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Abstract 

In the present day, automated industries, such as arc welding robots have found immense applications in manufacturing of 

steel furniture, automobile components, agricultural machineries etc. Selection of the most appropriate robot for a specific 

welding application can be treated as a multi-criteria decision making problem where the best alternative needs to be identified 

with respect to a set of conflicting evaluation criteria. In this paper, rough numbers are integrated with multi-attributive border 

approximation area comparison (MABAC) approach for solving an arc welding robot selection problem. The opinions of five 

decision makers are aggregated together using rough numbers to avoid subjectivity in the decision making process, while 

MABAC method is employed to rank the candidate alternatives and choose the best robot for the given welding application. 

The criteria weights are determined using rough entropy method, which reveals that welding performance and payload are the 

two most important arc welding robot selection criteria, followed by cost of the robot. The application of rough-MABAC 

method identifies robot A6 as the most suitable choice and robot A2 as the least preferred option. 
© 2021 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

According to ISO 8373:2012, an industrial robot can be 

defined as ‘an automatically controlled, reprogrammable, 

multipurpose manipulator programmable in three or more 

axes, which can be either fixed in place or mobile for use in 

industrial automation applications’. Due to their ability to 

perform dangerous, monotonous and repetitive tasks with 

unswerving precision and accuracy, industrial robots are 

now of increasing demands in diverse manufacturing 

applications under challenging environments. As their 

various functionalities are automatically controlled by 

programmed software, they can be operated round the clock 

while releasing the occupied manpower to other activities, 

and relieving the manpower from those activities which 

may cause physical strain and injury to them. Their 

implementation thus increases productivity and profitability 

of the present day manufacturing industries while reducing 

delivery time and improving work environment [1, 2].  

Although the primary task of industrial robots is to move 

materials from one place to another, they can also be 

adopted for carrying out other programmed tasks in 

different industrial settings, like welding (arc and spot), 

machine loading and unloading, spray painting, assembly 

operation, picking, packing and palletizing, machining and 

cutting operations, etc. At the same time, the number of 

industrial robot manufacturers has also shown an increasing 

trend, each offering a wide range of robots to fulfil the 

customers’ end requirements. Thus, with the availability of 

different types and models of industrial robots having 

separate specifications, it now becomes a difficult and 

challenging assignment to the decision makers to identify 

the most appropriate robot to perform the specified 

industrial operation. This robot selection task now becomes 

more and more intricate as diverse complex features and 

facilities are being continuously added to the robots by 

different manufacturers. Changing manufacturing 

environment, investment plan, product design and 

manufacturing system often influence the industrial robot 

selection decision. Thus, selection of the best-suited 

industrial robot having the desired functional ability can be 

treated as a multi-criteria decision making (MCDM) 

problem [3]. It has been often noticed that an ill-selected 

robot may adversely affect the productivity and profitability 

of a manufacturing organization. The application of an 

MCDM method for robot selection basically consists of 

three stages, i.e. identification and assessment of various 

robot alternatives and evaluation criteria, determination of 

the criteria weights and prioritization of the candidate 

robots. Presence of subjective evaluation criteria expressed 

in linguistic terms, mutually conflicting criteria and large 

number of selection criteria make the industrial robot 

selection task more and more difficult. It can be 

interestingly noted that Bhangale et al. [4] recognized a total 

of 83 criteria for performance appraisal of industrial robots. 

While applying any MCDM method for identification of 

the most apposite robot for a given industrial application, 

valuable opinions of the decision makers/experts are often 
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sought to evaluate the performance of the candidate robots 

with respect to various criteria. These expert opinions are 

subjectively expressed using linguistic terms and they also 

considerably vary from one expert to another. These varied 

judgements of the participating experts need to be 

aggregated to arrive at the final selection decision. There 

also exists ambiguity and uncertainty in evaluating weights 

of various evaluation criteria. In this paper, a maiden 

endeavour is put forward to evaluate the performance of arc 

welding robots and identify the best choice for a given task 

while applying rough multi-attributive border 

approximation area comparison (MABAC) approach. In 

order to avoid any biasness in the decision making process, 

rough entropy method is implemented to determine the 

priority weights of the considered selection criteria. Arc 

welding is a joining process which utilizes an electric arc 

between an electrode and a metal base. Arc welding robots 

employ this process to generate intense heat to the metal at 

a joint, causing the metal to melt and intermix. There are 

several advantages of arc welding robots over the manual 

welders. They can provide consistent performance 

throughout the weld, and have extremely high repeatability, 

causing high quality welds. They can also save the manual 

welders from toxic fumes and risk of arc burns. They can 

significantly reduce cycle time and increase productivity. It 

has been observed that arc welding robots have typically 

about 75-80% arc-on time, and for larger parts with long 

seams, they can have more than 95% arc-on time. On the 

other hand, human welders have less than 50% arc-on time 

and with fatigue, it may further decrease as the shift 

progresses. Arc welding robots have found wide ranging 

applications in manufacturing of steel furniture, automobile 

components, agricultural machineries etc. 

This paper is organized as follows: After providing a 

brief introduction on the need of arc welding robot selection 

in Section 1, Section 2 presents a review on various MCDM 

methods applied for robot selection. Section 3 highlights the 

mathematics behind rough set theory and MABAC 

approach. An arc welding robot selection problem is solved 

in Section 4. Discussions are provided in Section 5 and 

conclusions are drawn in Section 6.  

2. Literature review 

It can be revealed that selection of industrial robots for 

varying applications has already caught the attention of the 

researchers since several years. Various MCDM techniques, 

mainly in the form of weighted sum method (WSM), 

weighted product method (WPM), simple multi-attribute 

rating technique (SMART), weighted aggregated sum 

product assessment (WASPAS), multi-objective 

optimization on the basic of ratio analysis (MOORA), 

analytic hierarchy process (AHP), technique for order 

preference by similarity to the ideal solution (TOPSIS), 

evaluation based on distance from average solution 

(EDAS), preference ranking organization method for 

enrichment evaluation (PROMETHEE),  TOmada de 

Decisao Interativa Multicriterio (TODIM) (an acronym in 

Portuguese for interative multi-criteria decision making) 

etc. have been adopted for identifying suitable robots for 

performing simple pick-n-place operations. Table 1 

presents a review of the existent literature on industrial 

robot selection along with the number of alternative robots, 

evaluation criteria and MCDM techniques employed for 

solving those problems. 

Those MCDM techniques have been deployed under the 

circumstances where the performance of the alternative 

robots with respect to various evaluation criteria can be 

numerically expressed in absolute units. On the other hand, 

it can also be noticed that some of those MCDM techniques 

have been integrated with different models of fuzzy set 

theory, like interval type-2 fuzzy sets, interval-valued 

hesitant fuzzy theory, cloud model etc. to quantify the 

qualitative assessment of different robot selection criteria 

under group decision making environment. Those fuzzy 

models usually convert the crisp information into fuzzy 

values to deal with the vagueness present in the decision 

making process. In fuzzy set theory, identification of the 

appropriate membership functions mainly depends of the 

subjective judgments of the concerned decision makers. 

