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Abstract 

The behaviour of stepped bars of different materials when impacted longitudinally by mild sphere of different radii was 

investigated. The passage (or propagation) of the longitudinal stress wave, created from the impact, from one end to another 

was recorded by strain gauges positioned at various stations along each bar. Different bar combinations with Lagrangian 

(material) and Eulerian (geometrical) discontinuities were investigated both experimentally and theoretically. Space – time 

diagrams which demonstrate the stress wave traversals across the discontinuity were constructed. The theoretical analysis of 

stress wave propagation in solids using the well-established Rayleigh acoustic equations assuming plane sections remain 

plane, was discussed, and the results were compared well with the experiments. 

It was noted that a pulse travelling along a bar with a discontinuity, either in cross sectional area or material difference, 

will be subjected to amplification or attenuation as it passed through this discontinuity. The amount of change in amplitude 

was governed by the impedance ratio of the input to output bars. However, the reflected part of the pulse from the 

discontinuity was always attenuated, with the pulse sign governed by the impedance ratio. 

© 2022 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

Different types of materials and composites are used in 

systems and structures designed to sustain both static and 

dynamic load environments. The assessment and 

prediction of the response of those systems to complex 

loading conditions are crucial. The study of waves in 

solids aids in estimating the magnitude of stress created by 

impact or collision of bodies. Hence, a sound knowledge 

of elastic stress wave propagation in solids is important for 

a clear understanding of the impact phenomena and some 

types of fractures, such as ‘spallation’ and ‘scabbing’. In 

elastic region, once a material is loaded, it deforms in a 

completely reversible manner. The behaviour of the 

material is defined by linear elastic constitutive laws, 

Hooke’s law. This facilitates solving most dynamic 

problems in the elastic regime analytically. Therefore, the 

theories on elastic wave propagation in solids are mostly 

fully developed [1,2]. 

Stresses caused from intermediate and dynamic loading 

rates with strain rates in the range of 10 – 104 /s) are 

transmitted in solids by elastic stress waves [3]. Two types 

of these waves exist either longitudinal or torsional. The 

longitudinal stress waves transmit tensile and compressive 

stresses with speed CL = (E/ρo)1/2, which equals the 

acoustic speed, whereas the torsional waves transmit shear 

stresses with speed CT = (G/ ρo)1/2, where E is the modulus 

of elasticity, ρo is the density, and G is the modulus of 

rigidity of the solid material. A stress wave is transmitted 

through a body when different parts are not in equilibrium, 

as the case when one solid impinges another. This 

instability needs finite time to be felt by other parts of the 

body due to material properties. This is related to 

characteristic speeds of wave propagation. In longitudinal 

waves (or sometimes called compressional waves), the 

individual particles of the bar are displaced or move in the 

same direction, in case of compression waves, or opposite 

direction of wave travel in case of tensile wave. While, in 

torsional waves (or sometimes called shear waves), the 

particles of the solid are displaced or oscillate entirely in a 

plane which is transverse to the direction of the wave 

travel. It is well known that the longitudinal stress waves, 

both the compressional and tensile are transmitted through 

the body, while the shear torsional stress waves, known as 

Love waves, are mainly transmitted on the surface. This 

explains why these surface shear Love waves are 

responsible for the most damage associated with the 

earthquakes and seismic activities. Thus, they attain 

particular interest in civil engineering, and constitute main 

criteria for safe engineering designs.  

In this paper, an attempt is made to address some issues 

related to stress wave propagation in longitudinal bars with 

particular emphasis on the experimental measurements and 
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analysis of the well-established problem of stress wave 

propagation in bars with geometrical and materials 

discontinuities. Thus, the problem of stress wave 

propagation in solids, particularly in long ‘composite’ 

bars, is theoretically and experimentally investigated. This 

includes the measurement of transmission, reflection, and 

interaction of the stress waves. The well-established 

Rayleigh acoustic equations are also given and discussed. 

The amplification of the stress level during its transmission 

and reflection in bars with different materials and 

geometrical discontinuities are also given and discussed. 

Thus, the behaviour of stepped bars of different materials 

when impacted longitudinally by mild steel sphere of 

different radii is particularly investigated. The useful 

applications of these waves are presented and discussed. 

Finally, the impact contact times for the various steel 

spheres and different bars are both experimentally and 

theoretically investigated. The structure of this work is 

organized as follows: relevant literature review is outlined 

in Section 2. The theoretical formulations and analysis of 

elastic stress wave propagation in long bars is outlined in 

Section 3 and the Appendix. Section 4 illustrates the 

apparatus and experimental techniques used, while Section 

5 summaries the results and discussion. Finally, 

Conclusions and future prospects are summarized in 

Section 6. 

2. Literature Review 

The existence of sound waves and stress waves which 

are governed by similar equations and speeds as acoustic 

waves was recognized early by Rayleigh [4] and 

introduced after that by Sears[5], who determined the 

sonic velocity of the bar material using the reflection of 

stress wave of two ballistically axial impacted bars. Also, 

Hopkinson who worked on the interaction of incident and 

reflected waves in collided solids has described a simple 

technique that enables him to measure both the duration 

and the maximum pressure developed by an impact [6–8]. 

Then, his apparatus was further developed and used to 

establish the general form of an incident compressive pulse 

caused by impact of a high-speed projectile of different 

geometrical shapes and materials or from an explosive 

charge to investigate the behaviour of materials under high 

strain rates [9–10], and ever since was known as 

Hopkinson pressure bar and employed by a huge number 

of investigators. Amongst the large recent research 

deploying such a device the notable work published by 

Shin et al [11], who investigated numerically the 

characteristics of the stress pulse generated by impact of a 

hollow striker on the flange of a split Hopkinson tension 

bar. Also, stress transfer mechanism is highlighted by 

different flange lengths using explicit finite element 

analysis [12]. Furthermore, particle velocity and stress in 

the striker and bar generated by the striker impact on a bar 

with different general impedance based on one-

dimensional assumptions is formulated [13]. 

