SAMPE Rao3 16.63450485 16.7270869 17.4362292 2.204E-01 12669 30,2 

Chaotic Rao1 16.63450485 16.67806324 16.88845818 8.562E-02 10208 15,0.3 

Chaotic Rao2 16.63450485 16.64720778 16.95205707 6.351E-02 14751 20,0.2 

Chaotic Rao3 16.63450485 16.74985978 19.24078858 5.204E-01 14552 20,0.2 
aResults are taken from [16]; *Infeasible solution because the value of one design variable is out of the given range 
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5.14. Welded beam: 

The maximum FEs in this problem is considered as 

15000. Table 20compares the statistical results of this 

problem over 25 runs obtained by CDE (Co-evolutionary 

Differential Evolution), WCA (Water Cycle Algorithm), 

IAPSO (Improved accelerated PSO), STA (State 

Transition Algorithm), and CGO.The best fitness value 

obtained is 𝑓(𝑥) =1.724852309 $ at 𝑥 =(0.20573, 

3.470489, 9.036624, 0.20573) by all the algorithms. The 

best fitness values given by algorithms STA and CGO 

algorithms are not feasible as the corresponding values of 

the design variables violate a constraint. The Chaotic Rao1 

algorithm requires the minimum FEs to reach an optimal 

solution. 

5.15. Multiple disk clutch brake: 

The maximum FEs in this problem is considered as 

500. Table 21compares the statistical resultsof this 

problem over 25 runs obtained by CGO, WCA, TLBO, 

and C-ITGO (constrained Iterative Topographical Global 

Optimization) and the proposed algorithms. The best 

fitness value obtained is 𝑓(𝑥) =0.235242458 kgat 𝑥 =(70, 

90, 1, 1000, 2) by all the proposed algorithms. The results 

obtained by WCA, TLBO, and C-ITGO are inferior. The 

Chaotic Rao2 algorithm requires the minimum FEs to 

reach an optimal solution. 

Table 18. Statistical results comparison for a hydrostatic thrust bearing design problem 

Algorithm B M W SD MFE NP,ES/CS1 

TLBOa 1625.44276 1797.70798 2096.8012 1.900E-01 NA 50 

AOSb* 1621.926212 1752.413561 1831.449755 2.362E+01 NA NA 

Rao1 1625.143383 1643.604394 1808.117508 3.670E+01 23984 10 

Rao2 1625.346729 1815.285715 3386.590418 4.763E+02 21576 10 

Rao3 1625.221851 1730.441329 3388.349231 3.491E+02 21469 10 

SAMPE Rao1 1625.031214 1840.052283 3385.845191 4.331E+02 22935 10,2 

SAMPE Rao2 1625.089866 1744.303738 3386.979117 3.741E+02 22990 10,2 

SAMPE Rao3 1625.084662 1744.362308 3385.814478 3.502E+02 22386 10,2 

Chaotic Rao1 1625.10655 1637.083563 1692.563375 1.974E+01 23530 10,0.3 

Chaotic Rao2 1625.087311 1836.948829 3386.439864 5.049E+02 22797 10,0.3 

Chaotic Rao3 1625.171166 1949.270479 3385.588751 6.433E+02 22051 10,0.4 

* Infeasible solution due to violation of a constraint; a Results are taken from [13];bResults are taken from [16] 

Table 19. Comparison of best fitness value for a hydrostatic thrust bearing design problem 

Algorithm GASOa GeneASa ABCa TLBOa AOSb* Present study 

Best result 1950.286 2161.4215 1625.44276 1625.44276 1621.9262 1625.031214 
a Results are taken from [13];bResults are taken from [16]; *Infeasible solution due to violation of a constraint 

Table 20. Statistical results comparison for a welded beam design problem 

Algorithm B M W SD MFE NP,ES/CS1 

CDE a 1.733461 1.768158 1.824105 2.219E-02 NA NA 

WCA a 1.724856 1.726427 1.744697 4.290e−03 NA NA 

IAPSO a 1.724852 1.724853 1.724862 2.020e−06 NA 50 

STA a* 1.6956397 1.6956397 1.7530472 1.830E−02 NA 30 

CGO a* 1.670335792 1.670378098 1.670902785 9.300E−05 NA NA 

Rao1 1.724852309 1.724852309 1.724852309 0.000E+00 14631 10 

Rao2 1.724852309 1.724852309 1.724852309 0.000E+00 14888 20 

Rao3 1.724852309 1.724852309 1.724852309 0.000E+00 14844 20 

SAMPE Rao1 1.724852309 1.724852309 1.724852309 0.000E+00 10260 15,2 

SAMPE Rao2 1.724852309 1.724852309 1.724852309 0.000E+00 14171 20,2 

SAMPE Rao3 1.724852309 1.724852309 1.724852309 0.000E+00 14477 20,2 

Chaotic Rao1 1.724852309 1.724852309 1.724852309 0.000E+00 6650 10,0.2 

Chaotic Rao2 1.724852309 1.724852309 1.724852309 0.000E+00 14881 20,0.6 

Chaotic Rao3 1.724852309 1.724852309 1.724852309 0.000E+00 14821 20,0.6 
a Results are taken from [22]; *Infeasible solution due to violation of constraints. 

Table 21. Statistical resultscomparison for a multiple disk clutch brake design problem 

Algorithm B M W SD MFE NP,ES/CS1 

WCA a 0.313656 0.313656 0.313656 1.690E−16 NA NA 

TLBO a 0.313657 0.3271662 0.392071 6.700E-01 NA 20 

C-ITGO a 0.313656 0.313656 0.313656 1.130E−16 NA 20 

CGO a 0.235242458 0.235242458 0.23524246 1.950E−10 NA NA 

Rao1 0.235242458 0.235242458 0.235242458 0.000E+00 132.0 10 

Rao2 0.235242458 0.235242458 0.235242458 0.000E+00 119.0 20 

Rao3 0.235242458 0.235242458 0.235242458 0.000E+00 123.0 20 

SAMPE Rao1 0.235242458 0.235242458 0.235242458 0.000E+00 128.0 15,4 

SAMPE Rao2 0.235242458 0.235242458 0.235242458 0.000E+00 113.0 15,2 

SAMPE Rao3 0.235242458 0.235242458 0.235242458 0.000E+00 99.0 10,2 

Chaotic Rao1 0.235242458 0.235242458 0.235242458 0.000E+00 113.0 10,0.2 

Chaotic Rao2 0.235242458 0.235242458 0.235242458 0.000E+00 93.0 15,0.2 

Chaotic Rao3 0.235242458 0.235242458 0.235242458 0.000E+00 98.0 15,0.2 
a Results are taken from [22] 
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6. Conclusions 

The Self-adaptive Multi-population Elitist (SAMPE) 

Rao algorithms and Chaotic Rao algorithms are proposed 

in the present work. These algorithms are based on the 

recently developed Rao algorithms. The SAMPE Rao 

algorithms increase the exploration and exploitation rate of 

the search process in finding the optimal solution. The 

Chaotic Rao algorithms help to find the optimal solution 

without getting stuck at the local optimum. 25 

unconstrained benchmark functions and 15 constrained 

mechanical engineering design optimization problems are 

solved using the proposed algorithms to test their 

performance. The Friedman rank test is used to validate 

the proposed algorithms' superior performance. The 

proposed algorithms are ranked according to their 

performance in the Friedman rank test; the chaotic Rao1 

algorithm is ranked first. The best fitness value and the 

statistical results achieved by the proposed algorithms and 

previously reported results using other advanced 

optimization algorithms for engineering optimization 

problems are compared. This comparison shows that the 

proposed algorithms effectively solve most of the 

benchmark problems and the constrained engineering 

design problems. In this paper, design optimization 

problems of mechanical engineering components are 

considered but the proposed algorithms can also be applied 

to more complex design optimization problems. The 

proposed algorithms can also be used to solve multi-

objective optimization problems. 
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Appendix A: 

