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Abstract 

Material constitutive models often include internal variables in order to capture realistic mechanical effects such as viscosity. 

Recent work for compressible hyperelastic material is developed based on applying the argument of calculus variation to two-

factor multiplicative decomposition of the deformation gradient. The finite element formulation for this new treatment is 

developed, however, the implementation sheds light on a special form of constitutive model. In particular, the material model 

is a function of the first and third invariants of new quantities derived from the counterparts of the multiplicative decomposition. 

These new quantities are defined in analogy to the right Cauchy Green tensor. This work demonstrates the required treatment 

for a special material model that is formulated using the second and third principal invariants of these new derived quantities. 

Mainly, the treatment simplifies the internal balance equation that emerges from the variational treatment. This facilitates the 

linearization procedure of this new formulation for internally balanced compressible hyperelastic material. The present work 

permits the future use of more complicated internally balanced hyperelastic models. 
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1. Introduction 

Large deformation constitutive models can be expressed in 

terms of deformation gradient 𝑭 multiplicative 

decompositions [1, 2, 3] such as 

𝑭 =  𝑭̂𝑭̆.                               (1) 

The usual treatment is that 𝑭̂ models elastic response and it 

is associated to the rules of variational calculus. The 𝑭̆ 

portion then models inelastic response usually by means of 

a time dependent evolution law. This multiplicative 

decomposition serves to pertain particular portions of 𝑭 to 

specific parts of the material response. It has been widely 

used in plasticity [4, 5, 6, 7], viscoelasticity [8, 9], growth 

and remodeling of biological tissues [10, 11, 12, 13]. The 

implementation procedure of these material models in the 

frame of nonlinear finite element is well established [14, 15, 

16, 17]. 

A new scheme of viewing incompressible hyperelastic 

material response is introduced in [18, 19]. In fact, the 

arguments of variation are applied to both portions of the 

deformation gradient decomposition. The decomposition 

itself is determined on the basis of an additional internal 

balance equation that emerges naturally from the variational 

treatment. Further theoretical treatment for compressible 

hyperelastic model is presented in [20]. The total Lagrange 

formulation of this new treatment is derived by linearizing 

the achieved weak form with respect to both portions of 

multiplicative decomposition [21]. Modeling material 

response using similar procedure presented in this paper can 

be found in [22, 23, 24, 25, 26]. 

The demonstrated implementation in [21] for 

compressible hyperelastic material focused on a special 

form of internally balance Blatz – Ko material model 

𝑊(𝐼1, 𝐼3, 𝐼1, 𝐼3). Here 𝐼1, 𝐼2 and 𝐼3 are the principal 

invariants of 𝑪̂ = 𝑭̂𝑇𝑭̂ (and 𝑩̂ = 𝑭̂𝑭̂𝑇) while 𝐼1, 𝐼2 and 𝐼3 

are the principal invariants of 𝑪̆ = 𝑭̆𝑇𝑭̆ (and 𝑩̆ = 𝑭̆𝑭̆𝑇). 

These new quantities 𝑪̂, 𝑪̆, 𝑩̂ and 𝑩̆ are second order 

symmetric tensors and they are defined in analogy with 𝑪 =
𝑭𝑇𝑭 and 𝑩 = 𝑭𝑭𝑇. This work sheds light on the 

mathematical treatment that is required to implement a 

material model that has the form of 𝑊(𝐼2, 𝐼3, 𝐼2, 𝐼3) in total 

Lagrange and update Lagrange formulations. 

2. Continuum Mechanics 

Strain energy function for isotropic hyperelastic material 

can be expressed in terms of the principal invariants such as 

𝑊(𝐼1, 𝐼2, 𝐼3).To implement this type of material model in 

total Lagrange formulation, it is required to derive two 

important quantities that are Second Piola – Kirchhoff stress 

tensor and material elasticity tensor. The second Piola – 

Kirchhoff 𝑺 stress can be written as 

𝑺 =  2 (
𝜕𝑊

𝜕𝐼1

𝜕𝐼1

𝜕𝑪
+

𝜕𝑊

𝜕𝐼2

𝜕𝐼2

𝜕𝑪
+

𝜕𝑊

𝜕𝐼3

𝜕𝐼3

𝜕𝑪
).                           (2) 

The fourth order material elasticity tensor ℂ is obtained by 
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ℂ = 2 
𝜕𝑺

𝜕𝑪
= 4 

𝜕2𝑊

𝜕𝑪𝜕𝑪
 ,             (3) 

a detailed definition for ℂ in terms of principal invariants 

can be found in [27]. 

