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Abstract 

In the present study, thermomechanical characteristics of a functionally graded (FG) uniform traction-free circular annulus 

are determined analytically under separate and combined centrifugal, steady-state thermal and pressure loads based on the 

one-dimensional axisymmetric plane-stress assumption. It is assumed that elasticity modulus, density, thermal expansion 

coefficient and thermal conductivity are all to be continuously changed in the radial direction with different inhomogeneity 

indexes of a simple power law material grading rule while Poisson’s ratio is kept constant.  Hypothetically and physically 

chosen metal-ceramic pairs such as nickel-silicon nitride (Ni-Si3N4), aluminum-aluminum oxide (Al-Al2O3), and stainless 

steel-zirconium oxide (SUS304-ZrO2) are included in the parametric studies. Results of conducting separate and combined 

effects of centrifugal, thermal, and pressure loadings are presented in both tabular and graphical forms in a comparative 

manner. Those works mostly suggest that the effect of thermal loads may be either negligible compared to inertia forces or 

may be having higher importance than the inertias. It is also deduced that the thermal characteristics of both individual metal 

and ceramic are totally different from FGM’s thermal traits. 
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1. Introduction 

As commonly known, functionally graded materials 

(FGM) have exceptional gradually changing mechanical 

and thermal properties along the preferred directions of the 

structure [1-2]. Due to this reason, they have gained great 

attention from many investigators. The significant number 

of studies have focused on the investigation of the elastic 

behavior of rotating circular annulus or discs which may 

be subject to individual or combined effects of mechanical 

and thermal loads. Investigations related to only a uniform 

circular annulus or a disc are to be considered in the 

following literature survey and have been classified by the 

load types as well.  

Under only centrifugal force: By employing a simple-

power rule, Horgan and Chan [3] analytically investigated 

the effects of material inhomogeneity on the response of 

linearly elastic isotropic solid circular disks or cylinders, 

rotating at a constant angular velocity about a central axis. 

Durodola and Attia [4] studied deformation and stressed 

the FG rotating disks by a direct numerical integration of 

the governing differential equations as well as the finite 

element method.  Zenkour [5] presented an elastic solution 

in terms of Whittaker's functions for exponentially graded 

uniform rotating annular disks. He considered 

combinations of clamped and free boundary conditions. 

Zenkour [6] later considered a rotating functionally graded 

annular disk with rigid casing. Eraslan and Akış [7] used 

two variants of a parabolic profile function for disks made 

of functionally graded materials. Generalizing an available 

two-dimensional plane-stress solution to a three-

dimensional one, Asghari and Ghafoori [8] proposed a 

semi-analytical three-dimensional elasticity solution for 

rotating FG hollow and solid disks. Under the assumptions 

of plane stress, isotropy, and small deformations, Argeso 

[9] considered analytically both a homogeneous non-

uniform rotating disk, and a FG uniform disc. He verified 

the results by the nonlinear shooting method. Peng and Li 

[10] employed Fredholm integrals for elastic analysis of 

arbitrarily graded uniform solid rotating disks. By 

employing the elasto-perfectly-plastic material model 

based on Tresca’s yield criterion, Nejad et al. [11] 

presented firstly exact solutions for elasto-plastic 

deformations and stresses in a simple-power law graded 

rotating disk. Their work revealed that the plasticity can 

occur in different regions of the disk. By utilizing Runge-

Kutta and shooting methods, Dai and Dai [12] considered 

the variation of angular speed of a FGM uniform rotating 

disc. Çallıoğlu et al. [13] investigated elastic–plastic stress 

analysis with non-work hardening case of power-law 

graded discs subjected to a constant angular velocity. They 

verified the results by Ansys. 
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Under only pressure loads: Horgan and Chan [14] 

showed that the stress response of an inhomogeneous 

cylinder (or disk) subjected to pressure is significantly 

different from that of a homogeneous body. Based on the 

hypergeometric functions, You et al. [15] presented an 

analytical solution for circular linearly graded uniform 

disks subject to internal and/or external pressure. Tutuncu 

and Temel [16] studied axisymmetric displacements and 

stresses in FG hollow cylinders, disks and spheres subject 

to only uniform internal pressure by using plane elasticity 

theory and complementary functions method. Lotfian et al. 

