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Abstract 

In this paper, we propose a Cyber-Physical Quality System (CPQS) integrated framework that can predict, analyze, and 

validate the quality monitoring system in manufacturing with 95% accuracy in real-time using machine learning techniques. 

CPQS framework analyses real-time sensor networks and configures the importance of artificial intelligence-driven big data 

analytics for predicting the quality of cyber-physical production networks. Cyber-physical data like speed, feed, depth of cut, 

coolant temperature, vibrations, tangential cutting forces, and tool life for 400 parts were collected from the various sensors 

placed on Computerized Numerical Control (CNC) machines after doing modal analysis. Various machine learning 

techniques were used to predict the quality of the part wherein the inputs affecting it were predominately dominated by 

vibration and temperature.  

Extreme Gradient Boosting (XGB) machine learning techniques out of many could predict the quality of the part with 

96.2%. accuracy. The caveat for the present results is that it has been tried out only for Titanium Alloy parts and the tool 

wear has been approximated using Taylor’s equation which can be enhanced by using image processing. The model deployed 

in real-time could produce defect-free parts quickly. This could reduce the cost of quality by 80%, thereby increasing the 

production line's productivity, quality, and efficiency. 

© 2022 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

The prediction of the quality of a machined part, while 

it is being manufactured, saves unnecessary time and 

money spent on inspection in the Cyber-Physical Quality 

System (CPQS) [1-2]. The accurate prediction of the 

quality of a machined part, while it is being manufactured, 

prevents quality failures in real-time and maintains 

compliance. It optimizes material usage, quickly isolates 

defects, and increases contribution margins [3-4]. This will 

help manufacturing companies stay competitive because 

the part can be manufactured quickly, at low cost, and with 

high quality. This study deals with the implementation of 

CPQS in a real factory setting to produce maximum parts 

and predict the quality of manufacturing of a flange in a 

CNC milling machine using different machine learning 

techniques. [5]. Industry 4.0 envisions new technologies 

[6], like the Internet of Things (IoT), Cyber-Physical-

Systems (CPS), Big Data, High-Performance Computing 

(HPC), Edge Computing, and Cloud Computing for setting 

up a Digital Twin Shop-Floor that encompass an effective 

way to create the physical-virtual convergence of the real, 

virtual world and their connections. With the digital twin 

[7] serving as a digital controller of the real-world 

manufacturing system we can use applications powered by 

Artificial Intelligence (AI) [9] to understand the 

manufacturing parameters that affect quality. With AI 

technology becoming more mature and affordable, new 

applications have been introduced into production systems 

to support manufacturers in complex decision-making and 

business processes [10]. Machine Learning (ML), a subset 

of AI, focuses on extracting useful knowledge [11] into the 

bottleneck of the problem through the learning and training 

process with a large volume of both structured and 

unstructured data [12-14]. Some of the machine learning 

applications used in manufacturing process diagnosis 

involve Logistic Regression, K Nearest Neighbor’s 

(KNN), Support vector machine classifier (SVC), 

Gaussian Naïve Bayes (GNB), Decision Tree, Random 

Forest, Extreme Gradient Boosting (XGB), and Multi-

Layer Perceptron (MLP) techniques [15-16]. These help in 

optimizing the manufacturing process for better quality 

and cheaper costs. Cyber-physical systems are also widely 

used in the manufacturing and processing industry to 

monitor product quality in real time. Computer vision 

systems are used to control robots, CNC machines, 

conveyors, and other equipment in the autonomous 

production line to automatically detect anomalies during 

machining [17]. The various modeling techniques that 
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have been used include Petri Nets (PNs) which simulate 

various types of asynchronous and concurrent processes in 

an industrial production system [18]. Smart Partial Least 

Squares/ Statistical Package for Social Sciences 

(PLS/SPSS) techniques are used to identify the correlation 

functions between the input and output parameters and 

machine-learning techniques are used to identify the 

anomalies.  

1.1. Literature Survey 

Manufacturing quality control is the ability to measure 

parts and provide assurance that parts have been produced 

according to their specifications. This is achieved by 

inspecting all incoming raw materials and establishing 

inspection points along the manufacturing process, to 

ensure part quality and spot any quality variations before 

they have an impact on the dimensional accuracy and 

surface finish. Broadly all research papers written so far 

can be classified as either Theoretical, Practical, or 

Simulation type based on the parameters of dimensional 

quality, surface finish, or both. 