Auxiliary information is also required in most of the fuzzy 

models. The introduction of rough numbers instead of fuzzy 

numbers can more efficiently address the subjectivity and 

ambiguity in the data because they mainly confide in the 

original data without any additional information. Rough 

numbers are able to deal with the vagueness and uncertainty 

in the data with the help of boundary region of a set instead 

of membership functions [20-23]. Application of rough 

numbers in decision making does not require any 

preliminary or additional information about the primary 

data (like, probability distributions, membership functions 

or possibility value). It has been pointed out that the 

integration of rough numbers with MCDM methods would 

provide more acceptable and reliable results while solving 

complex decision making problems [24, 25]. The above-

cited literature review also reveals the fact that the 

application of MCDM methods for solving welding robot 

selection problems is really scarce. Thus, in this paper, 

rough numbers are harmonized with MABAC method to 

identify the most apposite industrial robot for performing 

arc welding operations in real time manufacturing 

environment. The rough-MABAC method also identifies 

the positive and negative attributes for each of the arc 

welding robot alternatives. This integrated approach would 

classify the competing robot alternatives into efficient (best 

performers) and inefficient (underperformers) ones, and 

would also identify the relative strengths of the best 

performing robots and weaknesses of the underperforming 

robots. It would finally rank the competing arc welding 

robots from the best to the worst. In order to avoid 

subjectivity in the decision making process, the priority 

weights of the considered robot selection criteria are 

determined using rough entropy method. Compared to other 

subjective weighting models, like best worst method 

(BWM), step-wise weight assessment ratio analysis 

(SWARA), factor relationship (FARE), level based weight 

assessment (LBWA), full consistency method (FUCOM) 

etc., the major advantage of entropy weighting method is 

the avoidance of interference of human factors during 

estimation of criteria weights, thereby increasing objectivity 

of weight measurement results [26]. Based on the disorder 

degree of a system (randomness), it can extract valuable 

information using the data provided. In a decision matrix, 

when the difference in performance scores of the candidate 

alternatives with respect to a specific criterion is high, the 

corresponding entropy would be low providing more useful 

information and the weight of that criterion would be set as 

high. On the other hand, if the difference is small, the 

entropy is high and the relative weight would be low. Thus, 

the application of rough-MABAC method would help a 

manufacturing organization in arriving at the most proactive 

decision with respect to robot selection for a specific 

welding task. Based on the identified research gap, this 

paper contributes to the followings: 
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1. to assess the relative performance of 14 arc welding 

robot alternatives with respect to 12 evaluation criteria 

based on the valued opinions of five decision 

makers/experts using rough numbers, 

2. to propose the application of MABAC method to rank 

all the alternative robots from the best to the worst based 

on their calculated performance scores, 

3. to segregate all the alternative robots into best 

performing (efficient) and underperforming (inefficient) 

clusters using their corresponding criteria function 

values,  

4. to identify the relative strengths and weaknesses of each 

of the robots with respect to all the evaluation criteria so 

that the concerned manufacturers can modify/upgrade 

the existing specifications of the underperforming robots 

to make them more comparable and appropriate for a 

specific welding task, and   

5. to prove the accuracy of the ranking results derived using 

rough-MABAC method against other popular rough 

MCDM techniques.   

Table 1. List of alternative robots, evaluation criteria and MCDM techniques considered by the past researchers 

Sl. No. Author(s) 
Number of 

alternative robots 
Evaluation criteria MCDM technique(s) 

1. Sen et al. [5] 7, 14 

Velocity, load capacity, cost, repeatability, 

maximum tip speed, memory capacity, manipulator 

reach, vendor’s service quality, programming 

flexibility  

PROMETHEE II 

2. Ghorabaee [6] 8 

Inconsistency with infrastructure, man-machine 

interface, programming flexibility, vendor’s service 

contract, supporting channel partner’s performance, 

compliance, stability 

Fuzzy VIKOR with 

interval type-2 fuzzy 

sets 

3. Gitinavard et al. [7] 3 

Man-machine interface, programming flexibility, 

vendor’s service contract, load capacity, positioning 

accuracy, cost 

Interval-valued 

hesitant fuzzy 

distance-based group 

decision model 

4. Karande et al. [8] 7,12 

Load capacity, maximum tip speed, repeatability, 

memory capacity, manipulator reach, cost, handling 

coefficient, velocity  

WSM, WPM, 

WASPAS, MOORA, 

MULTIMOORA 

5. Sen et al. [9] 7 

Load capacity, repeatability, maximum tip speed, 

memory capacity, manipulator reach, man-machine 

interface,  programming flexibility, vendor’s 

service 

contract, positioning accuracy, safety, 

environmental performance, reliability,  

maintainability  

Fuzzy 

PROMETHEE  

6. Sen et al. [10] 7  
Load capacity, repeatability, maximum tip speed, 

memory capacity,  manipulator reach, velocity, cost 
TODIM 

7. Xue et al. [11] 3 

Man-machine interface, programming flexibility,  

vendor’s service contract, cost,  

load capacity, positioning accuracy 

Linguistic MCDM 

approach 

8. Breaz et al. [12] 3 
Load capacity, reach, weight, repeatability, power 

consumption, dexterity, service  
AHP 

9. Wang et al. [13] 4 

Inconsistency with infrastructure, man-machine 

interface, programming flexibility, vendor’s service 

contract, supporting channel partner’s performance, 

compliance, stability 

Cloud TODIM 

10. Liu et al. [14] 3 
Freedom, work space, velocity, load capacity, 

accuracy, warranty period, protection class 

Linguistic MCDM 

model 

11. Yalçin and Uncu [15] 3, 5, 7 

Load capacity, repeatability, vertical reach, degrees 

of freedom, maximum tip speed, memory capacity, 

manipulator reach, man-machine interface, 

programming flexibility, vendor’s service contract 

EDAS 

12. Nasrollahi et al. [16] 4 
Cost, load capacity, repeatability, man-machine 

interface, programming flexibility, velocity ratio 

Fuzzy BWM-

PROMETHEE 

13. 
Suszynski and 

Rogalewicz [17] 
5 

Lifting capacity, weight, working range, 

repeatability, range of movement, price, velocity 

Fuzzy AHP, fuzzy 

TOPSIS, SMART 

14. Zhang et al. [18] 3 
Price, energy consumption, external configuration, 

accuracy, speed, work raio, programming difficulty 
AHP, TOPSIS 

15. Rashid et al. [19]  5 
Load capacity, repeatability, velocity ratio, degree 

of freedom 
BWM-EDAS 

16. This paper 14 

Payload, horizontal reach, vertical reach, 

repeatability, weight, power rating, cost, flexibility, 

safety, welding performance, maintainability, ease 

of programming  

Rough-MABAC 
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3. Methods  

3.1. Rough set theory 

A rough number can be expressed with respect to rough 

boundary interval, comprising lower limit and upper limit 

[27]. Suppose, in the universe, U with all the objects, Y is 

an arbitrary object of U, and R is a set of t classes 

{G1,G2,...,Gt} encompassing all the objects in U. If these t 

classes are arranged as {G1<G2<...<Gt}, then 

,, RGUY q  1 ≤ q ≤ t, where R(Y) represents the 

class to which the object belongs. The lower approximation 

))(( qGApr , upper approximation ))(( qGApr and 

boundary region ))(( qGBnd of class Gq can be denoted 

as follows: 

})(/{)( qq GYRUYGApr                                (1) 

})(/{)( qq GYRUYGApr                                    (2) 
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Then Gq can be defined as rough number (RN(Gq)), 

which can be expressed by its corresponding lower limit 

))(( qGLim and upper limit ))(( qGLim , as shown 

below [25]: 
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where ML and MU  are the numbers of objects contained 

in ))(( qGApr and ))(( qGApr  respectively, and 
L
ijx

and
U
ijx are the lower evaluation and upper evaluation limits 

of jth criterion with respect to ith alternative respectively. 

 The difference between the upper and lower 

evaluation limits is known as the rough boundary interval. 

)()()( qqq GLimGLimGIRBnd                                      (7) 

More vagueness present in the data has a larger rough 

boundary interval, whereas, more preciseness is represented 

by the smaller value of this interval.  