[17] presented a two-dimensional elasticity solution and a 

numerical solution using finite element method for elastic 

analysis of parabolically graded uniform disk subjected to 

both the internal and external pressures. Nejad et al. [18] 

extended the previous study by Lotfian et al. [17] to 

exponentially graded uniform discs that were subjected to 

internal and external pressures.  

Under only thermal loads: Noda [19] has reviewed 

works conducted in 1980-1991 which covers a wide range 

of topics from thermo-elastic to thermo-inelastic problems 

with temperature-dependent properties. Tanigawa [20] also 

presented a comprehensive review on thermoelastic 

analysis of FGMs. Bakshi et al. [21] worked on coupled 

thermoelasticity of functionally graded disks. Tokovy and 

Ma [22] studied thermal stresses in anisotropic and radially 

inhomogeneous annular domains. Zenkour [23] carried out 

a functionally graded annular sandwich disk subjected to 

only steady-state thermal load. He presented a closed form 

solution in terms of Whittaker’s functions. Peng and Li 

[24] studied analytically and numerically thermoelastic 

analysis of either power-law graded annulus or arbitrarily 

graded annulus. They transformed the governing equation 

to a Fredholm integral equation. Based on the two-

dimensional thermoelastic theories and finite difference 

method, Arnab et al. [25] investigated numerically 

thermoelastic fields in a thin circular power-law and 

exponentially graded Al2O3/Al disk with a concentric hole 

subjected to thermal loads. Under a logarithmic thermal 

gradients assumption, Aleksandrova [26] investigated 

analytically elasto-plastic thermal stresses and 

deformations in a thin annular plate embedded into a rigid 

container and made of a homogeneous and isotropic 

material based on the von Mises yield criterion with its 

associated flow rule. 

Under combined pressure and thermal loads: Çallıoğlu 

et al. [27] analytically studied thermoelastic analysis of 

power-law graded stress-free annular discs subjected to 

both pressure and various assumed temperature 

distributions. Kurşun et al. [28] worked on the elastic 

stress analysis of power-law graded annular discs 

subjected to both uniform pressures on the inner surface 

and a linearly decreasing temperature distribution. Gönczi 

and Ecsedi [29] solved analytically and numerically 

governing equation govern the thermo-mechanical 

behavior of a hollow power-law graded stress-free uniform 

circular disc under axisymmetric pressure and thermal 

loads.  

Under combined magnetic and thermal loads: 

Combined effects of magnetic and thermal loads on the 

elastic behavior of exponentially graded uniform annular 

discs were considered by Zenkour [30].  

Under combined centrifugal and thermal loads: 

Zenkour [31] also proposed an analytical solution in terms 

of Whittaker's functions for exponentially graded uniform 

rotating annular disks under steady-state thermal and 

centrifugal loads. By dividing the radial domain into some 

virtual sub-domains, Kordkheili and Naghdabadi [32] 

presented a semi-analytical solution for a thin 

axisymmetric uniform rotating traction-free disk made of 

functionally graded materials with power-law distribution 

of the volume fraction under centrifugal force and uniform 

thermal loadings. Go et al. [33] developed a finite element 

method to demonstrate that a circular power-law graded 

free-free uniform cutter or grinding disk can be designed 

with better thermo-elastic characteristics if certain 

parameters, namely, temperature distribution, angular 

speed, radial thickness, and outer surface temperature, are 

controlled properly. A finite element model was developed 

by Afsar et al. [34] using the variational approach and Ritz 

method to study the thermoelastic characteristics due to a 

thermal load and rotation of a thin uniform circular 

rotating disk having a concentric hole and an 

exponentially-graded coating at the outer surface. Based 

on the two-dimensional thermoelastic theories, Afsar and 

Go [35] conducted a finite element analysis of 

thermoelastic field in a thin circular exponentially graded 

Al2O3/Al disk subjected to a thermal load and an inertia 

force due to rotation of the disk. Afsar and Sohag [36] 

considered thermoelastic characteristics of a thin circular 

disc having a concentric hole and a functionally graded 

material (FGM) coating at the outer surface under thermal 

and centrifugal loads. Gong et al. [37] used a finite volume 

method for the steady 3-D thermoelastic analysis of the 

functionally graded uniform rotating discs. They showed 

that the least square method achieves better performances 

than the Gaussian method but least square method costs 

slightly more iteration and computer memory under 

different mesh types. Yıldırım [38], recently, investigated 

analytically the thermomechanical attributes of a power-

law graded uniform mounted disc with or without rigid 

casing are under centrifugal and steady-state thermal loads. 