Table 1. Classification of papers 

Focus Area 

Dimensional Quality Surface finish Type of 

Research 

Theoretical 

[19], [29], [23], [24], 

[25],[27],[28] 

[21], [22], 

[26] 

Experimental  [31],[33], [34], [35], [36] [29] [32], [35] 

Simulation  [37], [38], [39], [40],[41],[43],[43],[44], 

[ ] Reference papers 

1.1.1. Theoretical: 

Some of the theoretical studies done on this topic 

include 

1. Developed a methodology for the development of an 

intelligent quality function deployment 

(IQFD)application for the Manufacturing Process. [19]  

2. Review the challenges and limitations of the 

optimization techniques used in optimizing machining 

parameters in milling operations. [20] 

3. Studied the correlation between primary waviness and 

roughness during hard turning through mathematical 

modeling. [21] 

4. A paper that talks of various surface quality 

improvement techniques, including how to reduce 

surface defects, surface roughness, and dimensional 

inaccuracy [22] 

5. b) Study on dimensional quality and distortion 

analysis of thin-walled alloy parts [23] 

6. c) Study on combining online testing, sensor, 

network, and database technologies and quality control 

methods to realize the online process quality control 

system. [24] 

7. Quality control methods for product reliability and 

safety using optimization techniques [25] 

8. In this study, mathematical models were developed that 

established the correlation between input variables and 

quality characteristics in the plasma Computer Aided 

Manufacturing (CAM) process using Response Surface 

Methodology (RSM). [26] 

9. Review paper on studies conducted on the 

interoperability between Internet of Things-based real-

time production logistics and cyber-physical process 

monitoring systems. [27] 

10. This paper reviews the current research on the Internet 

of Things-based real-time production logistics, 

sustainable industrial value creation, and artificial 

intelligence-driven big data analytics in cyber-physical 

smart manufacturing systems. [28] 

1.1.2. Experimental: 

Some of the experimental studies conducted include 

1. A detailed study of the effects of machining parameters 

on the surface roughness in the end-milling process. 

[29] 

2. Optimization of surface roughness in end milling using 

the Response Surface Method and Radian Basis 

Function Network. [30] 

3. Setting up a web-based automated inspection of 

manufactured parts wherein they developed a platform 

to study the quality parameters. [31] 

4. Select process parameters based on the Taguchi 

orthogonal array technique and use the analysis of 

variance (ANOVA) to establish a relationship between 

input parameters and surface roughness as output 

characteristics. [32] 

5. Tool wears monitoring using in-process machine vision 

for Cyber-Physical Production Systems (CPPS): The 

author of this study [33] proposes a four-phased 

approach based on the CPS for in-process tool wear 

monitoring using machine vision. 

6. Using a machine vision system to measure  

7. tool wear parameters: In this study, they captured tool 

wear photographs with digital cameras and used image 

processing techniques to determine the tool wear zone 

to take necessary action. [34]. 

8. Data from a spindle probe, a coordinate measuring 

machine, and surface roughness data are used to 

characterize machine quality features, namely 

dimensional accuracy, and surface roughness. [35]. 

9. The impact of variables cutting speed, feed rate, depth 

of cut cooling method, blank size, and work material on 

the dimensional accuracy and surface quality of turned 

parts were investigated in this study. [36]. 

1.1.3. Simulation: 

Some of the studies done about simulation are to do 

with understanding the relationship between deep learning-

assisted smart process planning and Internet of Things-

based real-time production logistics as regards cyber-

physical smart manufacturing systems. This include 

1. Design of a model for turning involving a neural 

network controller to track the desired vibration level 

of the turning machine. [37] 

2. The Service-Oriented Cross-layer infRAstructure for 

Distributed smart Embedded devices (SOCRADES) is 

an initiative to achieve predetermined automation goals 

in which networked systems made up of smart 

embedded devices, collected data from a service-

oriented ecosystem. [38]   

3. Integration of process and quality control using multi-

agent technology (MAT) (Ref: GRACE European 

Project). Using multi-agent system (MAS) principles, 
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performed real-time data analysis to dynamically 

modify production factors wherein concepts like 

Product Type Agents (PTA), Product Agents (PA), 

Resource Agents (RA), Independent Meta Agents 

(IMA), and other dynamic self-adaptation techniques 

along with feedback control loops were implemented. 