However, after the early published detailed work by 

Kolsky [14] and Rinehart and Pearson [15] on waves 

propagation and analysis, the utilization of stress waves in 

engineering applications began in the early 1960s by the 

development of high energy rate forming  processes and 

the uprising of space vehicles and later for determining the 

mechanical properties of materials under intermediate and 

high strain rate loading [1,16–24].  

The propagation of a longitudinal compressive stress 

pulse has been considered early by [9] who employed 

Hopkinson bar to measure the pressure produced by 

detonation of the explosive at its end and deduced a 

mathematical expression for determining the momentum 

associated with the pulse. Then, several attempts were 

made to investigate the effects associated with stress 

waves in rods of varying cross section [10,14,15,18] , and 

in multi-layered plates [20,25,26]. Meanwhile, Zaid 

investigated the effect of stress waves in a conical bar and 

developed a computer program to calculate the transmitted 

and reflected pulses together with their interaction at any 

section along the bar[18].  Hascoët et al solved 

numerically the propagation of a shock wave in a chain of 

elastic beads without restoring forces under traction[27]. 

Later, Boaratti and Ting employed stress waves 

propagation sensors along pressurized tubes to detect 

leakage [28]. Then, Sharma studied the effect of initial 

stresses on the reflection of stress waves at the free surface 

of the medium [29]. He observed that the effect of the 

initial stress on the reflected waves varies with the 

direction of the incident wave, the elastic properties, and 

the anisotropy present in the material.  

Recently, many new industries, such as 

communication, energy, automobile, aircraft, and space are 

expanding rapidly and striving to use increasing new 

materials including composites, metal matrix composites, 

piezoelectric materials, functionally graded material 

(FGM), powder compacts and superplastic materials, 

ceramics, and nano powders. The adoption of such newly 

developed materials and fast manufacturing techniques and 

protection against shock loadings initiated huge interest 

and research work on dynamic properties of these 

materials and structures, and further research on these 

newly produced materials to be shaped and formed into 

their final shape as to become traditionally used [30–32]. 

Stresses and strains developed in FGM subjected to 

quasi-static loading were estimated by Suresh et al [33,34]. 

They highlighted that by optimizing the structure and 

geometry of the graded interface between the two 

dissimilar layers, the stress levels are significantly 

reduced. Li et al investigated the response of plates made 

of metallic ceramic in two dimensions [35]. While Han et 

al extended the problem to three dimensions and the effect 

of impact was numerically investigated [36]. The FGM 

investigated is approximated to a multi-layered structure 

with uniform material properties of each layer. Then, the 

propagation of stress waves in FGMs using a composite 

wave propagation algorithm was numerically studied by 

Berezovski et al [37,38]. They observed that the size, 

shape, clustering, and in homogeneities in the random 

distribution of embedded reinforcement particles may 

affect the results of simulation of the model they proposed. 

Earlier, Twofighi et al examined the elastic wave 

propagation in the circumferential direction of anisotropic 

cylindrical curved plates [39]. They used Fourier series 

expansion technique to facilitate solving the wave 

propagation problem. Tasedemirics et al used split-

Hopkinson pressure bar to investigate the high strain rate 

compression on multilayer materials [40]. The viability of 

modelling stress wave propagation in complex multilayer 
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materials has been demonstrated. They have shown that 

the effects of lateral confinement of a normally low-

modulus interlayer material can affect the response wave 

propagation significantly. Xu and Rosaki assessed the 

generation and subsequent evolution of impact damage in 

heterogeneous two layered materials: one is a polymer 

layer which bonded to a second metallic layer when 

subjected to impact loading. High speed photography and 

dynamic photo elasticity were utilized to visualize the 

nature and sequence of dynamic failure modes [41]. 

Meanwhile, Gebbeken and Greulich developed a three-

dimensional dynamic model to investigate the stress wave 

propagation in a reinforced concrete bar. As expected, the 

mechanical behaviour was characterized by cracking of the 

concrete [42]. However, using modified smoothed particle 

hydrodynamics (MSPH) method, Zhange and Batra 

investigated the elastic wave propagation in FGMs [43]. 

They showed that for the same placement of particles, the 

MSPH method gave better results comparing with the 

finite element method. But, in a later work, Perez and Al-

Haik employed a one-dimensional impact problem for a 

layered system that comprises heterogeneous materials 

with different geometrical configurations [44]. They 

tracked the stress wave propagation using analytical 

model. The results showed that layered systems suffered 

stress amplification with inherent acoustic impedance 

mismatch between layers. The effect of discontinuities on 

the wave propagation characteristics of structures is 

investigated by Rafiee-Dehkharghani et al [21]. They 

proposed new architectures for attenuating stress waves. 

Due to the highly nonlinear nature of the optimization 

problem combined with lack of gradient information about 

the objective function with respect to design variables, a 

genetic algorithm optimization procedure was used for the 

optimal design of the newly defined attenuating systems.  

Working on materials modelling, Ogden and Singh 

derived the general constitutive equation for a transversely 

isotropic hyper-elastic solid in the presence of initial stress 

based on the theory of invariants [45]. They claimed that 

the speed of homogeneous plane waves and surface waves 

depend nonlinearly on the initial stress, in contrast to the 

situation of the more specialized isotropic and orthotropic 

theories of Biot. The speeds of homogeneous plane shear 

waves and Rayleigh waves in an incompressible material 

were obtained and they noticed that significant differences 

from Biot’s results for both isotropic and transversely 

isotropic materials with calculations based on a specific 

form of strain-energy function. Also, Barzkar and Adibi  

proposed a generalized Kelvin-Voigt model of 

viscoelasticity with the aim of bridging the gap between 

solids and fluids leading to a new concept of 

viscoelasticity which unifies the Navier-Lame and the 

Navier-Stokes equations [46]. On solving this equation in 

one dimension, propagation of stress disturbance in the so-

called “Kelvin-Voigt materials” was studied. The model of 

these materials enabled them to investigate all the elastic 

and viscoelastic solids, as well as fluids and soft materials. 