For Update Lagrange formulation, it is required to 

implement Cauchy stress and spatial elasticity tensors. 

Cauchy stress tensor 𝝈 is obtained using a Piola 

transformation of the second Piola Kirchhoff stress tensor 

such as 

𝝈 =  𝐽−1𝑭𝑺𝑭𝑇 ,                             (4) 

where 𝐽 = det 𝑭. The Piola transformation [28] is a push 

forward operation that is scaled by 𝐽−1. The spatial elasticity 

tensor 𝑫 is defined in via Piola transformation of ℂ [29, 27]. 

It is written in component form as 

𝐷𝑎𝑏𝑐𝑑 = 𝐽−1𝐹𝑎𝐼𝐹𝑏𝐽𝐹𝑐𝐾𝐹𝑑𝐿ℂ𝐼𝐽𝐾𝐿  .                                 (5) 

3. Internal Balance 

A new scheme of viewing incompressible hyperelastic 

material response is introduced in [18]. The arguments of 

variation are applied to both portions of the deformation 

gradient decomposition. The decomposition itself is 

determined on the basis of an additional internal balance 

equation that emerges naturally from the variational 

treatment. A review of the compressible hyperelastic 

scheme [20] is summarized here. It has been shown that the 

second Piola – Kirchhoff 𝑺 stress is obtained as 

consequence of applying the argument of variation with 

respect to 𝑪. It can be written as 

𝑺(𝑪, 𝑪̆) = 2 (
𝜕𝑊

𝜕𝐼1
𝑪̆−1 +

𝜕𝑊

𝜕𝐼2
(𝐼1𝑪̆−1 − 𝑴) +

𝜕𝑊

𝜕𝐼3
𝐼3𝑪−1),  (6) 

where 𝑴 =  𝑪̆−1𝑪𝑪̆−1. Notice that 𝑺 is a function of 𝑪 and 

𝑪̆. The decomposition of the deformation gradient is found 

by solving an internal balance equation that arises from the 

variation with respect to 𝑪̆. The internal balance equation is  

𝚿 = 𝟎,                               (7) 

where 𝚿 is an internal balance tensor 

𝚿 =  𝚿̂1 + 𝚿̂2 + 𝚿̂3 + 𝚿̆1 + 𝚿̆2 + 𝚿̆3                            (8) 

with individual parts 

𝚿̂1 = 2
𝜕𝑊

𝜕𝐼1

𝜕𝐼1

𝜕𝑪̆
= −2

𝜕𝑊

𝜕𝐼1
𝑴,                            (9) 

𝚿̂2 = 2
𝜕𝑊

𝜕𝐼2

𝜕𝐼2

𝜕𝑪̆
= 2

𝜕𝑊

𝜕𝐼2
(𝑵 − 𝐼1𝑴),                                 (10) 

𝚿̂3 = 2
𝜕𝑊

𝜕𝐼3

𝜕𝐼3

𝜕𝑪̆
= −2

𝜕𝑊

𝜕𝐼3
𝐼3𝑪̆−1,                          (11) 

𝚿̆1 = 2
𝜕𝑊

𝜕𝐼1

𝜕𝐼1

𝜕𝑪̆
= 2

𝜕𝑊

𝜕𝐼1
𝑰,                             (12) 

𝚿̆2 = 2
𝜕𝑊

𝜕𝐼2

𝜕𝐼2

𝜕𝑪̆
= 2

𝜕𝑊

𝜕𝐼2
(𝐼1𝑰 −  𝑪̆),                                   (13) 