Table A.1 Unconstrained benchmark functions considered[20] 

No. Function 
Formulation D Search 

range 

C 

f1 Sphere 

𝑓1(𝑥) =∑𝑥𝑖
2

𝐷

𝑖=1

 

30 [-100, 

100]  

US 

f2 SumSquares 

𝑓2(𝑥) =∑𝑖𝑥𝑖
2

𝐷

𝑖=1

 

30 [-10, 10] US 

f3 Beale 𝑓3(𝑥) = (2.25 − 𝑥1 − 𝑥1𝑥2
2)2 + (1.5 − 𝑥1 + 𝑥1𝑥2)

2 + (2.625 − 𝑥1
+ 𝑥1𝑥2

3)2 

5 [-4.5, 4.5] UN 

f4 Easom 𝑓4(𝑥) = −𝑐𝑜𝑠(𝑥1)𝑐𝑜𝑠(𝑥2)𝑒𝑥𝑝(−(𝑥1 − 𝜋)
2 − (𝑥2 − 𝜋)

2) 2 [-100, 

100]  

UN 

f5 Matyas 𝑓5(𝑥) = 0.26(𝑥1
2 + 𝑥2

2) − 0.48𝑥1𝑥2 2 [-10, 10] UN 

f6 Colville  𝑓6(𝑥) = 100(𝑥1
2 − 𝑥2)

2 + (𝑥3 − 1)
2 + (𝑥1 − 1)

2 + 90(𝑥3
2 − 𝑥4)

2 
+19.8(𝑥2 − 1)(𝑥4 − 1) + 10.1((𝑥2 − 1)

2 + (𝑥4 − 1)
2) 

4 [-10, 10] UN 

f7 Trid 6 

𝑓7(𝑥) =∑(𝑥𝑖 − 1)
2 −∑𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2

𝐷

𝑖=1

 

6 [-D2 , 

D2 ]  

UN 

f8 Trid 10 

𝑓8(𝑥) =∑(𝑥𝑖 − 1)
2 −∑𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2

𝐷

𝑖=1

 

10 [-D2 , 

D2 ]  

UN 

f9 Zakharov 

𝑓9(𝑥) =∑𝑥𝑖
2 +

𝐷

𝑖=1

(∑0.5𝑖𝑥1

𝐷

𝑖=1

)

2

+ (∑0.5𝑖𝑥1

𝐷

𝑖=1

)

4

 

10 [-5, 10] UN 

f10 Schwefel 1.2 

𝑓10(𝑥) =∑(∑𝑥𝑗
2

𝑖

𝑗=1

)

2
𝐷

𝑖=1

 

30 [-100, 

100]  

UN 

f11 Rosenbrock 

𝑓11(𝑥) =∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝐷

𝑖=1

 

30 [-30, 30] UN 

f12 Dixon-Price 

𝑓12(𝑥) = (1 − 𝑥1)
2 +∑𝑖(𝑥𝑖−1 − 2𝑥𝑖

2)2
𝐷

𝑖=2

 

30 [-10, 10]  UN 

f13 Branin  
𝑓13(𝑥) = (𝑥2 −

5.1𝑥1
2

4𝜋2
+

5𝑥1
𝜋 − 6

)

2

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠(𝑥1) + 10 

2 [-5, 10] 

[0, 15] 

MS 

f14 Bohachevsky 

1  
𝑓14(𝑥) = 𝑥1

2 + 𝑥2
2 − 0.3𝑐𝑜𝑠(3𝜋𝑥1) − 0.4𝑐𝑜𝑠(4𝜋𝑥2) + 0.7 2 [-100, 

100]  

MS 

f15 Bohachevsky 

2 
𝑓15(𝑥) = 𝑥1

2 + 2𝑥2
2 − 0.3𝑐𝑜𝑠((3𝜋𝑥1)(4𝜋𝑥2)) + 0.3 2 [-100, 

100]  

MN 

f16 Bohachevsky 

3  
𝑓16(𝑥) = 𝑥1

2 + 2𝑥2
2 − 0.3𝑐𝑜𝑠(3𝜋𝑥1 + 4𝜋𝑥2) + 0.3 2 [-100, 

100]  

MN 

f17 Booth 𝑓17(𝑥) = (𝑥1 − 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2 2 [-10, 10] MS 
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f18 Michalewicz 2 

𝑓18(𝑥) = −∑𝑠𝑖𝑛 𝑥1 (𝑠𝑖𝑛 (
𝑖𝑥𝑖

2

𝜋
))

𝐷

𝑖=1

20

 

2 [0, π]  MS 

f19 Michalewicz 5 

𝑓19(𝑥) = −∑𝑠𝑖𝑛 𝑥1 (𝑠𝑖𝑛 (
𝑖𝑥𝑖

2

𝜋
))

𝐷

𝑖=1

20

 

5 [0, π]  MS 

f20 GoldStein-

Price 
𝑓20(𝑥) = [1 + (19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)(𝑥1 + 𝑥2

+ 1)2] 
[30 + (2𝑥1 − 3𝑥2)

2(18 − 32𝑥1 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)] 

2 [-2, 2] MN 

f21 Perm 

𝑓21(𝑥) = ∑ [∑(𝑖𝑘 + 𝛽) ((
𝑥𝑖
𝑖
)
𝑘

− 1)

𝐷

𝑖=1

]

2𝐷

𝑘=1

 

4 [-D, D]  MN 

f22 Ackley 

𝑓22(𝑥) = −20𝑒𝑥𝑝

(

 −0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 − 𝑒𝑥𝑝(
1

𝐷
∑𝑐𝑜𝑠 2𝜋𝑥𝑖

𝐷

𝑖=1

) + 20

+ 𝑒 

30 [-32, 32]  MN 

f23 Foxholes  

𝑓23(𝑥) = [
1

500
+∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1

25

𝑗=1

]

−1

 

2 [-65.536, 

65.536] 

MS 

f24 Hartman 3 

𝑓24(𝑥) = −∑𝑐𝑖 𝑒𝑥𝑝 [−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

]

4

𝑖=1

 

3 [0, 1]  MN 

f25 Penalized 2 

𝑓25(𝑥) = 0.1 [𝑠𝑖𝑛
2(𝜋𝑥1) + ∑(𝑥𝑖 − 1)

2{1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)}

𝐷−1

𝑖=1

+ (𝑥𝐷 − 1)
2 + (1 + 𝑠𝑖𝑛2(2𝜋𝑥𝐷))]

+∑𝑢(𝑥𝑖 , 5,100,4)

𝐷

𝑖=1

 

 

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) =

{
 
 

 
 
𝑘(𝑥𝑖 − 𝑎)

𝑚 ,     𝑥𝑖 > 𝑎

0,                  −𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚,   𝑥𝑖 < −𝑎

 

30 [-50, 50]  MN 

D: Dimension, C: Characteristics, U: Unimodal, M: Multimodal, S: Separable, N: Non-separable. 
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Appendix B: Mathematical formulations of the design optimization problems considered [16] 