Also, Walley and Field summarized the difference 

between ideal and real elastic materials [22]. They showed 

the dissipation mechanisms which cause attenuation of 

elastic waves with distance travelled. This rate of 

attenuation usually depends on frequency.  

Recently, Ebrahimi et al reviewed mechanical, thermal, 

and electrical properties of nanostructures that exhibit 

piezoelectric behaviour including wave propagation [47]. 

Later, the bending of magneto-electric-elastic nanobeams 

and its relationship with nonlocal elasticity theory is 

studied [48]. Furthermore, Singhal et al investigated 

analytically Love-type wave vibrations in a distinct 

piezoelectric material thin film with a highly and weakly 

dielectric interface with an elastic pre-stressed plate [49]. 

Also, in a recent publication, Singhal and co-investigators 

examined Love-type wave transmission through 

compressive stressed orthotropic substrate welded on 

couple stress half-space with imperfect interface [50]. 

Meanwhile, Saroj et al studied the Love-type wave 

propagation in irregular functionally graded piezoelectric 

material  resting over elastic half-space with irregular 

boundary [51]. 

It is important to state that despite the vast amount of 

work and published research, over the last few decades, in 

impact mechanics and stress wave propagation in materials 

and structures; the main efforts were clearly concentrated 

on the theoretical studies, simulation, numerical and 

modelling approaches. Hence, relatively little of this 

important research effort is directed to experimental 

investigation of this problem. This is clearly reflected in 

the scant experimental research works found and 

published.  

Therefore, in this work an attempt is made to address 

some of these issues with particular emphasis on the 

experimental measurements and analysis of the well-

established problem of stress wave propagation in bars 

with geometrical and materials discontinuities. Thus, the 

problem of stress wave propagation in solids, particularly 

in long ‘composite’ bars, is theoretically and 

experimentally investigated.  

3. The Theoretical Formulations and Analysis 

As stated above, the theoretical analysis of elastic stress 

wave propagation in long bars is very well known and 

established in literature. However, for convenience and 

benefit completion a brief summary of the most related 

theoretical analysis of this problem is presented [3,18]. 

The main equations and relations concerned are addressed 

and documented in the Appendix. 

4. Apparatus and Experimental Techniques 

The experimental setup, shown in Fig.1-a, consists of a 

frame(1), pendulum sphere with various radii (2), bar 

specimen (3), strain gauges, oscilloscope (4), amplifier, 

power source (5), and camera (6). The frame which is 

made up of two horizontal beams supported on four stands, 

was used to hang the test specimens in a free horizontal 

position. Strain pulse was produced by impacting a steel 

sphere supported from one end of the frame as a simple 

pendulum against the plane surface of the test bars. Fine 

adjustments for the height of the sphere were provided by 

two screws attached to the two beams of the frame as 

shown in Fig.1-b. These adjustments were necessary to 

ensure that the sphere impacts the test bar at the centre of 

its cross-sectional area. 
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The pulses, thus produced, were recorded using strain 

gauges connected at a predefined station on both the input 

and output bars as shown in Fig.1-c (block diagram). The 

strain gauges were attached diametrically opposite to the 

bars and connected as the active arms of the measuring 

Whitestone bridge. This arrangement of strain gauges 

eliminates bending strains and gives twice the sensitivity 

of that signal obtained using a single active gauge. The 

output of the bridge is displayed on a dual beam Tektronix 

oscilloscope and then photographed using a Polaroid 

camera, for later processing, analysis and calculation. 

The complete specifications and details of the three 

steel spheres used in this investigation together with the 

bar’s combination specimens of different geometries and 

materials (i.e. Steel, Brass and Aluminium) are shown in 

Table 1, and Table 2-a, b and c respectively. Typical 

tapered bar specimens are shown in Fig.2-a and stepped 

bars specimens in Fig.2- b. 
 

 
(a) 

 

 

 

 

(b) 

 
(c) 

Figure 1. Experimental setup (a) Picture; shows: (1) Frame, (2)Steel sphere, (3)Rod specimen, (4) Oscilloscope, (5) DC power supply and 

(6) Camera; (b) Pendulum arrangement; and (c) A schematic block diagram. 

 
(a) 

 
(b) 

Figure 2. Tapered steel specimen; (a) Linear (rectangular and circular cross sections) and (b) Typical circular stepped steel bar specimen 

(circular cross sections). 

  



 © 2022 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 16, Number 2  (ISSN 1995-6665) 

 

265 

Table 1. The complete details and specifications of the steel 

spheres used. 

Sphere 
No. 

Sphere diameter 
d2, mm (in) 

Sphere Mass 
m2, gram (lb) 

1 25.4 (1) 67.74 (0.1492) 

2 22.23 (0.875) 45.49 (0.1002) 

3 15.88 (0.625) 17.16 (0.0378) 

Table 2. The complete details and specifications of the 

experimental bar specimens used. 

Table 2-a. Bars combinations specimen number 1 - 10. 

Sp. 
No. 

Material Steps 
No. 

Diameter 
mm (in) 

Length 
mm (in) 

Mass kg 
(lb) 

Remarks 

1 Steel 0 25.4 

(1.000) 

1000 

(39.37) 

3.980 

(8.767) 

See Fig. 

2-b 
ρo = 

7805.73 

kg/m3 
(0.282 

lb/in3) 

2 Steel 0 12.7 

(0.500) 

1000 

(39.37) 

1.005 

(2.214) 

See Fig. 