𝚿̆3 = 2
𝜕𝑊

𝜕𝐼3

𝜕𝐼3

𝜕𝑪̆
= 2

𝜕𝑊

𝜕𝐼3
𝐼3𝑪̆−1,                                          (14) 

where 𝑵 =  𝑪̆−1𝑪𝑪̆−1𝑪𝑪̆−1 and 𝑰 is the  second order 

identity tensor. Notice that 𝚿̂2 is relatively complicated 

compared to other individual parts of 𝚿. It is tedious task to 

differentiate 𝚿̂2 with respect to 𝑪 and 𝑪̆ during linearization 

procedure. This leads to avoid the use of strain energy 

function based on 𝐼2. To overcome this difficulties, the 

following procedure is applied to simplify the expression of 

𝚿̂2. First of all, the push forward operation is performed 

𝑭
𝜕𝐼2

𝜕𝑪̆
𝑭𝑇 = 𝑭(𝑵 − 𝐼1𝑴)𝑭𝑇 = 𝑩̂3 − 𝐼1𝑩̂2,                       (15) 

then Cayley – Hamilton equation is applied to simplify (15) 

to 

𝑭
𝜕𝐼2

𝜕𝑪̆
𝑭𝑇 = 𝐼3𝑰 − 𝐼2𝑩̂,                                         (16) 

and finally (16) is pulled backward to get  

𝜕𝐼2

𝜕𝑪̆
= 𝑭−1(𝐼3𝑰 − 𝐼2𝑩̂)𝑭−𝑇 = 𝐼3𝑪−1 − 𝐼2𝑪̆−1,          (17)  

now  𝚿̂2 has more practical expression by virtue  of  (17) 

such as  

 𝚿̂2 = 2
𝜕𝑊

𝜕𝐼2

𝜕𝐼2

𝜕𝑪̆
= 2

𝜕𝑊

𝜕𝐼2
(𝐼3𝑪−1 − 𝐼2𝑪̆−1).          (18) 

For updated Lagrange, the Cauchy stress for internally 

balanced scheme is defined by push forward of (6) as 

𝝈(𝑩, 𝑩̂) =
2

𝐽
(

𝜕𝑊

𝜕𝐼1
𝑩̂ +

𝜕𝑊

𝜕𝐼2
(𝐼1𝑩̂ − 𝑩̂2) +

𝜕𝑊

𝜕𝐼3
𝐼3𝑰).          (19) 

Similarly, the internal balance equation (7) becomes  

𝚵(𝑩, 𝑩̂) = 𝑭𝚿𝑭𝑇 = 𝟎,                          (20)  

where 𝚵 is the internal balance tensor with the individual 

parts 

𝚵 = 2(𝚵̂1 + 𝚵̂2 + 𝚵̂3 + 𝚵̆1 + 𝚵̆2 + 𝚵̆3),                                  (21)  

these individual parts of 𝚵 are listed in the appendix. 

4. Blatz – Ko Model 

The generalized Blatz – Ko [30, 31, 32] can be written as  

𝑊(𝐼1, 𝐼2, 𝐼3) =
𝜇(1−𝑓)

2
(

𝐼2

𝐼3
+

1

𝛼
𝐼3

𝛼 − 𝜁) +
𝜇𝑓

2
(

1

𝛼
𝐼3

−𝛼 +

𝐼1 − 𝜁),                                            (22)  

where 𝛼 = 𝜈/(1 − 2𝜈) and 𝜁 = 1 + 1/𝜈. Blatz – Ko model has 

three material parameters namely Poisson's ratio 𝜈, shear modulus 

𝜇 and volume fraction of voids in foam rubber material 𝑓. In this 

work a special case of (22) is achieved [30, 31, 33] by applying 

𝜈 = 1/4 and 𝑓 = 0 such as 

𝑊𝐵𝐾(𝐼2, 𝐼3) =
𝜇

2
(

𝐼2

𝐼3
+ 2𝐼3

1/2
− 5).                                             (23) 