3.2. Rough number-based entropy method  

While solving any MCDM problem, determination of 

the weights (relative importance) of the considered criteria 

always plays an important role. Any variation in the criteria 

weights may result in different ranking orders of the 

candidate alternatives. It has already been mentioned that 

the conventional approaches of criteria weight 

measurement, like AHP, BWM, LBWA, SWARA, 

FUCOM etc, suffer from a major disadvantage of being 

affected by the subjective preferences of the decision 

makers. In order to avoid this subjectivity in human 

judgements, information entropy theory has now become a 

well-accepted approach where the estimation of the criteria 

weights mainly depends on the randomness in the data 

itself. Thus, rough set theory is combined here with entropy 

theory to aggregate the individual judgements of the 

decision makers while estimating the weights of various arc 

welding robot selection attributes. Determination of the 

criteria weights based on rough entropy method has the 

following procedural steps [28]: 

 Step 1: For k number of decision makers, k number of 

decision matrices can be developed, each representing 

the performance of candidate arc welding robots with 

respect to different attributes under consideration. Based 

on the information of those decision matrices and rough 

set theory, the following decision matrix (X) can be 

formulated:  
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where xij (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the performance score 

of ith alternative with respect to jth criterion, m is the number 

of alternatives and n is the number of attributes.  

 Step 2: From the initial rough decision matrix (X), the 

corresponding normalized rough decision matrix, 

nm
U
ij

L
ij rrN  ]),([ is now developed. For this 

normalization process, any of the following two 

equations can be deployed depending on the type of the 

considered criterion.  
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For non-beneficial criteria:  
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 Step 3: The entropy of the rough numbers is now 

computed using the following expressions: 

 )ln(

1






m

i

L
ij

L
ij

L
j ffkE                               (13) 

 )ln(

1






m

i

U
ij

U
ij

U
j ffkE                              (14) 

where 



m

i

U
ij

L
ij

L
ij rrf

1

/ , 



m

i

U
ij

U
ij

U
ij rrf

1

/ , k = 1/ln(n), 

supposing 0ijf , 0ln ijij ff  . 

Now, the weight for jth criterion can be estimated as 

follows: 
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where
L
jw and 

U
jw  respectively represent the lower and 

upper limits of the entropy weight for jth criterion.  

3.3. Rough number-based MABAC method 

The implementation procedure of rough number-based 

MABAC approach for identifying the best alternative based 

on a set of conflicting criteria has the following steps [29-

34]:  

 Step 1: Using the normalized rough decision matrix and 

rough entropy weights, the corresponding weighted 

normalized rough decision matrix (V) is formulated. 
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where ],[ U

ij

L

ij nn are the elements of the normalized 

rough decision matrix (N) and ],[ U
j

L
j ww are the rough 

entropy weights of jth criterion. 

 Step 2: Based on the geometric aggregation procedure 

for interval numbers, the border approximation area 

(BAA) for each criterion is calculated as follows:  
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 Step 3: Calculate the distances of the candidate 

alternatives from the BAA to obtain the related distance 

matrix (Q) while employing the Euclidean distance 

operator for interval numbers. 
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For non-beneficial criteria: 

 








)()( if),(

)()( if),(

jijjijE

jijjijE

ij gRNvRNgvd

gRNvRNgvd
q

                                                                             

(21) 

and 

 

22 )()(),( L
j

U
ij

U
j

L
ijjijE gvgvgvd  for 

beneficial criteria                                                 (22) 

 

22 )()(),( U
j

U
ij

L
j

L
ijjijE gvgvgvd   

for non-beneficial criteria                                              (23)
 

where ],[ U
j

L
j gg is the BAA for jth criterion. 

Now, if qij = 0, an alternative Ai belongs to the BAA (G); 

if qij > 0, it belongs to upper approximation area (G+), and if 

qij < 0, it belongs to lower approximation area (G−). The 

ideal alternative (A+) should be positioned in the upper 

approximation area (G+), and location of the anti-ideal 

alternative (A−) should be in the lower approximation area 

(G−). An alternative (Ai) with as many criteria belonging to 

the upper approximation area (G+) should be treated as the 

best choice. 

 Step 4: For determination of the criteria function values 

(final scores) of the alternatives, the distances of the 

alternatives from the BAA vector are added together.  

 miqAS
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                        (24) 

The candidate alternatives are now ranked based on the 

descending values of S(Ai). Hence, the alternative having 

the highest S(Ai) value is obviously the best suited option. 

4. Selection of an arc welding robot 

Due to wide ranging applications of arc welding robots 

in various manufacturing industries, it becomes an ardent 

need for the decision makers to evaluate the performance of 

the available robots with respect to some of the important 

criteria, and to identify the most apposite robot for a said 

welding application. As the deployment of an arc welding 

robot is a capital intensive task, any wrong decision during 

the robot procurement and installation stage may negatively 

affect the productivity and goodwill of the manufacturing 

organizations. While selecting an arc welding robot, the 

judgments of the individual decision makers (experts) are 

often predisposed. Hence, in order to avoid this biasness in 

the decision making process, the opinions of five decision 

makers are sought. These decision makers, engaged in an 

automobile industry and having more than 10 years of 

industrial experience, have enough expertise in 

joining/welding processes, operation and control of arc 

welding robots, robot programming, part/product geometry, 

safety and environmental hazards during the welding 

operation. Each of those decision makers has to assess the 

performance of 14 candidate arc welding robots with 

respect to 12 evaluation criteria based on a 9-point scale 

(where 1 = very low, 3 = low, 5 = moderate, 7 = high and 9 

= very high). For this arc welding robot selection problem, 

the considered evaluation criteria are payload (PL), 

horizontal reach (HR), vertical reach (VR), repeatability 

(R), weight (W), power rating (PR), cost (C), flexibility 

(FL), safety (S), welding performance (WP), 

maintainability (M) and ease of programming (EP). 

Amongst these 12 evaluation criteria, PL, HR, VR, R, FL, 

S, WP, M and EP are beneficial attributes, always requiring 

their higher values. On the other hand, W, PR and C are non-

beneficial criteria where lower values are preferred. 

Performance of an arc welding robot by the concerned 

decision makers is usually appraised based on the 

manufacturers’ brand name, service facility provided, 

features in the robot, complexity of the welding operation to 



 © 2021 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 15, Number 2  (ISSN 1995-6665) 174 

be performed, compactness of the robot etc. Payload is the 

maximum weight that a robot can lift and manipulate over 

a specified working space with ease and desired 

repeatability. It includes weight of the end arm tooling with 

the necessary welding attachments. Horizontal reach can be 

defined as the distance from the centre of the robot to the 

fullest extension of its arm in horizontal direction. On the 

other hand, vertical reach is the maximum work envelope in 

vertical direction where a robotic arm with the welding 

attachments can reach. Repeatability is the measure of 

variability of a robotic arm’s positioning under the specified 

conditions of load, temperature etc. Weight is the overall 

weight of an arc welding robot. It plays a crucial role when 

there is a load constraint in the job floor. Power rating 

signifies the amount of power required by a robot for 

performing a seamless welding operation. Cost of an arc 

welding robot consists of the expenditure incurred during its 

procurement and installation. Flexibility is the ability of an 

arc welding robot to perform a variety of different welding 

tasks regardless of the size, shape or position of the job. 

Safety is determined on the basis of various safety features 

present in an arc welding robot to allow safe human-robot 

interaction. Welding performance indicates the quality and 

consistency of the welding operation by a robot. 