Problem 1: Planetary gear train:  

Design variables:  

𝑥 = [𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5, 𝑍6, 𝑍𝑝, 𝑚1, 𝑚2] B.1 

Objective function:  

Minimize,  

𝑓(𝑥) = 𝑚𝑎𝑥 | 𝑖𝑘 − 𝑖0𝑘|, 𝑘 = {1,2, 𝑅} B.2 

𝑖1 =
𝑍6
𝑍4
, 𝑖01 = 3.11, 𝑖2 =

𝑍6(𝑍1𝑍3 + 𝑍2𝑍4)

𝑍1𝑍3(𝑍6 − 𝑍4)
, 𝑖02 = 1.84, 𝑖𝑅 = −

𝑍2𝑍6
𝑍1𝑍3

, 𝑖0𝑅 = −3.11 B.3 

Design constraints:  

𝐶1(𝑥) = Dmax −𝑚3(𝑍6+2.5) ≥ 0 B.4 

𝐶2(𝑥) = Dmax −𝑚1(𝑍1+𝑍2)-m1(𝑍2+2) ≥ 0 B.5 

𝐶3(𝑥) = Dmax −𝑚2(𝑍4+Z5)-m2(𝑍5+2) ≥ 0 B.6 

𝐶4(𝑥) =m1+m2 − |𝑚1(𝑍1+𝑍2)-m2(𝑍6-𝑍3)| ≥ 0 B.7 

𝐶5(𝑥) = 2+𝛿22+𝑍2 − (𝑍1+𝑍2)sin(𝜋/𝑍𝑝) ≥ 0 B.8 

𝐶6(𝑥) = 𝑍3+2+𝛿33 − (𝑍6-𝑍3)sin(𝜋/𝑍𝑝) ≥ 0 B.9 

𝐶8(𝑥) = (𝑍3 + 𝑍5 + 2 + 𝛿35)
2 − (𝑍6 − 𝑍3)

2 − (𝑍4 + 𝑍5)
2 + 2(𝑍6 − 𝑍3)(𝑍4 + 𝑍5)𝑐𝑜𝑠(2𝜋/𝑍𝑝 − 𝛽) ≥ 0 B.10 

Where,  

𝛽 =
𝑐𝑜𝑠−1((𝑍6−𝑍3)

2+(𝑍4+𝑍5)
2−(𝑍3+𝑍5)

2)

2(𝑍6−𝑍3)(𝑍4+𝑍5)
 B.11 

𝐶9(𝑥) = 4+2𝛿34-𝑍6+2𝑍3+𝑍4 ≥ 0 B.12 

𝐶10(𝑥) = 4+2𝛿56-𝑍6+𝑍4+2𝑍5 ≥ 0 B.13 

ℎ(𝑥) =
𝑍6 − 𝑍4
𝑍𝑝

= 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
B.14 

Where,  

𝑍𝑝 = (3,4,5), 𝑚1,𝑚2 = (1.75,2,2.25,2.5,2.75,3)𝑚𝑚 B.15 

17 ≤  𝑍1  ≤  96, 14 ≤  𝑍2 ≤  54, 14 ≤  𝑍3  ≤  51, 17 ≤  𝑍4  ≤  46, 14 ≤  𝑍5  ≤  51, 48 ≤  𝑍6  ≤  124, 

𝑍𝑖  =  𝑖𝑛𝑡𝑒𝑔𝑒𝑟,    𝑖 = 1,2, …6 

B.16 

𝐷max=220 mm, 𝛿22=0.5, 𝛿33=0.5, 𝛿55=0.5,𝛿35=0.5, 𝛿56=0.5, 𝛿34=0.5  

  

Problem 2:  Step-cone pulley  

Design variables: 

𝑥 = [𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑤]         
B.17 

Objective function:  

Minimize,𝑓(𝑥) =
𝜋

4
𝜌𝑤 {𝑑1

2 [1 + (
𝑁1

𝑁
)
2
] + 𝑑2

2 [1 + (
𝑁2

𝑁
)
2
] + 𝑑3

2 [1 + (
𝑁3

𝑁
)
2
] + 𝑑4

2 [1 + (
𝑁4

𝑁
)
2
]}  

 B.18 

Design constraints:  

𝐶1(𝑥) = 𝑐2 − 𝑐1 = 0    

 

B.19 

𝐶2(𝑥) = 𝑐3 − 𝑐1 = 0     

 

B.20 

𝐶3(𝑥) = 𝑐4 − 𝑐1 = 0     

 

B.21 

𝐶4,5,6,7(𝑥) = 2 − 𝑅𝑖 ≤ 0    

 

B.22 

𝐶8,9,10,11(𝑥) = (0.75 × 745.6998) − 𝑃𝑖 ≤ 0   

 

B.23 

Whereci: belt length,Ni: Speed to be achieved 
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𝑐𝑖 =
𝜋𝑑𝑖

2
(
𝑁𝑖

𝑁
+ 1) +

(
𝑁𝑖
𝑁
−1)

2
𝑑𝑖
2

4𝑎
+ 2𝑎  B.24 

Ri: tension ratio   

𝑅𝑖 = 𝑒𝑥𝑝 {𝜇 [𝜋 − 2 𝑠𝑖𝑛
−1 {

𝑑𝑖

2𝑎
(
𝑁𝑖

𝑁
− 1)}]}   B.25 

Pi: power transmitted at each step  

𝑃𝑖 = 𝑠𝑡𝑤 [1 − 𝑒𝑥𝑝 {−𝜇 [𝜋 − 2 𝑠𝑖𝑛
−1 {

𝑑𝑖

2𝑎
(
𝑁𝑖

𝑁
− 1)}]}] × (

𝜋𝑑𝑖𝑁𝑖

60
)  B.26 

𝜌 = 7200𝑘𝑔/𝑚3, 𝜇 = 0.35, 𝑎 = 3 𝑚, 𝑡 = 8 𝑚𝑚, 𝑠 = 1.75𝑀𝑃𝑎, 

16 ≤ 𝑤(𝑚𝑚) ≤ 100, 40 ≤ 𝑑𝑖(𝑚𝑚) ≤ 100,  i=1, 2, 3, 4 

𝑁 = 350 𝑟𝑝𝑚, 𝑁1 = 750 𝑟𝑝𝑚, 𝑁2 = 450 𝑟𝑝𝑚,𝑁3 = 250 𝑟𝑝𝑚, 𝑁4 = 150 𝑟𝑝𝑚  

B.27 

  

Problem 3: Hydrostatic thrust bearing:  

Design variables: 

𝑥 = [𝑅, 𝑅0, 𝑄, 𝜇] 
B.28 

Minimize,𝑓(𝑥) =
1

12
(
𝑄𝑃𝑜

0.7
+ 𝐸𝑓) B.29 

Design constraints:  