[39] 

4. Adaptive Production Management (see: ARUM 

European Project). The project developed production 

planning, scheduling, and optimization strategies using 

agent technology to respond to anomalies according to 

Service-Oriented Architecture (SOA) principles. [40] 

5. Deterministic models also have traditionally tested 

extraordinarily beneficial during the current industrial 

revolution involving digital data. Key deterministic 

models for distributed cyber-bodily systems have 

sensible faithful realizations through Cyber-physical 

structures. [41]. 

6. 5C architecture for the implementation of a CPS 

involves (i) Smart Connection (ii) Data-to-information 

conversion (iii) Cyber level (iv) Cognition (v) 

Configuration [42]. 

7. Empirical studies on the IoT- based real-time 

production logistics, cyber-physical process monitoring 

systems, and industrial artificial intelligence in 

sustainable smart manufacturing. [43] 

8. Simulation studies and analyses on how data-driven 

supervision, predictive analytics, and optimization 

systems integrate product traceability, maintenance, 

and process performance in smart manufacturing. [44] 

As per the literature survey done above, there is a need 

to analyze real-time sensor networks and configure the 

importance of artificial intelligence-driven big data 

analytics for use in cyber-physical production networks 

which is what this paper intends to do. 

The rest of the paper is organized as follows. In section 

2, the machining process parameters and their responses 

are discussed. Section 3 describes the proposed approach 

to developing a cyber-physical quality system. Section 4 

gives a sneak preview of the experimental setup.  Section 5 

is all about data extraction and analysis. Results are 

explained in section 6. Conclusions are shown in section 7. 

2. Machining process parameters and responses 

The behavior of the product is depicted in Figure 1. 

below 

 

Figure 1. The general scheme of the product 

can be described by the following relation 

yk =F (p, uk) +ɛk                            (1) 

where uk and yk are product inputs and outputs, 

respectively. p are parameters representing the physical 

characteristics of product components. Control factor s 

influence these values, in the production process. F(.)is the 

relation between inputs, output, and parameters describing 

the behavior or properties of the product and ɛk represents 

the noise 

The control factors ‘s’ involved in CNC manufacturing 

are: 

 Feed rate: The feed rate CNC parameter is the speed at 

which the cutter moves across the face of the material. 

It is measured in distance units per minute (e.g. 

millimeters per minute, or inches per minute).  

 Plunge rate: Plunge rate is the speed at which the bit 

enters the material, meaning that this CNC parameter 

affects only pure vertical movement.  It is measured in 

distance units per minute (e.g. millimeters per minute, 

or inches per minute). 

 Depth per pass: Usually, a non-industrial CNC machine 

doesn’t have enough power to cut through all the 

material thickness in a single attempt, unless you are 

cutting a soft and thin piece of material with a large bit. 

That’s why your project will likely require multiple 

passes to get the desired depth. The CNC parameter – 

depth per pass dictates how deeply your machine 

carves down into your material on each pass.  

 Spindle speed: Spindle speed is the speed at which your 

cutting tool rotates. It is measured in RPM (revolutions 

per minute).  

2.1. Surface roughness  

The theoretical one-dimensional expression of surface 

roughness R for a surface of profile length d is  

𝑅 =
1

𝑑 
∫ |𝑓(𝑥)|𝑑𝑥

𝑑

0
              (2)  

where f(x) is the difference between the local surface 

height at position x and the mean height over the profile 

based on the assumption that the overall profile is even. If 

the height fn is measured at N locations along with the 

profile length d, the expression of the roughness is:  

𝑅 ≈
1

𝑁
∑  𝑛

𝑖=1 |fn|              (3)  

Converting the expression of surface roughness to a 

two-dimensional surface profile area A. The surface 

roughness of area A with N × M tested differences fij can 

be approximated as:  

𝑅 ≈
1

𝑁𝑀
∑ ∑  𝑀

𝑖=1
𝑁
𝑖=1 |fij|                                          (4)  

2.2. Dimensional accuracy  

Though CNC machining has the ability of 

manufacturing parts with complicated shapes, the 

dimensional accuracy is a limitation of the machining 

parameters like speed, feed, depth of cut, coolant 

temperature, material properties, and tool condition.  