Maintainability represents the ease with which it can be 

ensured that the robots are welding/functioning properly 

and can be repaired in case of any failure/malfunction. Ease 

of programming is an important feature for an arc welding 

robot through which it is instructed to perform a sequence 

of steps. The robot can be easily reprogrammed to perform 

a different set of steps as and when desired. 

Thus, based on the evaluation of the candidate arc 

welding robots with respect to 12 assessment criteria by the 

five decision makers, five decision matrices are developed. 

Table 2 shows one such decision matrix representing the 

preference of the first decision maker while evaluating the 

performance of the considered arc welding robots. Other 

four decision matrices are also similarly formed. Thus, the 

first decision maker assesses the performance of robot A1 

with PL = very low (1), HR = very low (1), VR = very low 

(1), R = very low (1) and so on. Rough set theory is now 

applied to aggregate the individual judgments of the five 

decision makers. For example, the set of performance 

ratings of robot A1 with respect to PL as evaluated by the 

five decision makers is represented as x11 = {very low, very 

low, low, low, very low} = {1, 1, 3, 3, 1}. Using Eqs. (4)-

(6), this set of subjective linguistic information is 

transformed into the corresponding rough numbers, as 

explained below: 

For the element 11
~x = {1, 1, 3, 3, 1}  
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Based on the above-demonstrated calculations, all the 

entries from the decision matrices of the five individual 

decision makers are converted into a rough decision matrix,

,]),([ 1214 U
ij

L
ij xxX as provided in Table 3. It is 

worthwhile to mention here that among the 12 evaluation 

criteria, some are beneficial (larger-the-better) in nature and 

some are non-beneficial (smaller-the-better) attributes. 

Thus, while taking into consideration both these types of 

attributes, the rough decision matrix is now normalized 

applying Eqs. (9)-(12). The corresponding normalized 

rough decision matrix 1214]),([  U
ij

L
ij rrN is shown in 

Table 4. Similarly, while employing Eqs. (13)-(16), the 

rough entropy weights for the 12 arc welding robot selection 

criteria are estimated, as exhibited in Table 5. Amongst 

these 12 robot selection criteria, WP and PL are observed to 

have maximum rough entropy weights, followed by C and 

S. On the other hand, WP is identified having the maximum 

rough boundary interval, where the five decision makers 

have opined quite differently.  

After developing the normalized rough decision matrix 

and calculating the rough entropy weights for the 

considered assessment criteria, the corresponding weighted 

normalized rough decision matrix is formulated, as shown 

in Table 6. This matrix is developed by multiplying rough 

entropy weights with the elements of the normalized rough 

decision matrix, using Eq. (17). Now, rough-MABAC 

method is implemented to identify the best arc welding 

robot from a set of 14 candidate alternatives. Using the 

geometric aggregation operator for rough numbers and Eq. 

(18), the related border approximation area (BAA) for each 

of the robot selection criteria is computed, as presented in 

Table 7. For example,     
Lg1 = 

(0.038×0.040×0.048×0.069×0.046×0.056×0.037×0.039×0.

036×0.056×0.036×0.036×0.055× 

         0.036)(1/14) = 0.0439 
Ug1 = 

(0.447×0.469×0.548×0.757×0.531×0.627×0.436×0.497×0.

409×0.627×0.409×0.428×0.640× 

         0.412)(1/14) = 0.5070 

g1 = [0.0439,0.5070] 

The distances of all the arc welding robot alternatives 

from the BAA are now calculated to form the corresponding 

distance matrix, Q, while employing the rough-valued 

Euclidean distance operator of Eqs. (20)-(23). This distance 

matrix is provided in Table 8, from which the final score, 

S(Ai) for each of the arc welding robots is computed. The 

S(Ai) values are then arranged in descending order to 

provide a ranking list of the robots from the best to the 

worst. For example,  
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S(AR700) = –0.6186 – 0.3759 – 0.4031 – 0.4030 – 

0.0822 – 0.0300 + 0.0953 + 0.5566 – 0.5303 + 0.9243 + 

0.6042 + 0.6022 = 0.3394 

S(AR900) = –0.6321 – 0.3759 – 0.4137 – 0.4030 – 

0.0899 – 0.0300 + 0.0953 – 0.4789 + 0.6156 – 0.7685 + 

0.6101 + 0.6085 = –1.2624 

The final scores of all the 14 arc welding robot 

alternatives are exhibited in Table 9. Based on these scores 

as computed using rough-MABAC method, it can be 

revealed that A6 robot occupies the top position in the 

ranking list, followed by robot A3. The entire ranking list is 

obtained as A6 →A3→ 

A13→A10→A5→A9→A4→A11→A1→A14→A7→A12→A8

→A2. The positions of all these alternative arc welding 

robots in the lower, upper and border approximation areas 

are depicted in Figure 1. From this figure, it can be noticed 

that there are two arc welding robots, i.e. A7 and A14 almost 

positioning on the border approximation area, and the 

locations of three robots, i.e. A2, A8 and A12 are in the lower 

approximation area. The remaining nine arc welding robots 

are positioned in the upper approximation area. Based on 

the positions of the alternative robots in the upper and lower 

approximation areas, they can be definitely categorized as 

efficient and inefficient ones respectively for the given 

welding task. Thus, it can be concluded that the arc welding 

robots, A6, A3, A13, A10, A5, A9, A4, A11 and A1 can be 

efficiently deployed to perform the required welding task in 

a real time manufacturing environment.

Table 2. Arc welding robot performance evaluation matrix by decision maker 1 

Arc welding 

robot 
PL HR VR R W PR C FL S WP M EP 

A1 1 1 1 1 1 1 7 7 3 7 7 7 

A2 1 1 1 1 1 1 7 3 7 3 7 7 

A3 3 3 3 3 3 1 3 3 3 7 3 7 

A4 9 5 5 3 5 3 3 3 9 3 3 7 

A5 3 5 5 5 5 3 3 7 3 3 3 7 

A6 7 5 5 3 5 3 9 9 7 7 7 9 

A7 1 3 3 5 3 1 7 7 3 9 9 3 

A8 3 5 5 5 5 3 3 3 3 3 7 3 

A9 1 9 9 9 9 5 3 3 3 7 7 3 

A10 7 9 9 9 9 9 7 7 7 7 3 3 

A11 1 3 3 5 3 1 9 7 9 3 9 7 

A12 1 3 3 5 3 1 7 7 7 3 9 3 

A13 7 5 5 5 7 7 3 7 3 7 3 3 

A14 1 3 3 5 3 1 7 7 3 7 9 3 

Table 3. Rough decision matrix for arc welding robot selection problem 

Arc 

weldin

g robot 

PL HR VR R W PR C FL S WP M EP 

A1 
[1.32,2.28

] 

[1.08,1.72

] 

[1.08,1.72

] 

[1.32,2.28

] 

[1.32,2.28

] 

[1.08,1.72

] 

[7.08,7.72

] 

[7.08,7.72

] 

[3.08,3.72

] 

[7.08,7.72

] 

[5.72,6.68

] 

[5.72,6.68

] 

A2 [1.72,2.68

] 

[1.08,1.72

] 

[1.32,2.28

] 

[1.32,2.28

] 

[1.08,1.72

] 

[1.08,1.72

] 

[7.08,7.72

] 

[3.32,4.28

] 

[5.72,6.68

] 

[3.08,3.72

] 

[6.28,6.92

] 

[6.28,6.92

] 

A3 [3.08,3.72

] 

[3.08,3.72

] 

[3.32,4.28

] 

[3.32,4.28

] 

[3.08,3.72

] 

[1.32,2.28

] 

[3.32,4.28

] 

[3.32,4.28

] 

[3.32,4.28

] 