In the present study, which is the complementary of 

Yıldırım’s [38] study, a circular annulus or a disc is 

assumed to be made of both hypothetical and physical 

metal-ceramic pairs under combined pressure, centrifugal, 

and thermal loads (Fig. 1). A benchmark example using 

only hypothetical inhomogeneity indexes for both infinite 

FGM cylinders [39] and FGM spheres [40] is revisited 

with a rotating circular annulus or a disc. After this stage, 

another fresh study is conducted where traction-free 

annulus is assumed to be made of three types of physical 

metal-ceramic pairs. Separate and combined effects of 

mechanical and thermal loads are all investigated.  

 

Figure 1. Combined pressure, centrifugal, and thermal loads for a 

traction-free annulus  
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2. Thermal Analysis 

Let’s consider a hollow disc of inside radius a, and 

outside radius b (Fig. 1). The radial and tangential 

coordinates are denoted by r, and 𝜃. Let’s use the prime 

symbol to indicate the derivatives with respect to the radial 

coordinate.  For any arbitrary material grading rule of a 

non-uniform thermal conduction coefficient, 𝑘(𝑟), the 

differential equation which governs the temperature 

distribution along the radial coordinate in a uniform 

annulus/disc or a cylinder is defined by [41] 

1

𝑟
(𝑟𝑘(𝑟)𝑇′(𝑟))

′
= 𝑇′′(𝑟) + 𝑇′(𝑟) (

1

𝑟
+

𝑘′(𝑟)

𝑘(𝑟)
) = 0                   (1) 

 If the following power-law grading rule 

𝑘(𝑟) = 𝑘𝑎 (
𝑟

𝑎
)

𝜇
                                                                (2) 

Is employed, Eq. (1) turns into the following 

𝑇′′(𝑟) +
(1 + 𝜇)

𝑟
𝑇′(𝑟) = 0 

     

(3) 

Yıldırım [41] solved Eq. (3) under Dirichlet’s boundary 

conditions, aTaT )(  and bTbT )( , as follows 

𝑇(𝑟) =
𝑟−𝜇 (−𝑏𝜇𝑟𝜇𝑇𝑏 + 𝑎𝜇(𝑟𝜇𝑇𝑎 + 𝑏𝜇(−𝑇𝑎 + 𝑇𝑏)))

𝑎𝜇 − 𝑏𝜇

= 𝛷1 + 𝑟−𝜇𝛷2 

     

(4) 

where 

𝛷1 =
𝑎𝜇𝑇𝑎 − 𝑏𝜇𝑇𝑏

𝑎𝜇 − 𝑏𝜇
 ;      𝛷2 =

𝑎𝜇𝑏𝜇(−𝑇𝑎 + 𝑇𝑏)

𝑎𝜇 − 𝑏𝜇
 

     

(5) 

Solution of Eq. (3) for isotropic and homogeneous 

materials, = 0 , under the same boundary conditions takes 

the following form [41] 

𝑇(𝑟) = 𝑇𝑎 +
(𝑇𝑏 − 𝑇𝑎)

𝑙𝑛 (
𝑏
𝑎

)
𝑙 𝑛 (

𝑟

𝑎
) = 𝑙𝑛𝑟𝛹2 + 𝛹1 

𝛹1 =
𝑙𝑛𝑎𝑇𝑏 − 𝑇𝑎𝑙𝑛𝑏

𝑙𝑛 (
𝑎
𝑏

)
 ;    𝛹2 =

𝑇𝑎 − 𝑇𝑏

𝑙𝑛 (
𝑎
𝑏

)
 

     

(6) 

3. Derivation of Governing Equation 

Under axisymmetric plane-stress assumptions, the 

strain-displacement relations for cylinders are given by 

𝜖𝑟(𝑟) = 𝑢𝑟
′ (𝑟);  𝜖𝜃(𝑟) =

𝑢𝑟(𝑟)

𝑟
 

     

(7) 

where ru is the radial displacement, r  is the unit 

radial strain,   is the unit tangential strain. Thermoelastic 

stress–strain constitutive relations for a FGM may be given 

in the form of [38] 
𝜎𝑟(𝑟) = 𝐶11(𝑟)𝜖𝑟 + 𝐶12(𝑟)𝜖𝜃

− (𝐶11(𝑟) + 𝐶12(𝑟))𝛼(𝑟)𝑇(𝑟) 