𝐶1(𝑥) = 𝑊𝑠 −𝑊 ≤ 0 B.30 

𝐶2(𝑥) = 𝑃𝑜 − 𝑃𝑚𝑎𝑥 ≤ 0 B.31 

𝐶3(𝑥) = 𝛥𝑇𝑚𝑎𝑥 − ∆𝑇 ≤ 0 B.32 

𝐶4(𝑥) = ℎ𝑚𝑖𝑛 − ℎ ≤ 0 B.33 

𝐶5(𝑥) = 𝑅0 − 𝑅 ≤ 0 B.34 

𝐶6(𝑥) = (
𝛾

𝑔𝑃𝑜
) (

𝑄

2𝜋𝑅ℎ
)
2

− 0.001 ≤ 0 B.35 

𝐶7(𝑥) = (
𝑊

𝜋(𝑅2 − 𝑅0
2)
) − 5000 ≤ 0 B.36 

Where,  

𝛾= 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑜𝑖𝑙 = 0.0307 
𝑙𝑏

𝑖𝑛3
,  

C=𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑜𝑓 𝑜𝑖𝑙 = 0.5 BTU/lb
𝑜
F, n=-3.55; C1=10.04, 𝑊𝑠=100982.74 lb 

B.37 

𝑃max=1000 psi, Δ𝑇max=50𝑜F, hmin=0.001 in, g=386.4 in/s2, N=750 rpm B.38 

P= 
(log

10
(log

10
(8.122× 106𝜇+0.8)))-c1

𝑛
 

B.39 

𝛥𝑇 = 2((10𝑃) − 560) B.40 

𝐸𝑓= 9336Q𝛾𝐶𝛥𝑇 B.41 

ℎ = (
2𝜋𝑁

60
)
2

(
2𝜋𝜇

𝐸𝑓
)(
𝑅4 − 𝑅0

4

4
) B.42 

𝑃𝑜 = (
6𝜇𝑄

𝜋ℎ3
) 𝑙𝑛 (

𝑅

𝑅0
) B.43 

𝑊 = (
𝜋𝑃𝑜

2
)(

𝑅2 − 𝑅0
2

𝑙𝑛( 𝑅/𝑅0)
) B.44 

1 ≤ 𝑅, 𝑅0(𝑖𝑛), 𝑄 (𝑖𝑛
3/𝑠) ≤ 16,  10−1 ≤ 𝜇 ≤ 16 × 10−6 B.45 

  

Problem 4: Four stage gearbox  
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Design variables:  

𝑥 = [𝑁p1,Ng1,Np2,Ng2,Np3,Ng3,Np4,Ng4,b1,b2,b3,b4, 𝑥p1, 𝑥g1, 𝑥g2 , 𝑥g3, 𝑥g4,y
p1

,y
g1

,y
g2

,y
g3

,y
g4
] 

B.46 

Objective function:  

Minimize,𝑓(𝑥) =
𝜋

1000
[
𝑏1𝑐1

2(𝑁𝑝1
2+𝑁𝑔1

2)

(𝑁𝑝1+𝑁𝑔1)
2 +

𝑏2𝑐2
2(𝑁𝑝2

2+𝑁𝑔2
2)

(𝑁𝑝2+𝑁𝑔2)
2 +

𝑏3𝑐3
2(𝑁𝑝3

2+𝑁𝑔3
2)

(𝑁𝑝3+𝑁𝑔3)
2 +

𝑏4𝑐4
2(𝑁𝑝4

2+𝑁𝑔4
2)

(𝑁𝑝4+𝑁𝑔4)
2 ] B.47 

Design constraints:  

𝐶1(𝑥)  =  (
366000

𝜋𝜔1
 +  

2𝑐1𝑁𝑝1

𝑁𝑔1 + 𝑁𝑝1
) (
(𝑁𝑝1 + 𝑁𝑔1)

2

 4𝑏1𝑐1
2𝑁𝑝1

) ≤
𝜎𝑁𝐽𝑅

0.0167𝑊𝐾𝑜𝐾𝑚
 B.48 

𝐶2(𝑥)  =  (
366000𝑁𝑔1

𝜋𝜔1𝑁𝑝1
 +  

2𝑐2𝑁𝑝2

𝑁𝑔2 +𝑁𝑝2
)(
(𝑁𝑝2 + 𝑁𝑔2)

2

 4𝑏2𝑐2
2𝑁𝑝2

) ≤
𝜎𝑁𝐽𝑅

0.0167𝑊𝐾𝑜𝐾𝑚
 B.49 

𝐶3(𝑥)  =  (
366000𝑁𝑔1𝑁𝑔2

𝜋𝜔1𝑁𝑝1𝑁𝑝2
 +  

2𝑐3𝑁𝑝3

𝑁𝑔3 + 𝑁𝑝3
) (
(𝑁𝑝3 + 𝑁𝑔3)

2

 4𝑏3𝑐3
2𝑁𝑝3

) ≤
𝜎𝑁𝐽𝑅

0.0167𝑊𝐾𝑜𝐾𝑚
 B.50 

𝐶4(𝑥)  =  (
366000𝑁𝑔1𝑁𝑔2𝑁𝑔3

𝜋𝜔1𝑁𝑝1𝑁𝑝2𝑁𝑝3
 +  

2𝑐4𝑁𝑝4

𝑁𝑔4 + 𝑁𝑝4
) (
(𝑁𝑝4 +𝑁𝑔4)

2

 4𝑏4𝑐4
2𝑁𝑝4

) ≤
𝜎𝑁𝐽𝑅

0.0167𝑊𝐾𝑜𝐾𝑚
 B.51 

𝐶5(𝑥) = (
366000

𝜋𝜔1
+

2𝑐1𝑁𝑝1

𝑁𝑝1 + 𝑁𝑔1
)(

(𝑁𝑝1 +𝑁𝑔1)
3

4𝑏1𝑐1𝑁𝑔1𝑁𝑝1
2) ≤ (

𝜎𝐻
𝐶𝑝
)

2

(
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

0.0334𝑊𝐾𝑜𝐾𝑚
) B.52 

𝐶6(𝑥) = (
366000𝑁𝑔1

𝜋𝜔1𝑁𝑝1
+

2𝑐2𝑁𝑝2

𝑁𝑝2 + 𝑁𝑔2
)(

(𝑁𝑝2 + 𝑁𝑔2)
3

4𝑏2𝑐2𝑁𝑔2𝑁𝑝2
2) ≤ (

𝜎𝐻
𝐶𝑝
)

2

(
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

0.0334𝑊𝐾𝑜𝐾𝑚
) B.53 

𝐶7(𝑥) = (
366000𝑁𝑔1𝑁𝑔2

𝜋𝜔1𝑁𝑝1𝑁𝑝2
+

2𝑐3𝑁𝑝3

𝑁𝑝3 + 𝑁𝑔3
)(

(𝑁𝑝3 +𝑁𝑔3)
3

4𝑏3𝑐3𝑁𝑔3𝑁𝑝3
2) ≤ (

𝜎𝐻
𝐶𝑝
)

2

(
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

0.0334𝑊𝐾𝑜𝐾𝑚
) B.54 

𝐶8(𝑥) = (
366000𝑁𝑔1𝑁𝑔2𝑁𝑔3

𝜋𝜔1𝑁𝑝1𝑁𝑝2𝑁𝑝3
+

2𝑐4𝑁𝑝4

𝑁𝑝4 +𝑁𝑔4
) (

(𝑁𝑝4 + 𝑁𝑔4)
3

4𝑏4𝑐4𝑁𝑔4𝑁𝑝4
2) ≤ (

𝜎𝐻
𝐶𝑝
)

2

(
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

0.0334𝑊𝐾𝑜𝐾𝑚
) B.55 

𝐶9−12(𝑥) = 𝑁𝑝𝑖√
𝑠𝑖𝑛2𝜙

4
+

1

𝑁𝑝𝑖
+ (

1

𝑁𝑝𝑖
)