Substituting (23) into (2) to get Second Piola – Kirchhoff 

stress 

𝑺𝐵𝐾 = 𝜇 (
1

𝐼3

(𝐼1𝑰 − 𝑪) + ℒ𝑪−1) = 𝜇(𝐽𝑪−1 − 𝑪−2),       (24)  

where ℒ = −𝐼2/𝐼3 + 𝐼3
1/2

. The elasticity tensor is obtained 

by substituting (23) into (3)  

ℂ𝐵𝐾 = 𝜇𝐽(𝑪−1⨂𝑪−1 − 2𝑪−1⨀𝑪−1) + 2𝜇(𝑪−2⨀𝑪−1 +
𝑪−1⨀𝑪−2),                                          (25)  

where ⨂ is the dyadic operator and ⨀ operator has the same 

definition given in [27], further details can be found in the 

appendix. Now substitute (24) into (4) to obtain Cauchy 

stress 

𝝈𝐵𝐾 = 𝜇(𝑰 − 𝐽−1𝑩−1).                           (26) 

The spatial tensor of elasticity is obtained by the virtue of 

(5) as  

𝑫𝐵𝐾 = 𝜇(𝑰⨂𝑰 − 2𝑰⨀𝑰) + 2𝜇𝐽−1(𝑩−1⨀𝑰 + 𝑰⨀𝑩−1). (27) 
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5. Blatz – Ko Internal Balance Model 

The form of internally balanced material model is motivated 

by special case of Blatz – Ko model 

𝑊𝐼𝐵 =
𝜇(1+𝛽)

2
(

𝐼2

𝐼3
+ 2𝐼3

1/2
− 5) +

𝜇(1+𝛽)

2𝛽
(

𝐼2

𝐼3
+ 2𝐼3

1/2
−

5),                                                                                              (28)  

where 𝛽 is a positive material parameter that quantify the 

contribution of two – factor multiplicative decomposition 

(1). The limits 𝛽 → 0 and 𝛽 → ∞ retrieve the hyperelastic 

behavior in full nonlinear strain range [20]. An equivalent 

form of (28) is used in [34] to investigate uniaxial loading 

by solving nonlinear boundary value problem. In this work, 

the finite element formulation of (28) is presented that 

permits general loading scenarios. 

The Piola – Kirchhoff stress of internally balanced 

material (28) is obtained by (6) 

𝑺𝐼𝐵 = 𝜇̅ (ℒ̂𝑪−1 +
1

𝐼3
(𝐼1𝑪̆−1 − 𝑴)),                                   (29)  

where 𝜇̅ = 𝜇(1 + 𝛽) and ℒ̂ = −𝐼2/𝐼3 + 𝐼3
1/2

. The stress 

tensor 𝑺𝐼𝐵 is coupled to internal balance equation 𝚿 = 𝟎 

that is achieved by the virtue of equations (9),(11) – (14) 

and (18) 

𝑪−1 − 𝐽𝑪̆−1 +
1

𝛽
(𝐽𝑪̆−1 − 𝑪̆−2) = 𝟎,                                (30)  

where 𝐽 = 𝐼3
1/2

 and 𝐽 = 𝐼3
1/2

. This quiet form of internal 

balance equation is obtained by using the simplified form of 

𝚿̂2 in (18) instead of (10) and further manipulation using 

Cayley – Hamilton equation. The push forward of (29) and 

the use of Cayley – Hamilton equation give a simplified 

form of Cauchy stress as   

𝝈𝐼𝐵 =
𝜇̅

𝐽
(𝐽𝑰 − 𝑩̂−1)           (31)  

and it is coupled to 𝚵 = 𝟎 that is  

𝑰 − 𝐽𝑩̂ +
1

𝛽
(𝐽𝑩̂ − 𝑩̂𝑩−1𝑩̂) = 𝟎.                          (32) 