Dimensional accuracy is the deviation between the 

nominal size and the measured size of an as-built part. In 

this work, the lengths (L), widths (W), and heights (H) of 

the Computer-Aided Design (CAD) model of the part and 

the built part is used to define the dimensional accuracy 

[18]. The expressions of dimensional accuracy are  

DL = |Ld − Le|               (4)  

DW = |Wd − We|              (5)  

DH = |Hd − He|               (6)  
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where DL, DW, and DH denote the deviations, and the 

subscripts ‘d’ and ‘e’ denote the nominal size from the 

CAD model and the measured size from the as-built part, 

respectively. 

3. Proposed Approach 

A Cyber-Physical Quality System (CPQS) is an 

integration of computation, networking, and physical 

processes for measuring the quality of manufactured parts. 

It involves embedded computers and sensory networks that 

monitor and control the physical processes, with feedback 

loops, wherein physical processes affect computations and 

vice versa. The first step involves designing a CPQS 

architecture framework based on the collaboration among, 

manufacturing execution systems, the internet of things 

(IoT), simulations using artificial intelligence, advanced 

need quality systems for quality prediction, and operation 

control as in Figure 2.  

 
Figure. 2 The cyber-physical quality system framework 

Based on this framework we can create a 

reconfigurable quality system as shown below in Figure.3. 

which can predict the quality of the component being 

manufactured and appropriately take actions to ensure a 

defect-free production. This reconfigurable quality 

management system involves collecting the data from the 

CNC controllers, multi-sensory systems, and the local 

terminal which monitors the machining processes and 

transmits it to the database server. The features from these 

data and the signals are its time /frequency are then 

extracted and using different machine learning techniques 

are used to predict the tool wear, and surface finish and 

thereby accurately predicting the quality of the part being 

manufactured. This leads to producing quality parts and in 

case of anomalies taking actions to change the tool or stop 

the process thereby ensuring quality output at all times. 

The various environments involved in such a setup are 

described in detail. 

3.1. Machining Environment 

The manufacturing environment consists of the 

process, machine, tools, coolant, the part to be machined, 

and inspection gadgets. 

3.1.1. Part 

The part to be manufactured is the Hinge as shown in 

Figure 4 

 

 
Figure 4. Hinge Type A 

 

This is used to support the doors of any vehicle. It 

consists of two numbers per door and is different for the 

left vs right side of the vehicle. Its dimensions are crucial 

and they have to be within the tolerance limits to ensure 

that the doors close properly. 25 crucial parameters need to 

be checked for dimensions and the surface quality has to 

be within the permissible limits for the part to be adjudged 

as having passed the quality test 

 
Figure 3.  Reconfigurable quality management system 
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3.1.2. Machine  

The machine used for manufacturing this part is the 

most versatile OKADA VM500 milling machine fitted 

with all the sensors and cameras as shown in Figure 5.  

 

Figure 5.  OKADA VM500 machine with sensors and cameras 

3.1.3. Tools 

To manufacture the part, we use mainly 3 tools. We use 

the milling cutter having carbide inserts (T1) for all the 

milling operations. This tool has Taylor's tool life 

exponent n = 0.143 and the constant C=48.1 for a cutting 

speed of 30m/sec. and is changed typically, after 

producing 50 components.  The second tool (T2) is HSS 

used for all drilling operations. This tool has Taylor’s tool 

life exponent n = 0.2 and the constant C=63.53 for a 

cutting speed of 30m/sec. This tool is changed after every 

40 components are produced. The last tool (T3) is a 

forming/chamfering tool with Taylor's tool life exponent n 

= 0.143 and the constant C=48.1 for a cutting speed of 

30m/second is used for making 80 components before it is 

re-sharpened or a new tool is replaced.  

3.2.  Sensor Environment 

The various sensors used are for temperature, 

displacements, and vibration. Three types of vibrations are 

generated throughout the turning process: free, forced, and 

self-excited. These vibrations are caused by the machine 

tool system's lack of dynamic stiffness/rigidity, work 

material, machine, tool, and holder. Free vibrations are 

caused by shock, while forced vibrations are caused by 

machine tool imbalance, misalignment, mechanical 

rigidity, and gear faults. Frictional chatter is caused by 

rubbing on the clearance face, which causes vibration in 

the cutting force (Fc) and thrust force (Ft) directions. 