2

+𝑁𝑔𝑖√
𝑠𝑖𝑛2 𝜙

4
+

1

𝑁𝑔𝑖
+ (

1

𝑁𝑔𝑖
)

2

−
𝑠𝑖𝑛𝜙 (𝑁𝑝𝑖 +𝑁𝑔𝑖)

2

≥ 𝐶𝑅 𝑐𝑜𝑠 𝜙𝑚𝑖𝑛
 

B.56 

𝐶13−16(𝑥) = 𝑑𝑚𝑖𝑛 ≤
2𝑐𝑖𝑁𝑝𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
 B.57 

𝐶17−20(𝑥) = 𝑑𝑚𝑖𝑛 ≤
2𝑐𝑖𝑁𝑔𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
 B.58 

𝐶21(𝑥) = 𝑥𝑝1 + (
(𝑁𝑝1 + 2)𝑐1

𝑁𝑝1 + 𝑁𝑔1
) ≤ 𝐿𝑚𝑎𝑥 B.59 

𝐶22−24(𝑥) = [𝑥𝑔(𝑖−1) + (
(𝑁𝑝𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
)]
𝑖=2,3,4

≤ 𝐿𝑚𝑎𝑥 B.60 

𝐶25(𝑥) = −𝑥𝑝1 + (
(𝑁𝑝1 + 2)𝑐1

𝑁𝑝1 + 𝑁𝑔1
) ≤ 0 B.61 

𝐶26−28(𝑥) = [−𝑥𝑔(𝑖−1) + (
(𝑁𝑝𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
)]
𝑖=2,3,4

≤ 0 
B.62 

𝐶29(𝑥) = 𝑦𝑝1 + (
(𝑁𝑝1 + 2)𝑐1

𝑁𝑝1 + 𝑁𝑔1
) ≤ 𝐿𝑚𝑎𝑥 B.63 

𝐶30−32(𝑥) = [𝑦𝑔(𝑖−1) + (
(𝑁𝑝𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
)]
𝑖=2,3,4

≤ 𝐿𝑚𝑎𝑥 
B.64 

𝐶33(𝑥) = −𝑦𝑝1 + (
(𝑁𝑝1 + 2)𝑐1

𝑁𝑝1 + 𝑁𝑔1
) ≤ 0 B.65 
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𝐶34−36(𝑥) = [−𝑦𝑔(𝑖−1) + (
(𝑁𝑝𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
)]
𝑖=2,3,4

≤ 0 B.66 

𝐶37−40(𝑥) = [𝑥𝑔𝑖 + (
(𝑁𝑔𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 +𝑁𝑔𝑖
)]
𝑖=1,2,3,4

≤ 𝐿𝑚𝑎𝑥 
B.67 

𝐶41−44(𝑥) = −𝑥𝑔𝑖
+ (

(𝑁𝑔𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
) ≤ 0 B.68 

𝐶45−48(𝑥) = 𝑦𝑔𝑖
+ (

(𝑁𝑔𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 + 𝑁𝑔𝑖
) ≤ 𝐿𝑚𝑎𝑥 B.69 

𝐶49−52(𝑥) = −𝑦𝑔𝑖
+ (

(𝑁𝑔𝑖 + 2)𝑐𝑖

𝑁𝑝𝑖 +𝑁𝑔𝑖
) ≤ 0 B.70 

𝐶53−56(𝑥)  =  (0.945𝑐𝑖 − 𝑁𝑝𝑖 − 𝑁𝑔𝑖)(𝑏𝑖 − 5.715)(𝑏𝑖 − 8.255)(𝑏𝑖 − 12.70)(−1)  ≤  0 B.71 

𝐶57−60(𝑥)  =  (0.646𝑐𝑖 − 𝑁𝑝𝑖 − 𝑁𝑔𝑖)(𝑏𝑖 − 3.175)(𝑏𝑖 − 8.255)(𝑏𝑖 − 12.70)(+1)  ≤  0 B.72 

𝐶61−64(𝑥)  =  (0.504𝑐𝑖 − 𝑁𝑝𝑖 − 𝑁𝑔𝑖)(𝑏𝑖 − 3.175)(𝑏𝑖 − 5.715)(𝑏𝑖 − 12.70)(−1)  ≤  0 B.73 

𝐶65−68(𝑥)  =  (𝑐𝑖 − 𝑁𝑝𝑖 −𝑁𝑔𝑖)(𝑏𝑖 − 3.175)(𝑏𝑖 − 5.715)(𝑏𝑖 − 8.255)(+1)  ≤  0 B.74 

𝐶69−72(𝑥)  =  (𝑁𝑝𝑖 + 𝑁𝑔𝑖 − 1.812𝑐𝑖)(𝑏𝑖 − 5.715)(𝑏𝑖 − 8.255)(𝑏𝑖 − 12.70)(−1)  ≤  0 B.75 

𝐶73−76(𝑥)  =  (𝑁𝑝𝑖 +𝑁𝑔𝑖 − 0.945𝑐𝑖)(𝑏𝑖 − 3.175)(𝑏𝑖 − 8.255)(𝑏𝑖 − 12.70)(+1)  ≤  0 B.76 

𝐶77−80(𝑥)  =  (𝑁𝑝𝑖 +𝑁𝑔𝑖 − 0.646𝑐𝑖)(𝑏𝑖 − 3.175)(𝑏𝑖 − 5.715)(𝑏𝑖 − 12.70)(−1)  ≤  0 B.77 

𝐶81−84(𝑥)  =  (𝑁𝑝𝑖 +𝑁𝑔𝑖 − 0.504𝑐𝑖)(𝑏𝑖 − 3.175)(𝑏𝑖 − 5.715)(𝑏𝑖 − 8.255)(+1)  ≤  0 B.78 

𝐶85(𝑥) = 𝜔𝑚𝑖𝑛 ≤
𝜔1(𝑁𝑝1𝑁𝑝2𝑁𝑝3𝑁𝑝4)

𝑁𝑔1𝑁𝑔2𝑁𝑔3𝑁𝑔4
 B.79 

𝐶86(𝑥) =
𝜔1(𝑁𝑝1𝑁𝑝2𝑁𝑝3𝑁𝑝4)

𝑁𝑔1𝑁𝑔2𝑁𝑔3𝑁𝑔4
≤ 𝜔𝑚𝑎𝑥 B.80 

where,  

𝐶𝑅𝑚𝑖𝑛 = 1.4, 𝑑𝑚𝑖𝑛 = 25.4 𝑚𝑚,𝜙 = 20
𝑜,𝑊 = 55.9, 𝐽𝑅 = 0.2, 

𝐾𝑀 = 1.6,𝐾𝑜 = 1.5, 𝐿𝑚𝑎𝑥 = 127 𝑚𝑚, 
B.81 

 

𝜎𝐻 = 3290
𝑘𝑔

𝑐𝑚2 , 𝜎𝑁 = 2090
𝑘𝑔

𝑐𝑚2 , 𝜔1 = 5000 𝑟𝑜𝑚, 

𝜔𝑚𝑖𝑛 = 245 𝑟𝑝𝑚 ,𝜔𝑚𝑎𝑥 = 255 𝑟𝑝𝑚, 𝐶𝑝 = 464  

B.82 

𝑥𝑝1, 𝑦𝑝1, 𝑥𝑔𝑖 , 𝑦𝑔𝑖 = (12.7,25.4,38.1,50.8,63.5,76.2,88.9,101.6,114.3)𝑚𝑚 B.83 

𝑏𝑖 = (3.175, 5.715, 8.255, 12.7)𝑚𝑚 B.84 

7 ≤ 𝑁𝑝𝑖 , 𝑁𝑔𝑖 ≤ 76,𝑁𝑝𝑖 , 𝑁𝑔𝑖 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 B.85 