2-b 

3 Brass 0 12.07 

(0.475) 

971.55 

(38.25) 

0.935 

(2.059) 

ρo = 

8553.1 

kg/m3 
(0.309 

lb/in3) 

4 Brass 0 20.01 

(0.788) 

1249.93 

(49.21) 

3.310 

(7.291) 

- 

5 Brass 0 28.68 

(1.129) 

1258.82 

(49.56) 

6.770 

(14.912) 

- 

6 Aluminium 0 20.01 
(0.788) 

1257.3 
(49.5) 

1.085 
(2.390) 

ρo = 
2643.43 

kg/m3 

(0.0955 
lb/in3) 

7 Aluminium 0 25.02 

(0.985) 

1244.6 

(49) 

1.652 

(3.639) 

- 

8 Steel + 
Steel 

1 25.4 
(1.000) 

- - Single 
stepped 

bar 

   12.7 

(0.500) 

- - ρo = 

7805.73 
kg/m3 

(0.282 

lb/in3) 

9 Brass + 

Brass 

1 28.68 

(1.129) 

- - Single 

stepped 

bar 

   12.07 
(0.475) 

- - - 

10 Aluminium 

+ Brass 

0 20.01 

(0.788) 

- - Composite 

bar 

   20.01 
(0.788) 

- - - 

Table 2-b. Steel circular tapered bar specimen number 11. 

Sp. 

No. 

Material Large 

diameter 
d1 mm (in) 

Small 

diameter 
d2 mm (in) 

Length 

mm (in) 

Remarks 

 
 

11 Steel 24.13 (0.95) 12.19 

(0.48) 

1244.6 

(49.0) 

See Fig. 2-a 

Table 2-c.  Steel rectangular tapered bar specimen number 12. 

Sp. 
No. 

Material Thickness 
mm (in) 

Larger 
width w1 

mm (in) 

Smaller 
width w2 

mm (in) 

Length 
mm (in) 

Remarks 
 

 

12 Steel 12.95(0.51) 25.91 
(1.02) 

12.95 
(0.51) 

1283.2 
(50.52) 

See Fig. 
2-a 

 

 

4.1. Specimen joining Method 

Stepped and composite bars combinations specimen 

numbers 8,9 and 10 (see Table 2-b), were fabricated by 

cementing the two bar elements together using Araldite 

cement. Tensile tests were carried out to determine the 

strength of bonds thus obtained. To separate a test 

specimen composed of two 25mm (1.0 in) dia. steel bars a 

force of 6.00 KN (1350 lb) was needed. This corresponds 

to a stress of 11.75N/mm2 (1700psi), which is much higher 

than those anticipated stresses induced in the specimen 

during actual test conditions. The method of joining the 

specimens in this manner proved satisfactory and was used 

throughout the work. 

5. Results and Discussion 

Many oscilloscope traces were photographed showing 

stress wave propagation in the various test bars. A 

photograph illustrates a typical strain signal, obtained for a 

25mm dia. steel bar impacted with 21.875mm (7/8 

inch)dia. steel sphere is displayed in Fig. 3-a. However, all 

tests signals were retraced and manipulated with a 

digitizing signal software, and transformed to digital signal 

forms for further processing and calculations. Of these, 

five representative traces are presented in Figs. 4 to 8. 

 

(a) 

 

(b) 

Figure 3. A typical strain signal obtained for a 25.4mm (1-inch) 
diameter steel bar of 984.25mm (39.37 in) length impacted with a 

21.875mm (7/8 inch) diameter steel sphere; (a) A photograph; and 

(b) Digital signal form. 

 

Figure 4. Strain-Time trace, for a one -step Steel bar, with area 

ratio A1/A2 = 4. 
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Figure 5. Strain-Time trace, for a one -step Brass bar, with area 

ratio A1/A2 = 5.649. 

 

Figure 6. Strain-Time trace, for a composite bar of Aluminium 

and Brass, with area ratio A1/A2 = 1. 

 

Figure 7. Strain-Time trace, for a composite bar of Brass and Aluminium, with area ratio A1/A2 = 1. 

 

 
Figure 8. Strain-Time trace, for Steel tapered bar shown. 
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The theoretical and experimental values of the 

longitudinal wave speeds CL and the Young’s modulus E 

are calculated for the different bar materials specimens and 

displayed in Tables 3. The absolute relative error is less 

than 1.5% and 2.2% for wave speed and Young’s modulus, 

respectively. 

Table 3. The theoretical and experimental values of the 

longitudinal wave speed and Young’s modulus for Steel, 

Brass and Aluminium specimens. 

Sp. 

No. 

Material Theoretical 

Stress 

wave 
speed, CL 

at 0o C, m/s 

(ft/sec.) 

Experimental 

Stress wave 

speed, CL at 
25o C, m/s 

(ft/sec.) 

Youngs 

Modulus, 

E, GPa 
(psi) 

Experimental 

Youngs 

Modulus, E, 
GPa (psi) 

1&2 Steel 5151 

(16900) 

5128 

(16824) 

203.4 

(29.5x106) 

205.5 

(29.8x106) 

3,4 
&5 

Brass 3352 
(11000) 

3401 
(11160) 

93.08 
(13.5x106) 

95.15 
(13.8x106) 

6&7 Aluminium 5090 

(16700) 

5102 

16740 

68.95 

(10x106) 

69.64 

(10.1x106) 

Also, the experimental values of the transmitted and 

reflected stress are calculated and displayed in Table 4 for 

the stepped steel, brass and composite (Aluminium and 

brass) bars. Meanwhile, the secondary transmitted stress 

(σ’T, σ’’T , and σ’’’T) and reflected stress (σ’R, σ’’R and 

σ’’’R) values for the steel and brass stepped specimens are 

shown in Table 5. 

Table 4. The transmitted and reflected stress values in the stepped 

steel, brass and composite (Aluminium and brass) bars. 