Temperature and strain rate in the plastic cause thermo-

mechanical chatter. The presence of chatter has the 

following negative consequences:  Poor surface quality, 

tool wear and damage, lower rate of material removal, 

waste of time, effort, energy, and higher costs in terms of 

production time. Hence the vibration sensors must be 

placed rightly in the right places for the experiments to be 

meaningful accordingly we need to do the vibration 

analysis of the spindle shown in Figure 6.  

 
Figure 6. Schematic diagram of the spindle 

3.2.1. 3D Model of the spindle 

To carry out the modal analysis we need to first model 

the spindle, bearing, tool holder, and tool using the 

Computer-Aided Three dimensional Interactive 

Application (CATIA) software. A model of the same is 

shown in Figure 7. 

 

Figure 7. Model in CATIA 

3.2.2. Modal analysis of the spindle 

 
The spindle system model was imported into ANSYS® 

software and we used BEAM188 and SOLID187 elements. 

COMBIN14 elements for the bearings.  The material 

property was that of tool steel with young’s modulus, E = 

210 GPa, and density = 7850 Kg/m3 applied. four spring-

damper elements replaced each bearing location as shown 

in Figure 4. At k = 2.25 x 108 N/m is the natural 

frequency. The first natural frequency was zero as the 

spindle was not constrained along the longitudinal 

translational direction, the second/third, fourth/fifth, and 

sixth/seventh natural frequencies represent the bending of 

the spindle in Z/Y directions respectively, and the eighth 

natural frequency represents the torsional vibration of the 

spindle, as shown in Figure 8. 

(a)                           (b)                       (c) 

Figure 8. a) Solid with spring-damper   b)8th c) 2nd -5th natural 

frequencies 

Based on the above analysis the location to fix the 

vibration sensor was finalized which would give us the 

best output. 
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3.3. Digital Environment 

The digital environment consists of two phases namely 

the development of a prediction model and quality 

performance prediction using machine learning techniques 

as shown in Figure 9 

The steps involved in the prediction model 

development involve determining the Critical To Quality 

(CTQ) of the component to be manufactured and 

identifying the significant parameters that impact CTQ. 

The next step would be to determine the location of the 

sensors and build the model with the appropriate transfer 

functions determined through machine learning techniques  

The performance metrics in the classification problem 

are different from regression problems. In classification, 

accuracy is a basic metric and more robust metrics are F1 

score, Precision, and Recall [45]. The proper metric is 

selected based on the problem that is dealt with. In this 

scenario, the target is to predict the occurrence of output 0, 

so that we can make the required changes in the input 

features so that the overall cost of production is lowest. 

Thus, Recall and Precision of classification 0 are more 

important than accuracy. Recall gives the fraction of 0’s 

that the model can identify. Precision gives the fraction of 

relevant instances to retrieved instances [19]. We need 

high recall to identify all the Not ok quality manufactured 

pieces and the max possible precision.  

Models with accuracy > 79% for Dimension prediction 

and models with accuracy > 86.25% for surface finish are 

reported in the Results section because any lesser accuracy 

means that any model giving 1’s to all input can achieve 

the cut-off accuracy levels. 

4. Experimental Set-Up 

The overall experimental setup consists of the physical 

resources namely machines, tools, and sensors. Along with 

that, we have the local and database servers where the data 

of the processes and pre-processing of the sensor signals 

are done. We use cloud services for advanced signal 

processing and cognitive decisions making as shown in 

Figure 10. 

 
Figure 9. Stages of prediction model development and quality 

 
Figure 10. Experimental set-up 
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5. Feature Extraction and Analysis 

5.1. Understanding Data 

The data is collected for 400 flanges manufactured by 

varying different input parameters and values of target 

variables are decided after physical observation. Data is of 

dimension 400*11. 400 rows with 11 columns that contain 

8 input features and 3 target variables.  

Input features are speed (m/min), Feed (mm), depth 

(mm), coolant temperature (Celsius), Vibration (mm/sec), 

and the tool life of T1, T2, and T3 tools measured in min. 

Target variables include dimension quality, quality of 

surface finish, and final quality all taking the values 1 or 0, 

interpreted as Quality is ok, and Quality is not Ok 

respectively. The final quality is 1 if both the dimensional 

quality and quality of the surface finish are 1, else 0. In 

this paper, we try to predict the independent target 

variables, since the final quality can be calculated based on 

these 2 target variables. Statistical analysis of the results 

was done, to ensure that the differences in performance are 

statistically significant or not by using Friedman Aligned 

Rank Test using IBM SPSS gave the following results as 

in Table 2. 