𝜎𝜃(𝑟) = 𝐶12(𝑟)𝜖𝑟 + 𝐶11(𝑟)𝜖𝜃

− (𝐶11(𝑟) + 𝐶12(𝑟))𝛼(𝑟)𝑇(𝑟) 

 

(8) 

where 𝜎𝑟(𝑟) is the radial stress, 𝜎𝜃(𝑟) is the hoop 

stress, 𝛼(𝑟) is the coefficient of thermal expansion, and 

𝐶11(𝑟) =
1

1 − 𝜈2
𝐸(𝑟) ;  𝐶12(𝑟) =

𝜈

1 − 𝜈2
𝐸(𝑟) =  𝜈𝐶11(𝑟) 

     
(9) 

where 𝐸(𝑟) is Young’s modulus and   is Poisson’s 

ratio. The arithmetic mean of Poisson’s ratios of ceramic 

and metal is used in the present numerical calculations. 

Substituting Eq. (7) into Eq. (8), Hooke’s law, then, takes 

the following form of  

𝜎𝑟(𝑟) = 𝐶11(𝑟) (𝑢𝑟
′ (𝑟) + 𝜈

𝑢𝑟(𝑟)

𝑟
)

− (1 + 𝜈)𝐶11(𝑟)𝛼(𝑟)𝑇(𝑟) 

𝜎𝜃(𝑟) = 𝐶11(𝑟) (𝜈 𝑢𝑟
′ (𝑟) +

𝑢𝑟(𝑟)

𝑟
)

− (1 + 𝜈)𝐶11(𝑟)𝛼(𝑟)𝑇(𝑟) 

    

(10) 

The equilibrium equation in the radial coordinate of an 

annulus/disc rotating at a constant circular velocity, 𝜔, is  

(𝑟𝜎𝑟(𝑟))
′

− 𝜎𝜃 = 𝜎𝑟
′(𝑟) + 

𝜎𝑟(𝑟) − 𝜎𝜃(𝑟)

𝑟
= −𝜌(𝑟)𝜔2𝑟 

     

(11) 

where 𝜌(𝑟) is the material density.  After substitution 

of Eq. (10) into Eq. (11), Navier equation in general form 

is obtained. 

𝑢𝑟
′′(r) + ( 

1

𝑟
+

𝐶11
′ (𝑟)

𝐶11(𝑟)
 ) 𝑢𝑟

′ (𝑟) + (−
1

𝑟2
+

𝜈

𝑟

𝐶11
′ (𝑟)

𝐶11(𝑟)
) 𝑢𝑟(𝑟)

= −
𝜌(𝑟)𝜔2𝑟

𝐶11(𝑟)
+ (1 + 𝜈)𝛼(𝑟)𝑇′(𝑟)

+ (
𝐶11

′ (𝑟)

𝐶11(𝑟)
𝛼(𝑟) + 𝛼′(𝑟)) (1

+ 𝜈)𝑇(𝑟) 

     

(12) 

If the following material gradients are used in Eq. (12),  

𝐸(𝑟) = 𝐸𝑎 (
𝑟

𝑎
)

𝛽

;    𝜌(𝑟) = 𝜌𝑎 (
𝑟

𝑎
)

𝑞

;     𝛼(𝑟) = 𝛼𝑎 (
𝑟

𝑎
)

𝑛

 
     

(13) 

then Navier equation for thermomechanical analysis of 

a power-law graded annulus/disc is obtained as follows 

[38] 

(−1 + 𝛽𝜈)

𝑟2
𝑢𝑟(𝑟) +

(1 + 𝛽)

𝑟
𝑢𝑟

′ (𝑟) + 𝑢𝑟
′′(𝑟)=

−
𝑎−𝑞+𝛽𝑟1+𝑞−𝛽(1 − 𝜈2)𝜌𝑎𝜔2

𝐸𝑎

+ 𝑎−𝑛𝑟−1+𝑛−𝜇𝛼𝑎(1 + 𝜈)(𝑟𝜇(𝑛
+ 𝛽)𝛷1 + (𝑛 + 𝛽 − 𝜇)𝛷2) 

     