  

Problem 5: Rolling element bearing  

Design variables: 

{𝑥} = [𝐷𝑚, 𝐷𝑏 , 𝑓𝑖 , 𝑓𝑜 , 𝑍, 𝐾𝐷𝑚𝑎𝑥, 𝐾𝐷𝑚𝑖𝑛]   
B.86 

Objective function:  

Maximize,  

𝑓(𝑥) = {

𝑓𝑐𝑍
2/3𝐷𝑏

1.8             , 𝑖𝑓 𝐷𝑏 ≤ 25.4 𝑚𝑚

3.647𝑓𝑐𝑍
2/3𝐷𝑏

1.4     , 𝑖𝑓 𝐷𝑏 ≤ 25.4 𝑚𝑚

}   
B.87 

where  

𝑓𝑐 = 37.91 [1 + {1.04 (
1−𝛾

1+𝛾
)
1.72

(
𝑓𝑖(2𝑓𝑜−1)

𝑓𝑜(2𝑓𝑖−1)
)
0.41

}
10/3

]

−0.3

[
𝛾0.3(1−𝛾)1.39

(1+𝛾)1/3
] [

2𝑓𝑖

2𝑓𝑖−1
]
0.41

  B.88 
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𝛾 =
𝐷𝑏 𝑐𝑜𝑠 𝛼

𝐷𝑚
   (𝐻𝑒𝑟𝑒 𝛼 = 0)     B.89 

Design constraints:  

𝐶1(𝑥) =
𝜑0

2 𝑠𝑖𝑛−1(𝐷𝑏/𝐷𝑚)
+ 1 ≥ 𝑍 B.90 

 

𝐶2(𝑥) = 2𝐷𝑏 − (𝐷 − 𝑑)𝐾𝐷𝑚𝑖𝑛 ≥ 0 B.91 

𝐶3(𝑥) = (𝐷 − 𝑑)𝐾𝐷𝑚𝑎𝑥 − 2𝐷𝑏 ≥ 0   

 

B.92 

𝐶4(𝑥) = 𝛽𝑤 − 𝐷𝑏 ≥ 0   B.93 

𝐶5(𝑥) = 𝐷𝑚 − (𝐷 + 𝑑)(0.5 − 𝑒) ≥ 0  B.94 

𝐶6(𝑥) = (𝐷 + 𝑑)(0.5 + 𝑒) − 𝐷𝑚 ≥ 0   B.95 

𝐶7(𝑥) = 0.5(𝐷 − 𝐷𝑏 − 𝐷𝑚) − (𝜀 × 𝐷𝑏) ≥ 0   B.96 

𝐶8(𝑥) = 𝑓𝑖 − 0.515 ≥ 0   B.97 

𝐶9(𝑥) = 𝑓𝑜 − 0.515 ≥ 0     B.98 

where  

𝜑0 = 2𝜋 − 2 𝑐𝑜𝑠
−1 [

(
𝐷

2
−𝑇−𝐷𝑏)

2
−(

𝑑

2
+𝑇)

2
+𝑈2

2(
𝐷

2
−𝑇−𝐷𝑏)𝑈

]  B.99 

𝑇 =
𝐷−𝑑−2𝐷𝑏

4
, 𝑈 =

𝐷−𝑑

2
− 3𝑇    B.100 

𝐷 = 160 𝑚𝑚,𝑑 = 90 𝑚𝑚,   𝑤 = 30 𝑚𝑚,   
 

B.101 

0.15(𝐷 − 𝑑) ≤ 𝐷𝑏(𝑚𝑚) ≤ 0.45(𝐷 − 𝑑),   0.5(𝐷 + 𝑑) ≤ 𝐷𝑚(𝑚𝑚) ≤ 0.6(𝐷 + 𝑑), B.102 

0.515 ≤ 𝑓𝑜 ≤ 0.6,    0.515 ≤ 𝑓𝑖 ≤ 0.6,    4 ≤ 𝑍 ≤ 50, B.103 

0.4 ≤ 𝐾𝐷𝑚𝑖𝑛 ≤ 0.5,0.6 ≤ 𝐾𝐷𝑚𝑎𝑥 ≤ 0.7,0.3 ≤ 𝜀 ≤ 0.4,   B.104 

0.02 ≤ 𝑒 ≤ 0.1,0.6 ≤ 𝛽 ≤ 0.85    B.105 

  

Problem 6: Gas transmission compressor:  

Design variables:  

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] B.106 

Objective function:  

Minimize, 𝑓(𝑥) = 8.61 × 105 × 𝑥1
1/2𝑥2𝑥3

−2/3𝑥4
−1/2 + 3.69 × 104 × 𝑥3 + 7.72 × 10

8 × 𝑥1
−1𝑥2

0.219 −
765.43 × 106 × 𝑥1 B.107 

Design constraints:  

𝐶1(𝑥) = 𝑥4𝑥2
−2 + 𝑥2

−2 − 1 ≤ 0 B.108 

20 ≤  𝑥1 (𝑚𝑖𝑙𝑒𝑠) ≤  50, 1 ≤  𝑥2  ≤  10, 20 ≤  𝑥3 (𝑖𝑛) ≤  50, 0.1 ≤  𝑥4 (𝑓𝑡
3/𝑠) ≤  60 B.109 

  

Problem 7: Tension/Compression spring Case-1  

Design variables:  

𝑥 = [𝑥1, 𝑥2, 𝑥3]=[d,D,N] B.110 

Objective function:  

Minimize 𝑓(𝑥) = (𝑥3 + 2)𝑥2𝑥1
2 B.111 

Design constraints:  

𝐶1(𝑥) = 71785𝑥1
4 − 𝑥2

3𝑥3 ≤ 0 B.112 

𝐶2(𝑥) = −
4𝑥2

2 − 𝑥1𝑥2
12566(𝑥2𝑥1

3 − 𝑥1
4)
−

1

5108𝑥1
2 − 1

≥ 0 B.113 

 

𝐶3(𝑥) = 140.45𝑥1 − 𝑥2
3𝑥3 ≥ 0 B.114 
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𝐶4(𝑥) = 𝑥1 + 𝑥2 − 1.5 ≤ 0 B.115 

0.05 ≤ 𝑥1(𝑖𝑛) ≤ 2,0.25 ≤ 𝑥2(𝑖𝑛) ≤ 1.3,2 ≤ 𝑥3 ≤ 15 B.116 

  

Problem 8: Tension/Compression spring Case-2  

Design variables:  

𝑥 = [𝑥1, 𝑥2, 𝑥3]=[d,D,N] B.117 

Objective function:  

Minimize 𝑓(𝑥) =
𝜋2𝑥2𝑥1

2(𝑥3+2)

4
 B.118 

Design constraints:  