Table 2. Friedman Test statistics 

 

wherein it was observed that the p-value < 0.05. 

5.2. Data Preparation 

 
 The data is clean devoid of any null values and there 

are no irregular data types. The next step is to check for 

outliers. Box plot is constructed for the input parameters 

and observed for any outlier values based on [46]. Only 

the Coolant temperature is found to have 16 points as 

outliers where the temperature is less than 28.5 C as shown 

in Figure 11. 

5.2.1. Coolant temperature distribution 

 

Figure 11. Box plot for Outlier detection 

These 16 points correspond to 4% of the data and their 

effect on the result is negligible. Hence no manipulation is 

made of the data. The reason is that this temperature 

reflects the starting point of the CNC machine and as the 

machine's working time progresses, the temperature 

increases [47]. 

5.3. Data Visualization 

Pair plots and correlation heat maps [48] are made for 

the data to identify dependencies and pattern recognition. 

The correlation heat map is shown in Figure 12. 

 

Figure 12.  Correlation heat map 

 
From the heat map, it is observed that dimensional 

quality is highly correlated to T1, and T2 tool life & 

vibration, and weakly correlated to coolant temperature. 

Surface finish quality is highly correlated to T1 & 

vibration and weakly correlated to coolant temperature and 

T2. Distribution plots for the input features are prepared. 

To understand the data better and check for the usefulness 

of features in predicting the target variables, kde (kernel 

density estimation) of the parameters T1, T2, and 

Vibration are shown in Figure.13 and Figure.14 using 

target variables as hue. As predicted high density of target 

variable 0 is observed at a high level of vibration and low 

tool life. 

 
 

Figure 13. Kde Plots of T1 and T2 using dimension as hue. 

 
Figure 14. Kde Plots of T1 and Vibration using surface quality as 

hue 
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5.4. Data Modeling 

This is a case of multi-label classification supervised 

learning. For optimal performance and high control of the 

process, the target variables are modeled independently 

and in two ways in each case. The results are compared to 

finalize the best model and the final quality is predicted by 

combining the predicted targets from the selected best 

models. The summary is shown in Table 3. 

Table 3. Input features and target predicted for each method 

Method Input features used Target predicted 

1 T1, T2, and Vibration Dimension quality 

2 All 8 parameters Dimension quality 

3 T1 and vibration Surface finish 

4 All 8 parameters Surface finish 

The first step of modeling is to check if the data set is 

balanced or not. The count plot for Dimension and surface 

finish is shown in Figure 15. Category 0 implies the 

quality is not ok, while 1 implies ok. There is an imbalance 

in the data set but the modeling performed with stratified 

training and test data gave good results. Thus, no special 

techniques are used for further data processing. 

 
Figure 15. Count plot for Dimension and Surface finish 

Dimension has 84-0's and 316-1's resulting in 21% 

minority class, while the Surface finish has 55-0's and 345-

1's giving 13.75% as a minority class. 

5.5. Data Analysis 

The data is split using sklearn [49]test train split, test 

size =0.3, random state=42, and stratified using output 

variable considered in each method and then different 

models are applied to training data and the results are 

validated on the test set. The machine learning techniques 

evaluated are Logistic Regression, K Nearest Neighbors 

(KNN), Support Vector Machine Classifier (SVC), 

Gaussian Naïve Bayes (GNB), Decision Tree, Random 

Forest, Extreme Gradient Boosting (XGB), Multi-Layer 

Perceptron (MLP) classifiers and Artificial Neural 

Networks (ANN). 

5.5.1. Dimensional accuracy 

 
Dimensional accuracy is measured using method 1 and 

method 2 mentioned above with a cut-off of 79%.   

1. Method-1: The performance of these models for Recall, 

F1 score, and Accuracy are shown in Figure 16. 

concerning input parameters T1, T2, and Vibration. To 

see that the models are not overfitted, Grid search CV 

is used to find optimized hyperparameters of the model 

and are validated on test data. In some cases, there are 

already available techniques in the model used instead 

of Grid search CV.  