(14) 

where inhomogeneity indexes are denoted by 𝛽, 𝑞, 𝜇 

and , 𝑛. By using the followings, 

Δ1= 𝑎−𝑛𝛼𝑎(𝑛 + 𝛽)(1 + 𝜈)𝛷1 

Δ2= 𝑎−𝑛𝛼𝑎(𝑛 + 𝛽 − 𝜇)(1 + 𝜈)𝛷2 

     
(15) 

Navier equation may be rewritten in a more compact 

form as 

(−1 + 𝛽𝜈)

𝑟2
𝑢𝑟(𝑟) +

(1 + 𝛽)

𝑟
𝑢𝑟

′ (𝑟) + 𝑢𝑟
′′(𝑟)=

−
𝑎−𝑞+𝛽𝑟1+𝑞−𝛽(1 − 𝜈2)𝜌𝑎𝜔2

𝐸𝑎

+ 𝑟−1+𝑛−𝜇(𝑟𝜇Δ1 + Δ2) 

     

(16) 

This is a second order non-homogeneous Euler-Cauchy 

differential equation with constant coefficients [38]. It is 

possible to find a closed form general solution 

(homogeneous+particular) to this equation. After getting 

the solution, combined radial and hoop stresses may be 

determined based on the superposition principle for 

linearly elastic materials as follows. 

𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝜎𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝜎𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒   (17) 
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Equivalent stress at any surface in the radial direction is 

computed with the help of von-Mises failure criterion as 

follows 

𝜎𝑒𝑞(𝑟) = √𝜎𝑟
2 − 𝜎𝑟𝜎𝜃 + 𝜎𝜃

2 
 

(18) 

The general solutions of Eq. (16), obtained with the 

help of Euler-Cauchy technique, are given directly in the 

following sections for each separate mechanical and 

thermal load.  

3.1. Elastic Fields under both Internal and External 

Pressures 

Homogeneous solution of the Navier equation in Eq. 

(16) 

(−1 + 𝛽𝜈)

𝑟2
𝑢𝑟(𝑟) +

(1 + 𝛽)

𝑟
𝑢𝑟

′ (𝑟) + 𝑢𝑟
′′(𝑟)=0 

 

(19) 

under boundary conditions, ar pa )(
 and 

br pb )(
, renders the elastic field due to both internal 

and external pressures,  𝑝𝑎 and 𝑝𝑏, as follows 

Explicit forms of Eq. (20) are as follows 

ur(r) = r
1
2

(−β−ξ)
(A1 + A2rξ) 

σr(r) = −
1

2
C11(r)r

1

2
(−2−β−ξ)

(A2rξ(β − 2ν − ξ) +

A1(β − 2ν + ξ))   

 𝜎𝜃(𝑟) =
1

2
𝑟

1

2
(−2−𝛽−𝜉)

𝐶11(𝑟) (𝐴2𝑟𝜉(2 − 𝛽𝜈 + 𝜈𝜉) −

𝐴1(−2 + 𝜈(𝛽 + 𝜉))) 

 

 

 

(20) 

Where 

 

ξ = √4 + β2 − 4βν 

 

A1 = −
2(ν2 − 1)a

β+ξ
2 b

ξ−β
2 (bpba

β+ξ
2 − apab

β+ξ
2 )

Εa(aξ − bξ)(β − 2ν + ξ)
 

 

A2

=
b−β 2⁄ (2(ν2 − 1)pbaβb

ξ
2+1 − 2(ν2 − 1)pabβ 2⁄ a

1
2

(β+ξ+2))

Εa(aξ − bξ)(β − 2ν − ξ)
 

(21a) 

 

 

(21b) 

 

 

(21c) 

 

𝑢𝑟(𝑟) =
2(𝜈2 − 1)𝑝𝑎𝑎

1
2

(𝛽+𝜉+2)𝑟
1
2

(−𝛽−𝜉)(𝑏𝜉(𝛽 − 2𝜈 − 𝜉) − 𝑟𝜉(𝛽 − 2𝜈 + 𝜉))

𝛦𝑎(𝑎𝜉 − 𝑏𝜉)(𝛽 − 2𝜈 − 𝜉)(𝛽 − 2𝜈 + 𝜉)
  

+
2(𝜈2 − 1)𝑝𝑏𝑎𝛽𝑏

1
2

(−𝛽+𝜉+2)𝑟
1
2

(−𝛽−𝜉)(𝑎𝜉(𝛽 − 2𝜈 − 𝜉) − 𝑟𝜉(𝛽 − 2𝜈 + 𝜉))