It has been noticed that Piola – Kirchhoff stress (29) has 

still complicated form, a simplified form of (29) is required 

to avoid lengthy linearization procedure. To achieve that 

(32) is multiplied by 𝑩̂−1, then it is rearranged as 

𝐽𝑰 − 𝑩̂−1 =
1

𝛽
(𝐽𝐈 − 𝑩̂𝑩−1),                                         (33)  

then substitute (33) in (31) to obtain another and equivalent 

form of Cauchy stress such as 

𝝈𝐼𝐵 =
𝜇̅

𝐽
(𝐽𝑰 − 𝑩̂−1) =

𝜇̅

𝛽𝐽
(𝐽𝐈 − 𝑩̂𝑩−1),                         (34)  

finally pull back the new form of Cauchy stress to get 

𝑺𝐼𝐵 =
𝜇(1+𝛽)

𝛽
(𝐽𝑪−1 − 𝑪−1𝑪̆−1).                         (35)  

Notice that Piola – Kirchhoff stress (35) has relatively 

simple form compared to (29). 

6. Linearization 

The finite element formulation of internally balanced 

compressible hyperelastic material is demonstrated in [21]. 

It is based on calculating a condensed fourth order elasticity 

tensor ℂ𝑐𝑜𝑛 that is defined as 

ℂ𝑐𝑜𝑛 = ℂ𝑪 − ℂ𝑪̆: 𝚿𝑪̆
−1: 𝚿𝑪.                                         (36) 

The tensors ℂ𝑪 and ℂ𝑪̆ are obtained by differentiating 

second Piola – Kirchhoff stress (6) with respect to 𝑪 and 𝑪̆, 

respectively. The terms 𝚿𝑪 and 𝚿𝑪̆ are obtained by 

differentiating internal balance tensor (8) with respect to 𝑪 

and 𝑪̆, respectively. 

Concerning the material model of interest in this work 

(28), these individual parts of (36) become 

ℂ𝑪 =
𝜇̅

𝛽
(𝑮⨀𝑪−1 + 𝑪−1⨀𝑮 − 2𝐽𝑪−1⨀𝑪−1),                  (37) 

ℂ𝑪̆ =
𝜇̅

𝛽
(𝐽𝑪−1⨂𝑪̆−1 + 𝑪̆−1⨀𝑮 + 𝑮⨀𝑪̆−1),                   (38) 

𝚿𝑪 = −2𝑪−1⨀𝑪−1 − 𝐽𝑪̆−1⨂𝑪−1,                                 (39) 

𝚿𝑪̆ = 𝐽1̅ 𝑪̆−1⨂𝑪̆−1 + 2𝐽2̅ 𝑪̆−1⨀𝑪̆−1 +
2

𝛽
(𝑪̆−2⨀𝑪̆−1 +

𝑪̆−1⨀𝑪̆−2),                                                                      (40) 

where 𝑮 = 𝑪̆−1𝑪−1, 𝐽1̅ = 𝐽 + 𝐽/𝛽 and  𝐽2̅ = 𝐽 − 𝐽/𝛽. The 

spatial condensed elasticity tenor 𝑫𝑐𝑜𝑛 for the updated 

Lagrange formulation can be obtained either by pushing 

forward of ℂ𝑐𝑜𝑛 or by performing push forward operation 

on each individual parts (37) – (40) then apply condensation 

procedure. 

7. Solving Internal Balance Equation 

It is an essential step to solve the internal balance equation 

in order to calculate the stress and elasticity tensor. This is 

carried out by solving (30) for 𝑪̆ given the value of 𝑪 or 

solving (32) for 𝑩̂ given the value of 𝑩. Here it is chosen to 

solve (32). The multiplication of (32) by 𝑩, then rearranging 

it, gives a simplified form of the internal balance equation  

𝑩̂2 + (𝛽𝐽 −
𝐽

𝐽
) 𝑩̂𝑩 − 𝛽𝑩 = 𝟎.                          (41) 

It can be shown by further manipulation of (41) that the 

tensor 𝑩 and 𝑩̂ have the same orthogonal eigenvectors. 