𝐶1(𝑥) =
8𝑐𝑓𝐹𝑚𝑎𝑥𝑥2

(𝜋𝑥1
3) − 𝑆

≤ 0 B.119 

𝐶2(𝑥) = 𝑙𝑓 − 𝑙𝑚𝑎𝑥 ≤ 0 B.120 

𝐶3(𝑥) = 𝑑𝑚𝑖𝑛 − 𝑥1 ≤ 0 B.121 

𝐶4(𝑥) = 𝑥2 − 𝐷𝑚𝑎𝑥 ≤ 0 B.122 

𝐶5(𝑥) = 3 −
𝑥2
𝑥1
≤ 0 B.123 

𝐶6(𝑥) = 𝜎𝑝 − 𝜎𝑝𝑚 ≤ 0 B.124 

𝐶7(𝑥) = 𝜎𝑝 +
𝐹𝑚𝑎𝑥 − 𝐹𝑝

𝑘
+ 1.05(𝑥3 + 2)𝑥1 − 𝑙𝑓 ≤ 0 B.125 

𝐶8(𝑥) = 𝜎𝑤 −
𝐹𝑚𝑎𝑥 − 𝐹𝑝

𝑘
≤ 0 B.126 

Where,  

𝐹𝑚𝑎𝑥 = 1000 𝑙𝑏, 𝑙𝑚𝑎𝑥 = 14 𝑖𝑛, 𝑑𝑚𝑖𝑛 = 0.2 𝑖𝑛, 𝑆 = 189000 𝑝𝑠𝑖, 𝐷𝑚𝑎𝑥 = 3 𝑖𝑛, 𝐹𝑝 = 300 𝑙𝑏, 𝜎𝑝𝑚 = 6 𝑖𝑛, 

𝜎𝑤 = 1.25 𝑖𝑛, 𝐺 = 11.5 × 10
6 𝑝𝑠𝑖 

B.127 

 

𝑐𝑓 = 
4(𝑥2/𝑥1)-1

4(𝑥2/𝑥1)-4
+
(0.615𝑥1)

𝑥2
 B.128 

𝑘 =
𝐺𝑥1

4

8𝑥3𝑥2
2
, 𝜎𝑝 =

𝐹𝑝

𝑘
 B.129 

𝑙𝑓 = 
Fmax

𝑘
+1.05(𝑥3+2)𝑥1 B.130 

0.009 ≤ 𝑥1(𝑖𝑛) ≤ 0.5, 0.6 ≤ 𝑥2(𝑖𝑛) ≤ 3, 1 ≤ 𝑥2 ≤ 70 B.131 

  

Problem 9:  Gear train  

Design variables: 

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑛𝐴, 𝑛𝐵, 𝑛𝐶 , 𝑛𝐷]  
B.132 

Objective function:  

Minimize      𝑓(𝑥) = (
1

6.931
−
𝑥3𝑥2

𝑥1𝑥4
)
2
  B.133 

12 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60  B.134 

 

Problem 10: Piston lever: 
 

Design variables:  

𝑥 = [𝐻, 𝐵, 𝐷, 𝑋] B.135 

Objective function:  
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Minimize,  

𝑓(𝑥) =
𝜋𝐷2(𝐿2 − 𝐿1)

4
 

B.136 

Design constraints:  

𝐶1(𝑥)=QLcos(45)-RF≤0 B.137 

𝐶2(𝑥)=Q(L-X)-Mmax ≤ 0 B.138 

𝐶3(𝑥)=1.2(𝐿2-L1)-L1 ≤ 0 B.139 

𝐶4(𝑥) =
𝐷

2
-B ≤ 0 B.140 

Where,  

𝑅 =
| − 𝑋(𝑋𝑠𝑖𝑛(45) + 𝐻) + 𝐻(𝐵 − 𝑋𝑐𝑜𝑠(45))|

√(𝑋 − 𝐵)2 + 𝐻2
 

B.141 

𝑃 = 1500 𝑝𝑠𝑖, 𝐹 =
𝜋𝑃𝐷2

4
; 𝐿1 = √(𝑋 − 𝐵)

2 + 𝐻2; 𝐿2 = √(𝑋 ∗ 𝑠𝑖𝑛𝑑(45) + 𝐻)
2 + (𝐵 − 𝑋 ∗ 𝑐𝑜𝑠𝑑(45))2 B.142 

𝐿 = 240 𝑖𝑛,𝑀𝑚𝑎𝑥 = 1.8 × 10
6 𝑙𝑏𝑠. 𝑖𝑛,  𝑄 = 10000 𝑙𝑏 B.143 

0.05 ≤ 𝐻,𝐵, 𝐷 (𝑖𝑛) ≤ 500,0.05 ≤ 𝑋 (𝑖𝑛) ≤ 120 B.144 

  

Problem 11: Corrugated bulkhead  

Design variables:  

𝑥 = [𝑤, ℎ, 𝑙, 𝑡] B.145 

Objective function:  

Minimize,  

𝑓(𝑥) =
5.885𝑡(𝑤 + 𝑙)

𝑤 + 𝑠𝑞𝑟𝑡(𝑙2 − ℎ2)
 

B.146 

Design constraints:  

𝐶1(𝑥) = −𝑡ℎ(0.4𝑤 + 𝑙/6) + 8.94(𝑤 + √𝑙
2 − ℎ2) ≤ 0 B.147 

𝐶2(𝑥) = −𝑡ℎ
2(0.2𝑤 + 𝑙/12) + 2.2(8.94(𝑤 + √𝑙2 − ℎ2))4/3 ≤ 0 B.148 

𝐶3(𝑥) = −𝑡 + 0.0156𝑤 + 0.15 ≤ 0 B.149 

𝐶4(𝑥) = −𝑡 + 0.0156𝑙 + 0.15 ≤ 0 B.150 

𝐶5(𝑥) = −𝑡 + 1.05 ≤ 0 B.151 

𝐶6(𝑥) = −𝑙+ℎ ≤ 0 B.152 

0 ≤ 𝑤, ℎ, 𝑙 (𝑐𝑚) ≤ 100, 0 ≤ 𝑡 (𝑐𝑚) ≤ 5 B.153 

 

Problem 12:  Speed reducer 
 

Design variables: 

𝑥 = [𝑏,𝑚, 𝑍, 𝑙1, 𝑙2, 𝑑1, 𝑑2]     
B.154 

Objective function:  

Minimize,  

𝑓(𝑥) = 0.7854𝑏𝑚2(3.3333𝑍2 + 14.9334𝑍 − 43.0934) − 1.508𝑏(𝑑1
2 + 𝑑2

2) + 7.4777(𝑑1
3 + 𝑑2

3)

+ 0.7854(𝑙1𝑑1
2 + 𝑙2𝑑2

2) B.155 

Design constraints:
  

𝐶1(𝑥) = 27 − 𝑏𝑚
2𝑍 ≤ 0   B.156 

𝐶2(𝑥) = 397.5 − 𝑏𝑚
2𝑍2 ≤ 0  

 B.157 
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𝐶3(𝑥) = 1.93𝑙1
3 −𝑚𝑍𝑑1