Figure 16. Plot for Dimensional accuracy using different ML 

techniques 

 
It can be seen that Logistic regression and Gaussian 

Naïve Bayes have accuracies higher than cut-off 

accuracies, however, the Recall and F1 scores are poor. K 

Nearest Neighbours (KNN),  

SVC, Decision tree, Random Forest, MLP, and ANN  

produced similar results but the best was given by XG 

Boost with values of 0.84for Recall,0.86 for F1 score and 

0.96 for accuracy. 

2. Method- 2: The performance of these models 

concerning Recall, F1 score, and Accuracy are shown 

in Figure 17. for all 8 input parameters. 

 

Figure 17. Plot for Dimensional accuracy using different ML 

techniques- method2 

Here also we see that Logistic regression and Gaussian 

Naïve Bayes have accuracies higher than cut-off 

accuracies, however, the Recall and F1 scores are poor. K 

Nearest Neighbours (KNN), SVC, and Decision tree 

produced similar results, and Random Forest and MLP 

gave better results but again XG Boost and ANN gave 

marginally better results of 0.96for Recall,0.91 for F1 

score, and 0.96 for accuracy. 

5.5.2. Surface Finish 

 
Surface Finish is measured using method 3 and method 

4 mentioned above with a cut-off at 86.25%.   

1. Method-3: The performance of these models for Recall, 

F1 score, and Accuracy are shown in Figure 18. for 

input parameters T1and Vibration. To see that the 

models are not overfitted, Grid search CV is used to 

find optimized hyperparameters of the model and are 
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validated on test data. In some cases, there are already 

available techniques in the model used instead of Grid 

search CV 

It can be seen that Logistic regression. K Nearest 

Neighbours (KNN), Decision tree and Random Forest 

have accuracies higher than cut-off accuracies, however, 

the Recall and F1 scores are poor, SVC, MLP, XG Boost, 

and ANN produced similar results of 0.59for Recall,0.71 

for F1 score and 0.93 for accuracy. All of them are equally 

good at predicting. 

 

Figure 18. Plot for Surface finish prediction using different ML 

techniques- method 3 

2. Method- 4: The performance of ML models for Recall, 

F1 score, and Accuracy are shown in Figure 19. for all 

8 input parameters. 

 

Figure 19. Plot for Surface finish prediction using different ML 

techniques- method 4 

It can be seen that Logistic regression. K Nearest 

Neighbours (KNN), SVC, and Gaussian NB have 

accuracies higher than cut-off accuracies, however, the 

Recall and F1 scores are poor, Decision tree, Random 

Forest, MLP, and ANN produced similar results, but the 

best was given by XG Boost with values of 1.0for Recall, 

1.0 for F1 score and 1.0 for accuracy. 

It can be concluded from the above that Extreme 

Gradient Boosting as shown in Figure 20. is a supervised 

learning algorithm that is similar to RF, that tries to 

accurately predict a target variable by combining the 

estimates of a set of simpler, weaker models.is the best for 

predicting both the dimensional accuracy and surface 

finish. 

 

 
Figure 20. XG Boost illustration 
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To look at the overfitting issue, the classification error 

on both training data and test data is observed and early 

stopping is used. Training loss and testing loss of different 

methods are shown in Figure 21. 

6. Results and Discussions 

6.1. Quality Performance Prediction 

This integrated framework wherein all the input 

parameters are captured in real-time with the sensors 

placed at the appropriate positions based on modal analysis 

and using the appropriate models can predict up to 25 

output parameters with 96.2% accuracy. The results of all 

the models are shown in Table 4 below of which the top 4 

models that are tuned with the best hyperparameters 

decided using Grid search CV are SVC, Random Forest, 

XG Boost Classifier, and MLP Classifier (CV). 