Then, internal balance equation (41) can be expressed in 

principal frame using eigenvalues of 𝑩 as 𝜆1
2, 𝜆2

2 , 𝜆3
2 and 

eigenvalues of 𝑩̂ as 𝜆̂1
2, 𝜆̂2

2 , 𝜆̂3
2 [35]. The internal balance 

equation in principal frame are expressed as a set nonlinear 

equations  

𝜆̂1
4 + 𝛽𝜆̂1

3𝜆̂2𝜆̂3𝜆1
2 −

𝜆1
2𝐽𝜆̂1

𝜆̂2𝜆̂3
− 𝛽𝜆1

2 = 0,                              (42) 

𝜆̂2
4 + 𝛽𝜆̂1𝜆̂2

3𝜆̂3𝜆2
2 −

𝜆2
2𝐽𝜆̂2

𝜆̂1𝜆̂3
− 𝛽𝜆2

2 = 0,                              (43) 

𝜆̂3
4 + 𝛽𝜆̂1𝜆̂2𝜆̂3

3𝜆3
2 −

𝜆3
2𝐽𝜆̂3

𝜆̂1𝜆̂2
− 𝛽𝜆3

2 = 0,                                 (44) 

Newton – Raphson iterative procedure is used to solve (42) 

– (44). 

8. Results and Discussion 

The conventional hyperelastic Baltz – Ko model (23) and 

internally balanced Blatz – Ko model (28) are implemented 

in 𝐹𝐸𝐴𝑃𝑝𝑣©. It is in – house  finite element package for 

updated Lagrange formulation written by Prof. R.L. Taylor, 

University of California at Berkeley. A cube of a unit length 

is meshed by 8 nodes brick element with three degrees of 

freedom per node. The cube is discretized by eight elements 

in total (2 × 2 × 2). The homogeneous deformations 

namely uniaxial and simple shear are performed to 

investigate the response of the material models. 

The uniaxial loading is given as 𝑭 = 𝜆1𝒆1 ⨂ 𝒆1 +
𝜆2𝒆2 ⨂ 𝒆2 + 𝜆3𝒆3 ⨂ 𝒆3  with corresponding stress 𝝈 =
𝜎11 𝒆1 ⨂ 𝒆1 where 𝜆1, 𝜆2, 𝜆3 are principal stretches. The 

material is stretched in principal direction one and it is free 

to contract in the other principal directions. The achieved 

uniaxial stress 𝜎11 for different values of 𝛽 is shown in 

figure 1. It is verified that the achieved Cauchy stress value 

for given 𝛽 coincides with achieved Cauchy stress value 
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for 1/𝛽. Therefore, the values of 0 < 𝛽 ≤ 1 are used in 

following discussion. 

The achieved Cauchy stress curves for different values 

of 𝛽 have a specific pattern up to particular value of stretch 

𝜆1 that is stiffer than hyperelastic achieved Cauchy stress 

(𝛽 = 0). However, this pattern is not maintained for large 

value of stretch 𝜆1 see figure 2 (top). A better pattern is 

observed when Cauchy stress is normalized by 𝜇(1 + 𝛽) as 

shown in figure 2 (bottom). Now, the curves are ordered 

such as the stiffer response is achieved when 𝛽 = 0 

(hyperelastic) and the softest response is achieved for 𝛽 =
1. The normalized Cauchy stress 𝜎̅11 = 𝜎11/𝜇(1 + 𝛽) 

decreases as 𝛽 increases from 0 to 1. The achieved Cauchy 

stress for 𝛽 = 0 reaches an asymptotic value of one for large 

stretch 𝜆1 → ∞; this is the retrieved value by (26). For 

internally balanced achieved results 𝛽 > 0, the normalized 

Cauchy stress 𝜎̅11 increases with stretching 𝜆1 up to a 

critical maximum value then it decreases. For the special 

case 𝛽 = 1, this maximum value of normalized stress is 

found to be 𝜎̅11 = 0.5824 at 𝜆1 = 60.8 = 4.193 this is 

shown in figure 2 (bottom). 