Sp. No. Step Ratio 

A1/A2 

Transmitted 

stress wave, 

σT 

Reflected 

stress wave, 

σR 

Remarks 

8 4 1.6 σI -0.6 σI See Fig. 4 

9 5.649 1.7 σI -0.7 σI See Fig. 5 

10 1 1.36 σI 0.36 σI See Fig. 6 

 0.639 σI -0.361 σI See Fig. 7 

Table 5. The secondary transmitted and reflected stress values in 

the steel and brass stepped bars. 

Sp.No. σ’
T σ’

 R σ’’
R σ’’

T σ’’’
R 

 

σ’’’
T 

 

Remarks 

8 1.6 σI 0.6 σI -0.96 σI -0.64 σI 0.58 σI 0.38 σI See Fig. 8 

 

9 1.7 σI -0.7 σI -1.2 σI -0.5 σI 0.84 σI 0.38 σI  

Also, the results of the typical theoretical and 

experimental stress values of the transmitted and reflected 

stress wave passage (i.e. with time history), as well as the 

experimental detection times of the stress signals for 

stepped and composite bars, are calculated and shown in 

Tables 6 and 7 respectively. 

Table 6. Typical theoretical and experimental stress values of the transmitted and reflected stress wave passage ( i.e  with time history) in 
stepped Steel, brass and composite (aluminium and brass) bars. 

Theoretical Results Experimental Results 

Time at reflection 

x 10-3 sec. 
σR/ σI 

Detective time 

x 10-3 sec. 

Time at reflection 

x 10-3 sec. 
σR/ σI 

Detective time 

x 10-3 sec. 

Steel Bar (Sp. No. 1) 

0.189 -1 0.0945 0.190 -1.00 0.09 

0.378 +1 0.2835 0.380 +1.00 0.28 

0.567 -1 0.4725 0.540 -1.10 0.47 

0.756 +1 0.6615 0.760 +1.10 0.64 

0.945 -1 0.8505 0.950 -0.96 0.85 

Brass Bar (Sp. No. 4) 

0.373 -1 0.1865 0.340 -0.964 0.12 

0.746 +1 0.3917 0.670 +0.923 0.43 

1.119 -1 0.7647 1.100 -0.980 0.78 

Aluminium Bar (Sp. No. 6) 

0.247 -1 0.1235 0.260 -1.00 0.12 

0.494 +1 0.3705 0.460 +0.91 0.36 

0.741 -1 0.6175 0.720 -1.12 0.63 

0.988 +1 0.8645 0.940 +0.98 0.84 

Table 7. Typical experimental detection times of the stress signals for stepped and composite bars. 

Experimental Reflecting Time 

x 10-3 sec. 

Experimental Detective Time 

x 10-3 sec. 

t t’’ T1 T2 

a) Steel Stepped Bar (Sp. No. 8) 

0.16 0.24 0.00 0.06 

0.38 0.50 0.20 0.31 

0.61 0.70 0.41 0.54 

0.84 0.93 0.64 0.56 

b) Brass Stepped Bar (Sp. No. 9) 

0.12 0.10 0.00 0.00 

0.30 0.25 0.13 0.16 

0.50 0.40 0.33 0.29 

0.68 0.61 0.52 0.46 

0.85 0.82 0.72 0.65 

c) Brass and Aluminium Composite Bar (Sp. No. 10) 

0.00 0.18 0.07 0.02 

0.31 0.40 0.38 0.22 

0.54 0.60 0.54 0.43 

0.78 0.88 0.90 0.64 
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Furthermore, the theoretical and experimental values of 

the transmitted/incident and reflected/incident stress ratios 

at the discontinuities are calculated at a typical selected 

time applying Eqs. (9 and 10) and shown in Table 8. This, 

also, is assessed by Fig.9, which displays a constructed 

typical space-time diagram for a composite bar (Brass and 

Aluminium). 

Experimental results show that nearly all recorded 

signals follow much the same pattern. This is because the 

local velocity of the elements transmitting the wave 

depends on the form of the disturbing force, which is 

affected by the geometrical shapes of the impacted bodies 

and the manner of applying the impact. In our case, mild 

steel sphere supported as a pendulum is used to produce 

the impact force in all tests, hence the signals obtained are 

of the same form.  

In general, the shape of the recorded pulses is 

influenced by the relative values of specimen length (Ɩ) 

and pulse length (λ), as shown in Fig. 10. When λ < Ɩas 

shown in Fig. 10 a, the incident pulse is registered before 

the wave front of the reflected pulse arrives back at the 

strain gauge location. The incident and reflected pulses are 

recorded separately and no over-lapping occurs (see for 

example Fig.3). A critical case arises when λ=Ɩ. Here, the 

wave front of the reflected pulse arrives back at the strain 

gauge location when the tail of the incident pulse is just 

about to leave the gauge. Finally, λ > Ɩ  is when over-

lapping between incident and reflected waves occurs. 

Thus, the recorded signal will include components of both 

incident and reflected pulse and the usefulness of the 

results could be diminished. 

To avoid over-lapping, the length of the bar and the 

axial location of the gauges along the bar must be carefully 

selected. Initial tests were carried out to determine the 

wave length of the stress pulse. Based on this, a suitable 

length for the various bars was chosen. The typical 

experimental wave length values obtained in steel, brass 

and aluminium specimens are measured for the various 

impact conditions and displayed in Table 9. 

Table 8. Typical theoretical and experimental values of the transmitted/incident and reflected/incident stress ratios at typical selected times 

of the stress wave passage for stepped and composite bars. 