[5.72,6.68

] 

[1.72,2.68

] 

[5.72,6.68

] 

A4 [8.28,8.92

] 

[5.32,6.28

] 

[5.08,5.72

] 

[3.08,3.72

] 

[4.28,4.92

] 

[3.32,4.28

] 

[3.72,4.68

] 

[3.08,3.72

] 

[8.28,8.92

] 

[3.32,4.28

] 

[1.72,2.68

] 

[5.32,6.28

] 

A5 [3.08,3.72

] 

[5.32,6.28

] 

[5.32,6.28

] 

[5.08,5.72

] 

[5.32,6.28

] 

[3.32,4.28

] 

[3.08,3.72

] 

[5.72,6.68

] 

[1.72,2.68

] 

[3.32,4.28

] 

[3.08,3.72

] 

[5.32,6.28

] 

A6 [6.28,6.92

] 

[5.72,6.68

] 

[5.08,5.72

] 

[3.08,3.72

] 

[5.08,5.72

] 

[3.08,3.72

] 

[7.72,8.68

] 

[8.28,8.92

] 

[5.72,6.68

] 

[6.28,6.92

] 

[7.32,8.28

] 

[7.72,8.68

] 

A7 [1.32,2.28

] 

[3.08,3.72

] 

[3.32,4.28

] 

[5.08,5.72

] 

[3.32,4.28

] 

[1.08,1.72

] 

[7.08,7.72

] 

[6.28,6.92

] 

[3.08,3.72

] 

[8.28,8.92

] 

[8.28,8.92

] 

[3.08,3.72

] 

A8 [3.32,4.28

] 

[5.08,5.72

] 

[5.32,6.28

] 

[5.08,5.72

] 

[3.72,4.68

] 

[3.32,4.28

] 

[3.32,4.28

] 

[3.08,3.72

] 

[3.08,3.72

] 

[3.32,4.28

] 

[6.28,6.92

] 

[3.32,4.28

] 

A9 [1.08,1.72

] 

[8.28,8.92

] 

[8.28,8.92

] 

[7.72,8.68

] 

[8.28,8.92

] 

[3.72,4.68

] 

[3.72,4.68

] 

[3.08,3.72

] 

[3.32,4.28

] 

[5.72,6.68

] 

[5.72,6.68

] 

[3.72,4.68

] 

A10 [6.28,6.92

] 

[7.72,8.68

] 

[7.72,8.68

] 

[8.28,8.92

] 

[8.28,8.92

] 

[7.72,8.68

] 

[6.28,6.92

] 

[7.08,7.72

] 

[5.72,6.68

] 

[5.72,6.68

] 

[3.08,3.72

] 

[3.32,4.28

] 

A11 [1.08,1.72

] 

[3.32,4.28

] 

[3.32,4.28

] 

[5.08,5.72

] 

[3.32,4.28

] 

[1.32,2.28

] 

[8.28,8.92

] 

[7.32,8.28

] 

[7.72,8.68

] 

[3.32,4.28

] 

[8.28,8.92

] 

[5.72,6.68

] 

A12 [1.32,2.28

] 

[3.32,4.28

] 

[3.08,3.72

] 

[5.08,5.72

] 

[3.32,4.28

] 

[1.32,2.28

] 

[7.08,7.72

] 

[7.08,7.72

] 

[7.32,8.28

] 

[3.72,4.68

] 

[7.72,8.68

] 

[3.72,4.68

] 

A13 [5.72,6.68

] 

[5.32,6.28

] 

[5.32,6.28

] 

[5.32,6.28

] 

[7.08,7.72

] 

[7.08,7.72

] 

[3.08,3.72

] 

[7.32,8.28

] 

[3.08,3.72

] 

[5.72,6.68

] 

[3.08,3.72

] 

[3.08,3.72

] 

A14 [1.08,1.72

] 

[3.08,3.72

] 

[3.32,4.28

] 

[5.32,6.28

] 

[3.32,4.28

] 

[1.32,2.28

] 

[7.32,8.28

] 

[7.08,7.72

] 

[3.08,3.72

] 

[6.28,6.92

] 

[7.08,7.72

] 

[3.32,4.28

] 
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Table 4. Normalized rough decision matrix for arc welding robot selection problem 

Arc 

weldi

ng 

robot 

PL HR VR R W PR C FL S WP M EP 

A1 
[0.036,0.1

81] 
[0,0.096] [0,0.096] 

[0.036,0.1

81] 

[0.819,0.9

64] 

[0.904,1.0

00] 
[0,0.096] 

[0.904,1.0

00] 

[0.301,0.3

98] 

[0.904,1.0

00] 

[0.699,0.8

43] 

[0.699,0.84

3] 

A2 [0.096,0.2

41] 
[0,0.096] 

[0.036,0.1

81] 

[0.036,0.1

81] 

[0.904,1.0

00] 

[0.904,1.0

00] 
[0,0.096] 

[0.337,0.4

82] 

[0.699,0.8

43] 

[0.301,0.3

98] 

[0.783,0.8

8] 

[0.783,0.88

0] 

A3 [0.328,0.4

48] 

[0.328,0.4

48] 

[0.373,0.5

52] 

[0.373,0.5

52] 

[0.552,0.6

72] 

[0.821,1.0

00] 

[0.448,0.6

27] 

[0.373,0.5

52] 

[0.373,0.5

52] 

[0.821,1.0

00] 

[0.075,0.2

54] 

[0.821,1.00

0] 

A4 [0.911,1.0

00] 

[0.500,0.6

33] 

[0.467,0.5

56] 

[0.189,0.2

78] 

[0.556,0.6

44] 

[0.644,0.7

78] 

[0.589,0.7

22] 

[0.189,0.2

78] 

[0.911,1.0

00] 

[0.222,0.3

56] 
[0,0.133] 

[0.5000,0.6

33] 

A5 [0.274,0.4

03] 

[0.726,0.9

19] 

[0.726,0.9

19] 

[0.677,0.8

06] 

[0.081,0.2

74] 

[0.484,0.6

77] 

[0.597,0.7

26] 

[0.806,1.0

00] 
[0,0.194] 

[0.323,0.5

16] 

[0.274,0.4

03] 

[0.726,0.91

9] 

A6 [0.548,0.6

58] 

[0.452,0.6

16] 

[0.342,0.4

52] 
[0,0.110] 

[0.548,0.6

58] 

[0.890,1.0

00] 

[0.041,0.2

05] 

[0.890,1.0

00] 

[0.452,0.6

16] 

[0.548,0.6

58] 

[0.726,0.8

9] 

[0.795,0.95

9] 

A7 [0.031,0.1

53] 

[0.255,0.3

37] 

[0.286,0.4

08] 

[0.510,0.5

92] 

[0.592,0.7

14] 

[0.918,1.0

00] 

[0.153,0.2

35] 

[0.663,0.7

45] 

[0.255,0.3

37] 

[0.918,1.0

00] 

[0.918,1.0

00] 

[0.255,0.33

7] 

A8 [0.063,0.3

13] 

[0.521,0.6

88] 

[0.583,0.8

33] 

[0.521,0.6

88] 

[0.583,0.8

33] 

[0.688,0.9

38] 

[0.688,0.9

38] 
[0,0.167] [0,0.167] 

[0.063,0.3

13] 

[0.833,1.0

00] 

[0.063,0.31

3] 

A9 [0,0.082] 
[0.918,1.0

00] 

[0.918,1.0

00] 

[0.847,0.9

69] 
[0,0.082] 

[0.541,0.6

63] 

[0.541,0.6

63] 

[0.255,0.3

37] 

[0.286,0.4

08] 