4 ≤ 0  
 B.158 

𝐶4(𝑥) = 1.93𝑙2
3 −𝑚𝑍𝑑2

4 ≤ 0  
 B.159 

𝐶5(𝑥) = √(745𝑙1/𝑚𝑍)
2 + (16.9 × 106) − 110𝑑1

3 ≤ 0  
 B.160 

𝐶6(𝑥) = √(745𝑙2/𝑚𝑍)
2 + (157.5 × 106) − 85𝑑2

3 ≤ 0 
 B.161 

𝐶7(𝑥) = 𝑚𝑍 − 40 ≤ 0    
 B.162 

𝐶8(𝑥) = 5𝑚 − 𝑏 ≤ 0   
 B.163 

𝐶9(𝑥) = 𝑏 − 12𝑚 ≤ 0  
 B.164 

𝐶10(𝑥) = 1.5𝑑1 − 𝑙1 + 1.9 ≤ 0   
 B.165 

𝐶11(𝑥) = 1.1𝑑2 − 𝑙2 + 1.9 ≤ 0  
 B.166 

2.6 ≤ 𝑏 ≤ 3.6,0.7 ≤ 𝑚 ≤ 0.8,17 ≤ 𝑍 ≤ 28,7.3 ≤ 𝑙1 ≤ 8.3, B.167 

7.8 ≤ 𝑙2 ≤ 8.3,2.9 ≤ 𝑑1 ≤ 3.9,5 ≤ 𝑑2 ≤ 5.5  
 B.168 

  

Problem13:  Pressure vessel  

Design variables: 

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿]  
B.169 

Objective function:  

Minimize       

𝑓(𝑥) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3  

B.170 

Design constraints:  

𝐶1(𝑥) = 𝑥1 − 0.0193𝑥3 ≥ 0  B.171 

𝐶2(𝑥) = 𝑥2 − 0.00954𝑥3 ≥ 0 B.172 

𝐶3(𝑥) = 𝜋𝑥3
2𝑥4 +

4

3
𝜋𝑥3

3 − 1296000 ≥ 0  B.173 

𝐶4(𝑥) = 240 − 𝑥4 ≥ 0    B.174 

𝑥1, 𝑥2 ∈ [0.0625,0.125, . . . . . . . ,1.1875,1.25] (𝑖𝑛) ,   10 ≤ 𝑥3, 𝑥4(𝑖𝑛) ≤ 200  B.175 

 

 
 

Problem 14:  Welded beam  

Design variables: 

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ℎ, 𝑙, 𝑡, 𝑏]  
B.176 

Objective function:  

Minimize  𝑓(�⃗�) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2)  

Design constraints:  

B.177 

𝐶1(𝑥) = 𝜏(𝑥)𝑚𝑎𝑥 − 𝜏(�̅�) ≥ 0 B.178 

𝐶2(𝑥) = 𝜎(𝑥)𝑚𝑎𝑥 − 𝜎(�̅�) ≥ 0 B.179 

𝐶3(𝑥) = 𝑃𝑐(𝑥) − 𝑃 ≥ 0 B.180 

𝐶4(𝑥) = 𝛿(𝑥)𝑚𝑎𝑥 − 𝛿(�̅�) ≥ 0 B.181 

𝐶5(𝑥) = 𝑥4 − 𝑥1 ≥ 0 B.182 

𝐶6(𝑥) = 𝑥1 − 0.125 ≥ 0 B.183 

𝐶7(𝑥) = 5.0 − 0.10471𝑥1
2 − 0.04811𝑥3𝑥4(14.0 + 𝑥2) ≥ 0 B.184 

0.1 ≤ 𝑥1 ≤ 2,0.1 ≤ 𝑥2 ≤ 10,0.1 ≤ 𝑥3 ≤ 10,0.1 ≤ 𝑥4 ≤ 2  B.185 

where,  
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𝜏(�⃗�) = √(𝜏′)2 + 2𝜏′𝜏"
𝑥2

2𝑅
+ (𝜏")2,      𝜏′ =

𝑃

√2𝑥1𝑥2
; 𝜏" =

𝑀𝑅

𝐽
 B.186 

𝑀 = 𝑃 (𝐿 +
𝑥2
2
) B.187 

𝑅 = √
𝑥2
2

4
+ (

𝑥1+𝑥3

2
)
2
    B.188 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2
2

12
+ (

𝑥1+𝑥3

2
)
2
]}   B.189 

𝜎(�⃗�) =
6𝑃𝐿

𝑥4𝑥3
2,     𝛿(�⃗�) =

4𝑃𝐿3

𝐸𝑥3
3𝑥4

 B.190 

𝑃𝑐(�⃗�) =
4.013𝐸√

𝑥3
2𝑥4
6

36

𝐿2
(1 −

𝑥3

2𝐿
√
𝐸

4𝐺
)  B.191 

𝑃 = 6000 𝑙𝑏, 𝐿 = 14 𝑖𝑛, 𝐸 = 30 × 106 𝑝𝑠𝑖, 𝐺 = 12 × 106 𝑝𝑠𝑖, B.192 

𝜎𝑚𝑎𝑥 = 30000 𝑝𝑠𝑖𝜏𝑚𝑎𝑥 = 13600 𝑝𝑠𝑖𝛿𝑚𝑎𝑥 = 0.25 𝑖𝑛 B.193 

  

Problem 15: Multiple disc clutch brake:  

Design variables:  

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5] = [𝑟𝑖 , 𝑟𝑜, 𝑡, 𝐹, 𝑍] B.194 

Objective function:  

Minimize  

𝑓(𝑥) = 𝜋(𝑥2
2 − 𝑥1

2)𝑥3(𝑥5 + 1)𝜌 
B.195 

Design constraints:  

𝐶1(𝑥) = Δr+𝑥1 − 𝑥2 ≤ 0 B.196 

𝐶2(𝑥) = -𝑙max + (𝑥5+1)(𝑥3 + 𝛿) ≤ 0 B.197 

𝐶3(𝑥) = P𝑟𝑧-Pmax ≤ 0     B.198 

𝐶4(𝑥) = Prz𝑣sr-vsrmax𝑃max ≤ 0 B.199 

𝐶5(𝑥) = 𝑣sr-vsrmax ≤ 0 B.200 

𝐶6(𝑥) = 𝑇 − 𝑇𝑚𝑎𝑥 ≤ 0 B.201 

𝐶7(𝑥) = sM𝑠-Mℎ ≤ 0 B.202 

𝐶7(𝑥) = -T ≤ 0 B.203 

Where,  

𝛥r=20 mm, lmax=30 mm, 𝜇=0.6, vsrmax=10000 mm/s, 𝛿=0.5 mm, s=1.5, B.204 

𝑇max=15s, N=250 rpm, I𝑧=55 kg.m2, M𝑠=40 Nm, M𝑓=3 Nm, Pmax=1 MPa, 𝜌=0.0000078 kg/mm3 B.205 

𝑀ℎ =
2

3
𝜇𝑥4𝑥5

𝑥2
3 − 𝑥1

3

𝑥2
2 − 𝑥1

2 B.206 

𝜔 =
𝜋𝑁

30
,    𝐴 = 𝜋(𝑥2

2 − 𝑥1
2),   𝑃rz =

𝑥4

𝐴
,     𝑅𝑠𝑟 =

2

3

𝑥2
3−𝑥1

3

𝑥2
2−𝑥1

2,     B.207 

𝑣sr =
𝜋𝑅sr𝑁

30
,    T=

𝐼𝑧𝜔

𝑀ℎ+M𝑓
 

B.208 

𝑥1 = (60, 61, 62, . . . , 80)𝑚𝑚,   𝑥2 = (90, 91, 92, . . . , 110)𝑚𝑚,  𝑥3 = (1, 1.5, 2, 2.5, 3)𝑁, B.209 

𝑥4 = (600, 610, 620, . . . , 1000)𝑁,    𝑥5 = (2, 3, 4, 5, . . . , 9) B.210 

 