Time t1 t2 t3 t4 

Stress Ratio σR/ σI σT/ σI σR1/ σI σR2/ σI σR3/ σI σR4/ σI σT3/ σI σT4/ σI 

Case A: One step Steel bar (Sp. No. 8) 

Theoretical -0.6 1.6 -1.6 0.6 -0.96 -0.36 -0.64 0.96 

Experimental - - -1.5 0.7 -0.84 -0.43 -0.57 0.84 

Case B: One step Brass bar (Sp. No. 9) 

Theoretical -0.7 1.7 -1.7 0.7 -1.19 -0.49 -0.51 1.19 

Experimental -0.67 2.0 -2.0 0.59 -1.10 -0.46 -0.60 1.07 

Case C: Brass and Aluminium composite bar (Sp. No. 10) 

Theoretical -0.36 0.640 -0.64 +0.36 -0.13 -0.23 0.23 -0.870 

Experimental -0.34 0.625 -0.62 +0.32 -0.18 -0.25 0.36 -0.875 

 

 
Figure 9. Space-Time diagram for composite Brass and Aluminium bar, with area ratio A1/A2 = 1. 
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Fig.  10. Predicted wave forms in a stepped bar for different relative values of specimen length, Ɩ, and pulse length, λ. 

Table9. Typical experimental wave length values obtained in steel, brass and aluminium specimens. 

 Wave Length, λ , m (ft) 

Sphere Diameter, mm 

(in) 

Steel Bar  

(Sp. No. 1) 

Brass Bar  

(Sp. No. 3) 

Brass Bar  

(Sp. No. 4) 

Aluminium Bar 

(Sp. No. 6) 

25.4 (1) 0.732 (2.4) 0.503 (1.65) 0.469 (1.54) 0.61 (2.0) 

22.23 (7/8) 0.518 (1.7) 0.402 (1.32) 0.369 (1.21) 0.457 (1.5) 

15.88 (5/8) 0.411 (1.35) 0.268 (0.88) 0.274 (0.9) 0.411 (1.35) 

 

The relative values of the incident(σI), reflected ( σR) 

and the transmitted ( σT) waves are governed by the 

mechanical impedance ratio of the input bar to that of the 

output bar. A very important conclusion can be drawn 

from this. Consider that a compressive stress wave is 

applied, for example, to a concrete column. Upon 

reflection, the wave will become tensile. As concrete is 

stronger in compression than tension, it is conceivable that 

the column would fracture in tension even though the 

amplitude of the initial applied pulse was less than the 

ultimate strength of concrete in compression. Values of σR/ 

σIand σT/ σIas measured directly from the records seem in 

reasonable agreement with the theoretical predictions. 

In the theoretical analysis some assumptions have been 

made such as "plane sections remain plane"; the validity of 

this assumption is questionable near a discontinuity. The 

behaviour of the stress waves at the discontinuity is 

complicated by local stress waves interactions taking place 

in the vicinity of the discontinuity. Also, Poisson’s ratio 

and consequently radial inertia have been neglected. In 

actual situations, the radial vibrations could lead to 

dispersion of the applied pulse. 

The significance of the space-time diagram, see Fig. 9, 

is that it shows the times when the stress wave passes any 

axial location along the bar. Values of time read from this 

diagram at the location of the gauges seem to tie in with 

the corresponding values on the recorded results. This adds 

weight to the accuracy of the experimental results. 

When bars of different materials of the same length are 

impacted with the same sphere, the signals produced are 

almost the same in shape, but differ in amplitude and wave 

length, depending on the properties of the materials, and 

the wave speed in each, as illustrated in Figs. 3-8. It was 

noticed, also, that when a bar is impacted with spheres of 
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different diameters, the larger sphere gives longer contact 

time. Hence, values of the contact time between the 

impinging sphere and the end of the bar was calculated and 

found to be in good agreement with those measured from 

the length of the pulse. The details of the mechanics of 

elastic spheres impact based on the Hertz problem analysis 

including the main equations used for calculation of the 

contact times are shown in the Appendix. Thus, the 

theoretical and experimental contact times plotted against 

the radii of the three impacting spheres, are shown inFig. 

11.  

 
Figure 11. Theoretical and experimental variation of contact time 

with sphere radii for Steel, Aluminium and Brass bars. 

The apparatus used was simple and could be upgraded 

with little effort. Some difficulties were, however, 

experienced in recording the signals. At first, there was a 

large amount of noise superimposed on the signal. This 

was partly solved using differential amplifiers and 

appropriate earthing of the system. In this manner most of 

the noise was suppressed and the signal/noise ratio was 

increased to an acceptable level. Another problem was 

associated with the triggering of the oscilloscope. The 

method adopted was to utilise the initial strain pulse to 

trigger the beam. This resulted in the loss of an essential 

part of the first pulse. These problems may be overcome 

with the use of more sensitive gauges (e.g. semi-conductor 

strain gauges) and the use of external triggering system. 

Finally, the study of the impact stresses and the 

phenomena of stress waves in solids is of great value due 

to its wide applications.  In fact, there are many occasions 

in engineering design where some components are 

subjected to impact loads or various impact fractures, such 

as spalling and scabbing (i.e. Fractures of bars and plates 

due to stress wave reflections), which are difficult to 

explain without the knowledge of the stress wave 

behaviour. Thus, stress wave aspects are widely used in 

military, machine element design and load sudden release 

applications. Extended studies of the different bar’s 

configurations, materials and geometrical shapes including 

tapered and multi-stepped bars as well as the collinear 

collision of bars are essential. The design of impact 

momentum traps is very useful for structure safety.  

6. Conclusions 

In this work, the theoretical and experimental study of 

longitudinal stress wave propagation in solid long 

composite bars with various geometrical and material 

discontinuities is successfully achieved.  The stress wave 

propagation in simple composite bar configuration 

impacted longitudinally with steel spheres involving 

geometrical (i.e. tapered and stepped bars) and materials 

(steel, aluminium, and brass i.e. composite bars) 

discontinuities combinations is theoretically evaluated and 

experimentally measured successfully. The theoretical and 

experimental values obtained, are found to be in excellent 

agreement reaching 98% accuracy.  The shape of the 

recorded stress pulse is found to be influenced by the 

relative values of specimen length (Ɩ) and pulse length (λ).  