𝛦𝑎(𝑎𝜉 − 𝑏𝜉)(𝛽 − 2𝜈 + 𝜉)(−𝛽 + 2𝜈 + 𝜉)
 

 

𝜎𝑟(𝑟) =
𝑝𝑎𝑎

1
2

(−𝛽+𝜉+2)(𝑏𝜉 − 𝑟𝜉)𝑟
1
2

(𝛽−𝜉−2)

𝑎𝜉 − 𝑏𝜉
+

𝑝𝑏(𝑎𝜉 − 𝑟𝜉)𝑏
1
2

(−𝛽+𝜉+2)𝑟
1
2

(𝛽−𝜉−2)

𝑏𝜉 − 𝑎𝜉
 

 

𝜎𝜃(𝑟) =
1

(𝑎𝜉 − 𝑏𝜉)(𝛽 − 2𝜈 − 𝜉)(𝛽 − 2𝜈 + 𝜉)
(𝑝𝑎𝑎

1
2

(−𝛽+𝜉+2)𝑟
1
2

(𝛽−𝜉−2)(𝑏𝜉(𝛽 − 2𝜈 − 𝜉)(𝜈(𝛽 + 𝜉) − 2)

+ 𝑟𝜉(𝛽 − 2𝜈 + 𝜉)(−𝛽𝜈 + 𝜈𝜉 + 2)))

+
1

(𝑎𝜉 − 𝑏𝜉)(𝛽 − 2𝜈 + 𝜉)(−𝛽 + 2𝜈 + 𝜉)
(𝑝𝑏𝑏

1
2

(−𝛽+𝜉+2)𝑟
1
2

(𝛽−𝜉−2)(𝑎𝜉(𝛽 − 2𝜈 − 𝜉)(𝜈(𝛽

+ 𝜉) − 2) + 𝑟𝜉(𝛽 − 2𝜈 + 𝜉)(−𝛽𝜈 + 𝜈𝜉 + 2))) 

 

(22a) 

 

 

 

(22b) 

 

 

 

 

 

 

(22c) 

For a disk made of an isotropic and homogeneous material, solution of the following under boundary conditions, 

ar pa )(  and br pb )( , 

𝑢𝑟
′′(𝑟) +

1

𝑟
𝑢𝑟

′ (𝑟) −
1

𝑟2
𝑢𝑟(𝑟) = 0 

 

(23) 

gives the elastic field due to both internal and external pressures as follows [42] 

𝑢𝑟(𝑟) =  −
𝑎2𝑝𝑎(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
 +

𝑏2𝑝𝑏(𝑎2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
 

 

𝜎𝑟(𝑟) =
𝑎2𝑝𝑎(𝑏2 − 𝑟2)

𝑟2(𝑎2 − 𝑏2)
+

𝑏2(𝑎 − 𝑟)(𝑎 + 𝑟)𝑝𝑏

𝑟2(𝑏2 − 𝑎2)
 

 

𝜎𝜃(𝑟) = −
𝑎2𝑝𝑎(𝑏2 + 𝑟2)

𝑟2(𝑎2 − 𝑏2)
+

𝑏2(𝑎2 + 𝑟2)𝑝𝑏

𝑟2(𝑎2 − 𝑏2)
 

 

(24) 
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3.2. Elastic Fields under Rotation at a Constant Angular 

Speed 

Homogeneous and particular solutions of the Navier 

equation given in Eq. (16) 
(−1 + 𝛽𝜈)

𝑟2
𝑢𝑟(𝑟) +

(1 + 𝛽)

𝑟
𝑢𝑟

′ (𝑟) + 𝑢𝑟
′′(𝑟)=

−
𝑎−𝑞+𝛽𝑟1+𝑞−𝛽(1 − 𝜈2)𝜌𝑎𝜔2

𝐸𝑎

 

 

(25) 

give the elastic fields in terms of integration constants 

due to the rotation about an axis passing through the center 

of annulus as 

𝑢𝑟(𝑟) = 𝑟−𝛽 (𝑟
𝛽−𝜉

2 (𝐵1 + 𝐵2𝑟𝜉) + 𝑟3+𝑞𝛺) 

 

𝜎𝑟(𝑟) =
1

2
𝑟−1−𝛽−

𝜉
2𝐶11(𝑟) (𝑟𝛽 2⁄ (−𝐵1(𝛽 − 2𝜈 + 𝜉)