[0.592,0.7

14] 

[0.592,0.7

14] 

[0.337,0.45

9] 

A10 [0.548,0.6

58] 

[0.795,0.9

59] 

[0.795,0.9

59] 

[0.890,1.0

00] 
[0,0.110] 

[0.041,0.2

05] 

[0.342,0.4

52] 

[0.685,0.7

95] 

[0.452,0.6

16] 

[0.452,0.6

16] 
[0,0.110] 

[0.041,0.20

5] 

A11 [0,0.082] 
[0.286,0.4

08] 

[0.286,0.4

08] 

[0.510,0.5

92] 

[0.592,0.7

14] 

[0.847,0.9

69] 
[0,0.082] 

[0.796,0.9

18] 

[0.847,0.9

69] 

[0.286,0.4

08] 

[0.918,1.0

00] 

[0.592,0.71

4] 

A12 [0,0.130] 
[0.272,0.4

02] 

[0.239,0.3

26] 

[0.511,0.5

98] 

[0.598,0.7

28] 

[0.870,1.0

00] 

[0.130,0.2

17] 

[0.783,0.8

7] 

[0.815,0.9

46] 

[0.326,0.4

57] 

[0.870,1.0

00] 

[0.326,0.45

7] 

A13 [0.508,0.6

92] 

[0.431,0.6

15] 

[0.431,0.6

15] 

[0.431,0.6

15] 

[0.108,0.2

31] 

[0.108,0.2

31] 

[0.877,1.0

00] 

[0.815,1.0

00] 
[0,0.123] 

[0.508,0.6

92] 
[0,0.123] [0,0.123] 

A14 [0,0.089] 
[0.278,0.3

67] 

[0.311,0.4

44] 

[0.589,0.7

22] 

[0.556,0.6

89] 

[0.833,0.9

67] 
[0,0.133] 

[0.833,0.9

22] 

[0.278,0.3

67] 

[0.722,0.8

11] 

[0.833,0.9

22] 

[0.311,0.44

4] 

Table 5. Rough entropy weights for arc welding robot selection criteria 

PL HR VR R W PR C FL S WP M EP 

[0.036,0

.378] 

[0.026,0

.223] 

[0.025,0

.236] 

[0.025,0

.230] 

[0.026,0

.205] 

[0.020,0

.142] 

[0.036,0

.304] 

[0.022,0

.233] 

[0.027,0

.282] 

[0.020,0

.377] 

[0.029,0

.272] 

[0.025,0

.271] 

Table 6. Weighted normalized rough decision matrix for arc welding robot selection problem 

Arc 

weldi

ng 

robot 

PL HR VR R W PR C FL S WP M EP 

A1 
[0.038,0.4

47] 

[0.026,0.2

45] 

[0.025,0.2

58] 

[0.026,0.2

71] 

[0.047,0.4

02] 

[0.039,0.2

85] 

[0.036,0.3

33] 

[0.042,0.4

66] 

[0.035,0.3

95] 

[0.038,0.7

55] 

[0.049,0.5

02] 

[0.042,0.5

00] 

A2 [0.040,0.4

69] 

[0.026,0.2

45] 

[0.026,0.2

78] 

[0.026,0.2

71] 

[0.050,0.4

10] 

[0.039,0.2

85] 

[0.036,0.3

33] 

[0.030,0.3

45] 

[0.046,0.5

20] 

[0.026,0.5

27] 

[0.051,0.5

12] 

[0.044,0.5

10] 

A3 [0.048,0.5

48] 

[0.035,0.3

23] 

[0.034,0.3

66] 

[0.035,0.3

56] 

[0.041,0.3

42] 

[0.037,0.2

85] 

[0.052,0.4

94] 

[0.030,0.3

61] 

[0.037,0.4

38] 

[0.037,0.7

55] 

[0.031,0.3

41] 

[0.045,0.5

42] 

A4 [0.069,0.7

57] 

[0.039,0.3

65] 

[0.037,0.3

66] 

[0.030,0.2

93] 

[0.041,0.3

37] 

[0.033,0.2

53] 

[0.057,0.5

23] 

[0.026,0.2

98] 

[0.051,0.5

65] 

[0.025,0.5

11] 

[0.029,0.3

09] 

[0.037,0.4

43] 

A5 [0.046,0.5

31] 

[0.045,0.4

29] 

[0.043,0.4

52] 

[0.042,0.4

15] 

[0.028,0.2

61] 

[0.030,0.2

39] 

[0.057,0.5

24] 

[0.040,0.4

66] 

[0.027,0.3

37] 

[0.027,0.5

72] 

[0.037,0.3

82] 

[0.043,0.5

21] 

A6 [0.056,0.6

27] 

[0.038,0.3

61] 

[0.033,0.3

42] 

[0.025,0.2

55] 

[0.040,0.3

39] 

[0.038,0.2

85] 

[0.037,0.3

66] 

[0.042,0.4

66] 

[0.039,0.4

56] 

[0.031,0.6

25] 

[0.049,0.5

15] 

[0.044,0.5

31] 

A7 [0.037,0.4

36] 

[0.033,0.2

99] 

[0.032,0.3

32] 

[0.038,0.3

65] 

[0.042,0.3

51] 

[0.039,0.2

85] 

[0.041,0.3

75] 

[0.037,0.4

06] 

[0.034,0.3

77] 

[0.039,0.7

55] 

[0.055,0.5

45] 

[0.031,0.3

63] 

A8 [0.039,0.4

97] 

[0.040,0.3

77] 

[0.039,0.4

32] 

[0.038,0.3

87] 

[0.041,0.3

75] 

[0.034,0.2

76] 

[0.060,0.5

88] 

[0.022,0.2

72] 

[0.027,0.3

29] 

[0.021,0.4

95] 

[0.053,0.5

45] 

[0.026,0.3

56] 

A9 [0.036,0.4

09] 

[0.050,0.4

47] 

[0.048,0.4

71] 

[0.047,0.4

52] 

[0.026,0.2

21] 

[0.031,0.2

37] 

[0.055,0.5

05] 

[0.028,0.3

11] 

[0.035,0.3

98] 

[0.032,0.6

47] 

[0.046,0.4

67] 

[0.033,0.3

96] 

A10 [0.056,0.6

27] 

[0.047,0.4

38] 

[0.045,0.4

61] 

[0.048,0.4

59] 

[0.026,0.2

27] 

[0.021,0.1

72] 

[0.048,0.4

41] 

[0.037,0.4

18] 

[0.039,0.4

56] 

[0.029,0.6

1] 

[0.029,0.3

02] 

[0.026,0.3

27] 

A11 [0.036,0.4

09] 

[0.034,0.3

15] 

[0.032,0.3

32] 

[0.038,0.3

65] 

[0.042,0.3

51] 

[0.037,0.2

80] 

[0.036,0.3

29] 

[0.040,0.4

47] 

[0.050,0.5

56] 

[0.026,0.5

31] 

[0.055,0.5

45] 

[0.039,0.4

65] 

A12 [0.036,0.4

28] 

[0.033,0.3

13] 

[0.031,0.3

12] 

[0.038,0.3

67] 

[0.042,0.3

54] 

[0.038,0.2

85] 

[0.040,0.3

70] 

[0.039,0.4

35] 

[0.049,0.5

49] 

[0.027,0.5

50] 

[0.054,0.5

45] 

[0.033,0.3

95] 

A13 [0.055,0.6

40] 

[0.037,0.3

61] 

[0.036,0.3

80] 

[0.036,0.3

71] 

[0.029,0.2

52] 

[0.022,0.1

75] 

[0.067,0.6

07] 

[0.040,0.4

66] 