It is also, observed that the behaviour of the stress waves at 

a discontinuity is complicated by local stress waves 

interactions taking place in the vicinity of the 

discontinuity. The stress waves trapped and reverberate in 

the solid setting up wave interference that could produce 

large transient stresses were confirmed. The values 

obtained for the relative values of the incident reflected 

and transmitted waves are proven to be governed by the 

impedance ratio of the input bar to that of the output bar. 

The impedance matching condition (i.e. when the 

impedance ratio is unity) is also observed. Furthermore, 

the calculated and measured values, of the contact time 

between the impinging sphere and the end of the bar, 

based on Hertz analysis, are found to be in excellent 

agreement.   

Finally, these promising results obtained, encourage 

further investigation on more complex composite 

structures and various damages and fractures involved in 

the impact process.  A comprehensive theoretical and 

experimental investigation covering the damages caused 

by the stress waves and their transmission, reflection, and 

interaction causing scabbing and multiple scabbing 

fractures is discussed, recommended, and needed. 

Furthermore, the order of the composite materials 

‘cladding’ process, which affects these phenomena and 

fracture mechanisms involved require intensive future 

research.  The design and use of the momentum traps to 

avoid such fractures is also suggested. 
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Appendix 

A summary of the most related theoretical analysis of 

the stress wave propagation problem in long bars as well 

as the elastic impact of spheres is presented[3,18].  

The propagation of a compressive pulse in uniform long 

bars  

In a stationary uniform isotropic bar, which is to 

transmit a longitudinal compressive pulse. Let u denote the 

displacement of a typical plane, originally distant x from a 

reference point O. Then (𝑢 +
𝜕𝑢

𝜕𝑥
𝜕𝑥) denotes displacement 

of a parallel plane, initially at a distant (𝑥 + 𝜕𝑥) from a 

reference point O. The equation of motion for an element 

of the bar of initial cross section Ao is 

−
𝜕𝜎𝑜

𝜕𝑥
𝜕𝑥𝐴𝑜 = 𝐴𝑜𝜌𝑜𝜕𝑥

𝜕2𝑢

𝜕𝑡2
  

𝜕𝜎𝑜

𝜕𝑥
= −𝜌𝑜

𝜕2𝑢

𝜕𝑡2
              (1) 

Where, 𝜌𝑜 is the density of the material in its 

unstrained state. The strain in an element of length 𝜕𝑥 is 
𝜕𝑢

𝜕𝑥
.  Thus   −  

𝜎𝑜

𝜕𝑢 𝜕𝑥⁄
= 𝐸 , where E is Young’s Modulus. 

Thus, differentiating we get, 
𝜕𝜎𝑜

𝜕𝑥
= −𝐸

𝜕2𝑢

𝜕𝑥2              (2) 

And using this in Eq. (1) and after rearranging, one can 

find that: 
𝜕2𝑢

𝜕𝑡2 =  𝐶𝐿
2 𝜕2𝑢

𝜕𝑥2              (3) 

Where, 𝐶𝐿 = √𝐸 𝜌𝑜⁄    is the Longitudinal stress wave 

speed. 

A general solution for Eq. (3) is in the form 

𝑢 = 𝑓(𝑥 − 𝑐𝑡) + 𝐹(𝑥 + 𝑐𝑡)  
Where f and F are independent arbitrary functions. This 

is called the D’Alembert solution of the one-dimensional 

wave equation. The functions f and F describe waves that 

propagate in the positive and negative x directions with 

constant velocity or wave speed c,[2]. 

The propagation of a tensile pulse in non-uniform long 

bars 

In a stationary non-uniform isotropic rod, which is to 

transmit a longitudinal tensile pulse. Following the known 

analysis given by[3,18], we get the equation of motion for 

an element as: 

(𝜎 +
𝜕𝜎

𝜕𝑥
𝛿𝑥) (𝐴 +

𝜕𝐴

𝜕𝑥
𝛿𝑥) − 𝜎𝐴 = 𝐴𝜌𝑜𝛿𝑥

𝜕2𝑢

𝜕𝑡2   

Neglecting the higher order differential term contains  

(𝛿𝑥)2  and rearranging gives: 
𝜕𝜎

𝜕𝑥
+

𝜎

𝐴

𝜕𝐴

𝜕𝑥
= 𝜌𝑜

𝜕2𝑢

𝜕𝑡2              (4) 

Recall that the strain in an element of length 𝜕𝑥 is 
𝜕𝑢

𝜕𝑥
 . 

Thus, 

𝐸 =
𝜎

𝜕𝑢 𝜕𝑥⁄
              (5) 

Differentiating, 
𝜕𝜎

𝜕𝑥
= 𝐸

𝜕2𝑢

𝜕𝑥2  

And using this in Eq. (4) and after rearrangement and 

manipulation, one can get: 
𝜕2𝑢

𝜕𝑥2 + (
1

𝐴

𝜕𝐴

𝜕𝑥
)

𝜕𝑢

𝜕𝑥
=

𝜌𝑜

𝐸

𝜕2𝑢

𝜕𝑡2              (6) 

If the cross-sectional area of the bar is uniform, this 

equation reduces to Eq. (3) shown above. 
𝜕2𝑢

𝜕𝑡2 =  𝐶𝐿
2 𝜕2𝑢

𝜕𝑥2  

The stress transmission in bars having a discontinuity in 

cross-sectional area and for bars composed of different 

materials 

Consider an incident elastic wave of compressive stress 

of intensity σI moving through a stationary bar of material 

S1 of cross-sectional area A1 we note, this is partly 

reflected and partly transmitted at the surface of 

discontinuity, where another bar of material S2 of cross-

sectional area A2 is perfectly attached to S1[3,18]. 