 

Figure 21. Classification error 

The parameters used in modeling the above are given 

in Table 5 below: 

Table 4. Recall-0, F1 score -0, and accuracy of all models 

 
Table 5. Parameters used in modeling 

 

  

Recall0 F1-score-0 Accuracy Recall0 F1-score-0 Accuracy Recall0 F1-score-0 Accuracy Recall0 F1-score-0 Accuracy

0.44 0.5 0.82 0.48 0.52 0.82 0.53 0.69 0.93 0.47 0.59 0.91

0.8 0.83 0.93 0.72 0.71 0.88 0.53 0.67 0.93 0.65 0.76 0.94

0.76 0.79 0.92 0.84 0.81 0.92 0.59 0.71 0.93 0.71 0.8 0.95

0.6 0.59 0.82 0.68 0.6 0.81 0.76 0.6 0.86 0.88 0.6 0.83

0.76 0.81 0.93 0.76 0.81 0.93 0.53 0.69 0.93 0.94 0.91 0.97

0.72 0.78 0.92 0.92 0.92 0.97 0.53 0.62 0.91 0.94 0.94 0.98

0.84 0.86 0.94 0.96 0.91 0.96 0.59 0.71 0.93 1 1 1

0.8 0.83 0.93 0.96 0.87 0.94 0.59 0.71 0.93 0.88 0.91 0.97

0.8 0.83 0.93 0.92 0.9 0.96 0.59 0.71 0.93 0.82 0.87 0.97

0.8 0.85 0.94 1 0.91 0.96 0.59 0.71 0.93 0.88 0.91 0.97

0.76 0.83 0.93 0.84 0.82 0.93 0.59 0.71 0.93 0.88 0.91 0.97

cutoff= 79% cutoff= 86.25%

ANN

ANN(CV)

Random Forest

XGBoost Classifier

MLP Classifier

MLP Classifier(CV)

Dimension Quality prediction  Quality of Surface finish prediction
Model

Gaussian NB

Decision Tree

Logistic Regression

KNN

SVC

Method1 Method2 Method3 Method4
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All the models improved when the number of input 

features increased. Method 2 and method 4 have higher 

performance metrics than method 1 and method 3 

respectively. It is observed that tree models have 

performed better than other models. XGB being a robust 

algorithm was able to predict the surface finish quality 

very perfectly using all features. RF and MLP gave very 

close results in method 2. Overall XGB is the best method 

for predicting both dimension quality and surface quality. 

RF and MLP are based on random generators and hence 

the results are not the same for each run, but similar results 

are achieved.  

6.2. Decision-Making Insights: 

The insights that we get into the live conditions of the 

manufacturing parameters and their effect on the 

dimensional and surface quality assist the operator in 

taking decisions like changing the tools or machine 

parameters resulting in error-free manufacture of 

components. It also helps in extracting maximum usage of 

the tool before it is worn out and brings in a paradigm shift 

in the process of changing tools after a specific number of 

operations. It would reduce the time spend on quality 

inspections as we are able to predict the quality accurately 

by up to 96.2%. This can be further increased if we can 

bring in image processing to determine tool wear and train 

the system over a larger sample size.  In the long run, these 

could be automated and would help in reducing the cost of 

operation and make defect free parts 

7. Conclusion 

Contrary to individual post facto studies on quality this 

integrated real-time CPQS framework analyses real-time 

sensor networks together with artificial intelligence-driven 

big data analytics for predicting the quality of cyber-

physical production networks can be a game changer. A 

detailed characterization of the manufacturing parameters 

responsible for the quality of a component manufactured 

on a 5-axis milling CNC machine showed the importance 

of vibration and the coolant temperature. Predicting the 

quality (dimensional and surface finish) of the part 

manufactured by using various machine learning 

techniques showed that the XG Boost  

algorithm with 96.2% accuracy was the best. The major 

observations can be summarized as follows: 

1. Placing the sensors at the right position using modal 

analysis to capture vibration is important.  

2. The correlation heat map showed that dimensional 

quality is highly correlated to T1, T2 tool life & 

vibration, and weakly correlated to coolant temperature 

while the surface finish quality is highly correlated to 

T1 & vibration, and weakly correlated to coolant 

temperature and T2. 

3. This is a case of multi-label classification supervised 

learning hence for optimal performance and high 

control of the process, the target variables are modeled 

independently and in two ways in each case 

4. The performance metrics giving the best results were 

accuracy, F1 score, Precision, and Recall 

5. It is observed that tree models have performed better 

than other models. XGB being a robust algorithm was 

able to predict the surface finish quality very perfectly 

using all features. RF and MLP gave very close results. 

In continuation to the present work, the author believes 

that the framework can be further enhanced by introducing 

image processing techniques to determine the tool life 

rather than using Taylor’s equation and increasing the 

sample size to improve the accuracy further and automate 

the production to produce defect-free parts under the 

auspicious Industry 4.0 paradigm. 
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