[0.027,0.3

17] 

[0.030,0.6

38] 

[0.029,0.3

06] 

[0.025,0.3

05] 

A14 [0.036,0.4

12] 

[0.033,0.3

05] 

[0.033,0.3

40] 

[0.040,0.3

95] 

[0.041,0.3

46] 

[0.037,0.2

80] 

[0.036,0.3

44] 

[0.041,0.4

48] 

[0.034,0.3

86] 

[0.035,0.6

83] 

[0.053,0.5

23] 

[0.032,0.3

92] 
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Table 7. BAA matrix for arc welding robot selection problem 

PL HR VR R W PR C FL S WP M EP 

[0.0439, 

0.5070] 

[0.0363, 

0.3388] 

[0.0346, 

0.3603] 

[0.0356, 

0.3532] 

[0.0374, 

0.3205] 

[0.0335, 

0.2552] 

[0.0458, 

0.4278] 

[0.0346, 

0.3942] 

[0.0369, 

0.4265] 

[0.0297, 

0.6119] 

[0.0427, 

0.4412] 

[0.0349, 

0.4246] 

Table 8. Distance matrix for arc welding robot selection problem 

Arc welding 

robot 
PL HR VR R W PR C FL S WP M EP 

A1 -0.6186 -0.3759 -0.4031 -0.4030 -0.0822 -0.0300 0.0953 0.5566 -0.5303 0.9243 0.6042 0.6022 

A2 -0.6321 -0.3759 -0.4137 -0.4030 -0.0899 -0.0300 0.0953 -0.4789 0.6156 -0.7685 0.6101 0.6085 

A3 0.6815 -0.4183 0.4646 0.4521 -0.0220 -0.0297 -0.0666 -0.4891 0.5594 0.9253 -0.5076 0.6338 

A4 0.8365 0.4447 0.4635 -0.4134 -0.0165 0.0021 -0.0959 -0.4522 0.6475 -0.7595 -0.4908 0.5628 

A5 0.6705 0.4903 0.5243 0.4903 0.0603 0.0167 -0.0970 0.5580 -0.4998 -0.7978 -0.5282 0.6178 

A6 0.7372 0.4428 -0.4487 -0.3944 -0.0191 -0.0299 0.0622 0.5568 0.5711 0.8318 0.6135 0.6253 

A7 -0.6120 -0.4031 -0.4427 0.4562 -0.0308 -0.0300 0.0530 0.5157 -0.5198 0.9241 0.6333 -0.5121 

A8 -0.6515 0.4534 0.5106 0.4721 -0.0550 -0.0207 -0.1613 -0.4411 -0.4953 -0.7518 0.6348 -0.5116 

A9 -0.5959 0.5019 0.5368 0.5172 0.0997 0.0185 -0.0780 -0.4591 -0.5327 0.8467 0.5800 -0.5325 

A10 0.7372 0.4963 0.5308 0.5223 0.0940 0.0845 -0.0134 0.5237 0.5711 -0.8222 -0.4874 -0.4944 

A11 -0.5959 -0.4131 -0.4427 0.4562 -0.0308 -0.0255 0.0998 0.5436 0.6415 -0.7713 0.6333 0.5774 

A12 -0.6074 -0.4124 -0.4309 0.4572 -0.0337 -0.0299 0.0583 0.5352 0.6366 -0.7827 0.6342 -0.5322 

A13 0.7485 0.4430 0.4743 0.4615 0.0690 0.0807 -0.1809 0.5579 -0.4881 0.8418 -0.4893 -0.4823 

A14 -0.5976 -0.407 -0.4480 0.4770 -0.0255 -0.0251 0.0841 0.5437 -0.5250 0.8719 0.6182 -0.5303 

Table 9. Final scores for the arc welding robots 

Arc 

weldi

ng 

robot 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 

Score 0.3394 -1.2624 2.1833 0.7288 1.5054 3.5485 0.0316 -1.0175 0.9026 1.7425 0.6725 -0.5076 
2.03

61 

0.03

65 

Rank 9 14 2 7 5 1 11 13 6 4 8 12 3 10 

 

 
Figure 1. Positions of the arc welding robots in the lower, upper and border approximation areas 
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Now, in order to analyze the capabilities of each of the 

considered arc welding robots as well as their strengths and 

weaknesses, Tables 10 and 11 are developed. In Table 9, the 

locations of all the arc welding robots in the upper and lower 

approximation areas with respect to various evaluation 

criteria are portrayed. In this industrial robot selection 

problem, it has already been stated that PL, HR, VR, R, FL, 

S, WP, M and EP are the beneficial criteria, whereas, W, PR 

and C are the non-beneficial criteria. From Table 10, it can 

be observed that for the beneficial attributes, the locations 

of almost all the efficient arc welding robots are in the upper 

approximation area. In the similar way, those efficient arc 

welding robots are positioned in the lower approximation 

area for the non-beneficial criteria. In Table 11, the 

locations of 12 robot selection criteria in the upper and 

lower approximation areas for the 14 arc welding robots are 

shown. For the efficient robots, almost all the beneficial 

criteria are located in the upper approximation area and the 

positions of the non-beneficial attributes are in the lower 

approximation area. It can be propounded that robot A6 (the 

top ranked alternative) is quite strong with respect to PL, 

HR, C, FL, S, WP, M and EP criteria, whereas, it has 

weaknesses only in VR, R, W and PR criteria. Thus, it has 

relatively low vertical reach, low repeatability, high weight 

and high power rating. On the other hand, the major 

strengths of A3 (second ranked robot) are with respect to PL, 

VR, R, S, WP and EP, and it is weak with respect to HP, W, 

PR, C, FL and M criteria. It has poor horizontal reach, 

flexibility and maintainability. Similarly, the last ranked arc 

welding robot A2 has only four criteria (C, S, M and EP) in 

its favour. It has major weaknesses with respect to PL, HR, 

VR, R, W, PR, FL and WP criteria. The identification of the 

strengths and weaknesses of each of the alternative arc 

welding robots would thus guide the decision makers in 

choosing the most appropriate robot for a given welding 

task. 

In order to study the solution accuracy of rough-

MABAC method in solving this arc welding robot selection 

problem, its ranking performance is finally compared with 

that of other rough-MCDM methods, i.e. rough-WASPAS, 

rough-SAW, rough-TOPSIS and rough-VIKOR, as shown 

in Table 12. It can be observed from this table that the 

positions of the top two and last arc welding robots remain 

unchanged in most of the rough-MCDM methods, although 

there are variations in the intermediate rankings of the 

considered alternatives. It proves the applicability of rough-

MABAC method as an effective and sound mathematical 

tool for solving diverse problems in group decision making 

environment where the individual judgements of the 

decision makers are subjectively expressed.  