The stress wave transmitted through S2 of intensity σT 

and that reflected back through S1, σR may be found with 

the aid of equations, 𝜎0 = 𝐸𝜗0 𝐶𝐿⁄  and 𝜎0 = 𝜌0𝐶𝐿𝜗0 . 

Bearing in mind that the conditions to be satisfied at the 

surface of discontinuity are: 

The forces on plane surface of discontinuity acting 

from S1 and S2 are always equal, and 

The particle velocity in this plane, in material, for S1 

and S2, are equal. 

If both σR and σT are taken to be compressive, then, 

𝐴1(𝜎𝐼 + 𝜎𝑅) = 𝐴2 𝜎𝑇             (7) 

And noting that σI and σR are associated with waves 

travelling in opposite directions, therefore (b) gives, 

𝑉𝐼 − 𝑉𝑅 =  𝑉𝑇  or 

𝜎𝐼 − 𝜎𝑅 =  𝜎𝑇              (8) 

Where V denote particle speed and subscripts I, R and 

T refer to incident, reflected and transmitted stresses. 

Hence, 

 𝜎𝑇 =  
2𝐴1𝜌2𝐶2

𝐴1𝜌1𝐶1+𝐴2𝜌2𝐶2
 𝜎𝐼                            (9) 

And 

 𝜎𝑅 =  
𝐴2𝜌2𝐶2− 𝐴1𝜌1𝐶1

𝐴1𝜌1𝐶1+𝐴2𝜌2𝐶2
 𝜎𝐼           (10) 

From Eq. (9) note that for simple change in cross-

sectional areas, i.e. when S1and S2 are of the same material 

and ρ1 = ρ2  and C1 = C2 , the incident and reflected waves 

have the same or opposite signs according to the increase 

or decrease in size of the cross sectional area; and at the 

same time the intensity of the transmitted stress falls below 

or exceeds the intensity of the incident stress. 

Eqs. (9) and (10) are approximate since the derivations 

are based on some simplifying assumptions; and at the 

discontinuity, condition (b) is true only inside the material, 

not at the end surfaces. Complicated local stress wave 

interactions occur in the vicinity of the surface of 

discontinuity and for a length equal to about the first 

diameter. Note that for ρ1 = ρ2  and E1 = E2   i.e. C1 = C2 

If 𝐴2 𝐴1 → 0 ⁄ , i.e. the end of the rod is effectively free 

and the above equations give 𝜎𝑅 → − 𝜎𝐼 and 𝜎𝑇 → 2 𝜎𝐼 , 

and 

If  𝐴2 𝐴1 → ∞ ⁄  , i.e. the end of the rod is effectively 

fixed, 𝜎𝑅 →  𝜎𝐼 and 𝜎𝑇 → 0. 

Eqs. (9) and (10) show that a small shaft on the end of 

one larger in cross-sectional area can act as a wave (or 

momentum) trap to a pulse or blow on the far end of the 

larger shaft. 

For no wave to be reflected from the discontinuity in 

the bar, it is required that 𝜎𝑅 = 0 , and then 𝐴1𝜌1𝐶1 =
𝐴2𝜌2𝐶2 , i.e. impedance matching. So that: 

 𝜎𝑇 =   𝜎𝐼   ∙  √
𝐸2 𝜌2

𝐸1𝜌1
           (11) 
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The central elastic impact of sphere 

Following the well-known Hertz analysis of two 

spheres undergone simple elastic impact. The equation of 

motion for each sphere is given by 

𝑚1
𝑑𝑉1

𝑑𝑡
=  −𝑃  and 𝑚2

𝑑𝑉2

𝑑𝑡
=  −𝑃          (12) 

Let x be the distance through which the two spheres 

approach by virtue of local compression. 
𝑑𝑥

𝑑𝑡
=  𝑉1 + 𝑉2            (13) 

After differentiating and using Eq. (12), one can find 

that: 
𝜕2𝑥

𝜕𝑡2
= −𝑃 (

𝑚1+𝑚2

𝑚1∙ 𝑚2
)           (14) 

Let, =
𝑚1+𝑚2

𝑚1∙ 𝑚2
 , then 

𝜕2𝑥

𝜕𝑡2 = −𝜇 𝑃                           (15) 

Timoshenko and Goodier [52] give that 

𝑃 = 𝐾𝑥3 2⁄             (16) 

where,  

𝐾 =
4

3𝜋[
1−𝜗1

2

𝜋𝐸1
+

1−𝜗2
2

𝜋𝐸2
]
(

𝑅1 ∙ 𝑅2

𝑅1+𝑅2
)

1 2⁄

          (17) 

And 𝜗 denotes Poisson’s ratio. Substituting Eq. (17) 

into Eq. (16) and integrating gives: 
1

2
(�̇�2 − 𝑉0

2) = −
2

5
𝐾 𝜇 𝑥5 2⁄           (18) 

Where 𝑉0 = 𝑉1 + 𝑉2 when t = 0,   

For maximum compression, 𝑥0, the velocity �̇� is zero; 

Thus 

𝑥0 =  (
5𝑉0

2

4 𝐾 𝜇
)

2 5⁄

           (19) 

From Eq. (18) and after rearrangement, one can get: 

𝑑𝑥

𝑑𝑡
= 𝑉0 [1 − (

𝑥

𝑥0
)

5 2⁄

]
1 2⁄

  

Hence, the time to maximum compression, T, is 

𝑇 = 1.47
𝑥0

𝑉0
            (20) 

For spherical body impacting against a plane surface, 

i.e. 𝑅1 → ∞ 

𝐾 =
4

3𝜋[
1−𝜗1

2

𝜋𝐸1
+

1−𝜗2
2

𝜋𝐸2
]
(𝑅2)1 2⁄            (21) 

And time of contact, t, is 

𝑡 = 2 𝑇 

 