The achieved finite element results are verified 

analytically by examining two special cases. The first case 

is for 𝛽 = 0 this results in 𝑩̂ → 𝑩. This means that the 

hyperelastic Cauchy stress expressed in (26) is retrieved by 

internal balance Cauchy stress (31) at 𝛽 = 0, the material 

parameter 𝜇(𝛽 + 1) becomes simply 𝜇. The hyperelastic 

Cauchy stress is also retrieved at 𝛽 → ∞. Now, the 

normalized uniaxial stress has analytical expression such as 

𝜎̅11 = 1 − 𝜆1
−5/2

. The second special case is for 𝛽 = 1. It 

can be shown that 𝑩̂ = 𝑩1/2 → 𝐽 = 𝐽1/2 is a solution for 

(41). Then, corresponding normalized uniaxial stress 

becomes 𝜎̅11 = 𝜆1
−1/4

− 𝜆1
−3/2

. The achieved finite element 

results for both special cases have very good agreement with 

the achieved results by the analytical expressions, see figure 

3. 

Simple shear deformation has the form of 𝑭 = 𝑰 +
𝛾 𝒆1 ⨂ 𝒆2  where 𝛾 is the amount of shear that is related to 

angle of shear 𝜃 by 𝛾 = tan 𝜃. The Cauchy stress for 

hyperelastic material (26) becomes (1/𝜇) 𝝈 =
𝜎22 𝒆2 ⨂ 𝒆2 + 𝜎12 (𝒆1 ⨂ 𝒆2 + 𝒆2 ⨂ 𝒆1 ) where 𝜎22 =
−𝛾2 and 𝜎12 = 𝛾. In general for hyperelastic material, the 

normal stress components do not vanish but the Cauchy 

stress components satisfy the universal relation 𝜎11 − 𝜎22 =
𝛾𝜎12, this is known as Poynting effect [36]. The hyperelastic 

Cauchy stress 𝜎12 = 𝛾 is increasing monotonically with 

amount of shear as plotted in figure 4, this theoretically 

means that the cube can sustain infinite shear deformation. 

The internally balance shear stress component shows softer 

response for 0 < 𝛽 ≤ 1. The achieved curves of normalized 

shear stress is ordered such as hyperelastic (𝛽 = 0) is the 

most stiff, it becomes softer with increasing 𝛽, and the result 

of 𝛽 = 1 is the most soft response. The internally balanced 

curves tend to reach an asymptotic value at large 

deformation. This agrees with previous findings in [19, 35]. 

 
Figure 1. Uniaxial homogeneous deformation (top). Uniaxial 

Cauchy stress for different values of 𝛽 (bottom). Achieved Cauchy 

stress value for given 𝛽 coincides with achieved Cauchy stress 

value for 1/𝛽. 

 

Figure 2. Uniaxial Cauchy stress for different values of 𝛽 (top) and 

normalized Cauchy stress by 𝜇(1 + 𝛽) (bottm). The hyperelastic 

case is retrieved by 𝛽 = 0. 
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9. Conclusion 

In this work a finite element treatment is demonstrated for 

a material model based on new theory that applies argument 

of variation to both counterparts of deformation gradient 

multiplicative decomposition [21]. The use of Cayley – 

Hamilton equation facilitates significantly the 

implementation of internally balanced material model that 

has the form of 𝑊(𝐼2, 𝐼3, 𝐼2, 𝐼3). The response of the material 

model is examined in uniaxial loading and simple shear. 

The internally balanced theory retrieves the conventional 

hyperelastic theory in the special limiting case 𝛽 = 0. The 

uniaxial stress for internally balanced material has a stiffer 

response compared with hyperelastic uniaxial stress up to 

significant value of stretching when it reaches maximum 

value then it shows softening behavior. For simple shear, 

the internally balanced shear stress shows softer response 

and reaches an asymptotic value in contrast with unbounded 

increases of hyperelastic shear stress. The presented 

treatment complements previous formulation demonstrated 

in [21] and it allows the use of complicated material models. 
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Figure 3. The verification of finite element results by analytical 

solution for two special cases 𝛽 = 0 and 𝛽 = 1. 