 

 

 

 

 

 

 

 

Table 10. Positions of arc welding robots with respect to different 

evaluation criteria 

Evaluation 

criteria 

Position of the arc welding robot 

Upper 

approximation area 

Lower approximation 

area 

PL 
A3, A4, A5, A6, A10, 

A13 

A1, A2, A7, A8, A9, A11, 

A12, A14 

HR 
A4, A5, A6, A8, A9, 

A10, A13 

A1, A2, A3, A7, A11, A12, 

A14 

VR 
A3, A4, A5, A8, A9, 

A10, A13 

A1, A2, A6, A7, A11, A12, 

A14 

R 

A3, A5, A7, A8, A9, 

A10, A11, A12, A13, 

A14 

A1, A2, A4, A6 

W A5, A9, A10, A13 
A1, A2, A3, A4, A6, A7, 

A8, A11, A12, A14 

PR A4, A5, A9, A10, A13 
A1, A2, A3, A6, A7, A8, 

A11, A12, A13 

C 
A1, A2, A6, A7, A11, 

A12, A14 

A3, A4, A5, A8, A9, A10, 

A13 

FL 
A1, A5, A6, A7, A10, 

A11, A12, A13, A14 
A2, A3, A4, A8, A9 

S 
A2, A3, A4, A6, A10, 

A11, A12 

A1, A5, A7, A8, A9, A13, 

A14 

WP 
A1, A3, A6, A7, A9, 

A13, A14 

A2, A4, A5, A8, A10, A11, 

A12 

M 
A1, A2, A6, A7, A8, 

A9, A11, A12, A14 
A3, A4, A5, A10, A13 

EP 
A1, A2, A3, A4, A5, 

A6, A11 

A7, A8, A9, A10, A12, 

A13, A14 

Table 11. Positions of different evaluation criteria for arc welding 

robots  

Arc 

welding 

robot 

Position of the evaluation criteria 

Upper approximation 

area 

Lower approximation 

area 

A1 C, FL, WP, M, EP 
PL, HR, VR, R, W, 

PR, S 

A2 C, S, M, EP 
PL, HR, VR, R, W, 

PR, FL, WP 

A3 PL, VR, R, S, WP, EP HR, W, PR, C, FL, M 

A4 PL, HR, VR, PR, S, EP R, W, C, FL, WP, M 

A5 PL, HR, VR, R, W, PR, 

FL, EP 
C, S, WP, M 

A6 PL, HR, C, FL, S, WP, 

M, EP 
VR, R, W, PR 

A7 R, C, FL, WP, M 
PL, HR, VR, W, PR, 

S, EP 

A8 HR, VR, R, M 
PL, W, PR, C, FL, S, 

WP, EP 

A9 HR, VR, R, W, PR, 

WP, M  
PL, C, FL, S, EP 

A10 PL, HR, VR, R, W, PR, 

FL, S 
C, WP, M, EP 

A11 R, C, FL, S, M, EP 
PL, HR, VR, W, PR, 

WP 

A12 R, C, FL, S, M 
PL, HR, VR, W, PR, 

WP, EP 

A13 PL, HR, VR, R, W, PR, 

FL, WP 
C, S, M, EP 

A14 R, C, FL, WP, M 
PL, HR, VR, W, PR, 

S, EP 
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Table 12. Comparison of rankings based on different rough-

MCDM methods 

Arc 

weldin

g robot 

Rough MCDM method 

Rough- 

MABA

C 

Rough-

WASPA

S 

Rough

- 

SAW 

Rough-

TOPSI

S 

Rough

-

VIKO

R 

A1 9 12 11 13 4 

A2 14 14 14 9 14 

A3 2 1 1 6 1 

A4 7 4 4 1 2 

A5 5 3 3 7 6 

A6 1 2 2 2 5 

A7 11 5 10 12 3 

A8 13 9 7 14 8 

A9 6 6 5 10 10 

A10 4 8 6 3 13 

A11 8 7 8 4 11 

A12 12 10 9 5 12 

A13 3 13 12 11 9 

A14 10 11 13 8 7 

5. Discussions 

As selection of the most apposite robot for a specific 

welding operation is a capital intensive task, this decision 

making process must be formulated seeking opinions of a 

group of experts to avoid biasness/partiality in the final 

selection decision. A wrongly selected robot may negatively 

influence productivity of a manufacturing organization. In 

this paper, an attempt is put forward to rank 14 arc welding 

robot alternatives based on 12 evaluation criteria using an 

integrated approach combining rough numbers and 

MABAC method. The performances of all the robots are 

first assessed with respect to the considered criteria using 

the judgements of five decision makers/experts. As criteria 

weights play a pivotal role in any decision making process, 

rough entropy method having the advantage of determining 

importance of the criteria based on randomness of the 

dataset itself is employed here. The MABAC is later 

adopted to provide a complete ranking of the candidate arc 

welding robots from the best to the worst along with the 

strengths and weaknesses of each of the alternatives. It is 

observed that among the considered alternatives, A6 is the 

best performing robot, followed by A3. On the other hand, 

robot A2 is the worst preferred choice. Arc welding robot A6 

has the strengths with respect to PL, HR, C, FL, S, WP, M 

and EP evaluation criteria, whereas, VR, R, W and PR are 

its major weaknesses. It has low vertical reach and 

repeatability, and high weight and power rating. Similarly, 

for robot A2, C, S, M and EP are its favourable properties 

and it lags behind with respect to PL, HR, VR, R, W, PR, 

FL and WP criteria. In the similar direction, application of 

rough-MABAC method segregates all the candidate robots 

as the best performing and underperforming ones with 

respect to each of the evaluation criteria. For example, 

robots A3, A4, A5, A6, A10 and A13 are the best performing 

alternatives (positioned in upper approximation area) with 

respect to PL criterion. On the contrary, robots A1, A2, A7, 

A8, A9, A11, A12 and A14 are underperforming (located in 

lower approximation area) against criterion PL. 

Identification of the deficiencies of the inefficient arc 

welding robots (underperformers) would help the concerned 

manufacturers to modify the existing specifications and/or 

add new technical features to make them more comparable 

and appropriate for a specific welding task. In this context, 

the advantageous features of the best performing robots can 

act as an appraisement module (benchmark) to others with 

respect to product variety, reliability and safe functionality.   

Application of this integrated MCDM methodology thus 

proves itself as an efficient decision making tool while 

accurately providing complete ranking order of the 

considered arc welding robots. It can thus assist the decision 

makers/managers in understanding and improving the 

selection process of the most suitable arc welding robot 

from available alternatives along with process enhancement 

and adaptation of business intelligence leading to 

conceptualization of Industry 4.0 approach.  

6. Conclusions  

It has already been pointed out by the previous 

researchers that integration of rough set theory with any of 

the MCDM methods would provide more accurate and 

reliable ranking solutions to varied decision making 

problems. Keeping this objective in mind, the present paper 

dealt with the application of rough-MABAC method for 

evaluation and selection of the most appropriate arc welding 

robot based on a set of 12 conflicting criteria. In order to 

avoid subjectivity in human judgements, the weights of the 

considered evaluation criteria are estimated using rough 

entropy method. Based on this analysis, all the 14 arc 

welding robots are classified as efficient and inefficient 

ones based on their positions in the upper and lower 

approximation areas respectively. The robot A6 is identified 

as the best option for performing the given welding task 

with eight favourable (PL, HR, C, FL, S, WP, M and EP) 

and only four unfavourable criteria (VR, R, W and PR). On 

the other hand, A2 is the least preferred robot with only four 

favourable (C, S, M and EP) and eight unfavourable criteria 

(PL, HR, VR, R, W, PR, FL and WP). A comparison study 

of the ranking performance with the other rough-MCDM 

methods proves the efficacy of rough-MABAC approach in 

solving complex decision making problems. However, 

rough-MABAC method suffers from some drawbacks. It is 

unable to provide satisfactory results when the criteria 

weights are completely unknown. It is assumed that all the 

evaluation criteria are independent to each other which may 

not be true in real time welding environment. During 

information aggregation using rough numbers, it is also 

supposed that all the participating decision makers have 

equal importance. But, based on its several attractive 

advantages, it can be effectively applied as a flexible and 

comprehensive tool for solving real time decision making 

problems, such as selection of appropriate machine tool, 

flexible manufacturing system, cutting fluid, materials for 

engineering components etc.  As a further future scope, the 

applicability of MABAC method using interval rough 

number or intuitionistic fuzzy sets may be explored.    
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