 

Figure 4. Normalized shear stress component 𝜎̅12 for different 

values of 𝛽. 
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Appendix 

Let 𝑨 denote a second order symmetric tensor. The principal 

invariants of 𝑨 are 

𝐼1 = 𝑡𝑟(𝑨), 𝐼2 =
1

2
((𝑡𝑟(𝑨))

2
− 𝑡𝑟(𝑨𝟐)) , 𝐼3 = det 𝑨     (45) 

and their partial derivatives with respect to 𝑨 

𝜕𝐼1

𝜕𝑨
= 𝑰,

𝜕𝐼2

𝜕𝑨
= 𝐼1𝑰 − 𝑨,

𝜕𝐼3

𝜕𝑨
= 𝐼3𝑨−1.                          (46) 

Cayley – Hamilton equation can be written as 

𝑨3 − 𝐼1𝑨2 + 𝐼2𝑨 − 𝐼3𝑰 = 𝟎,                                           (47) 

successive multiplication of (47) by 𝑨−1 provides additional 

useful formulas such as 

𝑨2 − 𝐼1𝑨 + 𝐼2𝑰 − 𝐼3𝑨−1 = 𝟎,                                                     (48a) 

𝑨 − 𝐼1𝑰 + 𝐼2𝑨−1 − 𝐼3𝑨−2 = 𝟎.                                      (48b) 

Derivative of 𝑨−1 and 𝑨−2 with respect to 𝑨 are 

−
𝜕𝑨−1 

𝜕𝑨
= 𝑨−1⨀𝑨−1,                                                            (49) 

−
𝜕𝑨−2 

𝜕𝑨
= 𝑨−2⨀𝑨−1 + 𝑨−1⨀𝑨−2,                                  (50)  

where the ⨀ operator is defined as 

2𝑨−1⨀𝑨−1
|𝐼𝐽𝐾𝐿 = 𝐴𝐼𝐾

−1𝐴𝐽𝐿
−1 + 𝐴𝐼𝐿

−1𝐴𝐽𝐾
−1.                           (51) 

The push forward of the internal balance quantities is 

defined as 

𝑭𝑪̆−𝟐𝑭𝑇 = 𝑩̂𝑩−𝟏𝑩̂,                                        (52a) 

𝑭𝑪̆−𝟏𝑭𝑇 = 𝑩̂,                                                        (52b) 

𝑭𝑪̆−𝟏𝑪𝑪̆−𝟏𝑭𝑇 = 𝑩̂2,                                                                    (52c) 

𝑭𝑪̆−𝟏𝑪−𝟏𝑭𝑇 = 𝑩̂𝑩−𝟏.                                                   (52d) 

The individual parts of (21) are 

𝚵̂1 = 𝑭
𝜕𝑊

𝜕𝐼1

𝜕𝐼1

𝜕𝑪̆
𝑭𝑻 = −

𝜕𝑊

𝜕𝐼1
 𝑩̂2,                                               (53) 

𝚵̂2 = 𝑭
𝜕𝑊

𝜕𝐼2

𝜕𝐼2

𝜕𝑪̆
𝑭𝑻 =

𝜕𝑊

𝜕𝐼2

 (𝑩̂3 − 𝐼1𝑩̂2) = 

𝜕𝑊

𝜕𝐼2
 (−𝐼2𝑩̂+𝐼3𝑰),                                              (54) 

𝚵̂3 = 𝑭
𝜕𝑊

𝜕𝐼3

𝜕𝐼3

𝜕𝑪̆
𝑭𝑻 = −

𝜕𝑊

𝜕𝐼3
𝐼3𝑩̂ ,                                             (55) 

𝚵̆1 = 𝑭
𝜕𝑊

𝜕𝐼1

𝜕𝐼1

𝜕𝑪̆
𝑭𝑻 =

𝜕𝑊

𝜕𝐼1
𝑩,                                                (56) 

𝚵̆2 = 𝑭
𝜕𝑊

𝜕𝐼2

𝜕𝐼2

𝜕𝑪̆
𝑭𝑻 =

𝜕𝑊

𝜕𝐼2
(𝐼1𝑩 − 𝑩𝑩̂−𝟏 𝑩),                       (57) 

𝚵̆3 = 𝑭
𝜕𝑊

𝜕𝐼3

𝜕𝐼3

𝜕𝑪̆
𝑭𝑻 =

𝜕𝑊

𝜕𝐼3
𝐼3𝑩̂.                                                 (58)
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