+ 𝐵2𝑟𝜉(−𝛽 + 2𝜈 + 𝜉))

+ 2𝑟3+𝑞+
𝜉
2(3 + 𝑞 − 𝛽 + 𝜈)𝛺) 

 

𝜎𝜃(𝑟) =
1

2
𝑟−1−𝛽−

𝜉
2𝐶11(𝑟) (−𝑟𝛽 2⁄ (−𝐵2𝑟𝜉(2 − 𝛽𝜈 + 𝜈𝜉)

+ 𝐵1(−2 + 𝜈(𝛽 + 𝜉)))

+ 2𝑟3+𝑞+
𝜉
2(1 + (3 + 𝑞 − 𝛽)𝜈)𝛺) 

 

 

 

 

(26) 

where 

𝜉 = √4 + 𝛽2 − 4𝛽𝜈  

 

Ω =
𝑎−𝑞+𝛽(−1 + 𝜈2)𝜌𝑎𝜔2

𝛦𝑎(8 + 𝑞(6 + 𝑞 − 𝛽) − 3𝛽 + 𝛽𝜈)
 

 

(27) 

Integration constants in Eq. (26) are determined under 

free-free boundary conditions, 0)( ar  and 0)( br , 

as  

𝐵1 =
2𝛺𝑎

𝜉−𝛽
2 𝑏

𝜉−𝛽
2 (𝛽 − 𝜈 − 𝑞 − 3) (𝑎𝑞+3𝑏

𝛽+𝜉
2 − 𝑏𝑞+3𝑎

𝛽+𝜉
2 )

(𝑎𝜉 − 𝑏𝜉)(𝛽 − 2𝜈 + 𝜉)
 

𝐵2

=
2𝛺𝑎−𝛽 2⁄ 𝑏−𝛽 2⁄ (−𝛽 + 𝜈 + 𝑞 + 3) (𝑏𝛽 2⁄ 𝑎

𝜉
2+𝑞+3 − 𝑎𝛽 2⁄ 𝑏

𝜉
2+𝑞+3)

(𝑎𝜉 − 𝑏𝜉)(𝛽 − 2𝜈 − 𝜉)
 

 

 

(28) 

If the disk material is homogeneous and isotropic, then, 

Eq. (25) turns into the following 

𝑢𝑟
′′(𝑟) +

1

𝑟
𝑢𝑟

′ (𝑟) −
1

𝑟2
𝑢𝑟(𝑟) = −

𝜌𝜔2𝑟

𝐶11

= −
𝑟(1 − 𝜈2)ρ𝜔2

E
 

 

(29) 

 

Solution of this equation given above under the 

free-free boundary conditions is [43] 

𝑢𝑟(r)=
1

8𝐸𝑟
(𝜌𝜔2(𝑎2(𝜈 + 3)(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2)

− (𝜈 − 1)𝑟2(𝑏2(𝜈 + 3) − (𝜈 + 1)𝑟2))) 

 

𝜎𝑟(𝑟) =
(𝜈 + 3)𝜌𝜔2(𝑎 − 𝑟)(𝑎 + 𝑟)(𝑟2 − 𝑏2)

8𝑟2
 

 

 𝜎𝜃(𝑟)

=
𝜌𝜔2(𝑎2(𝜈 + 3)(𝑏2 + 𝑟2) + 𝑟2(𝑏2(𝜈 + 3) − (3𝜈 + 1)𝑟2))

8𝑟2
 

 

(30) 

3.3. Elastic Fields under Thermal Loads 

Homogeneous and particular solutions of Navier 

equation given in Eq. (16) together with Dirichlet’s 

boundary conditions, aTaT )(  and bTbT )( ,  

 

(−1 + 𝛽𝜈)

𝑟2
𝑢𝑟(𝑟) +

(1 + 𝛽)

𝑟
𝑢𝑟

′ (𝑟)

+ 𝑢𝑟
′′(𝑟)=𝑟−1+𝑛−𝜇(𝑟𝜇Δ1 + Δ2) 

 

(31) 

give the elastic field as  

𝑢𝑟(𝑟) = 𝛥3 (𝑟1+𝑛−𝜇Δ4 + 𝑟1+𝑛Δ1Δ5 + 𝐶1𝑟
1
2

(−𝛽−𝜉)
Δ5Δ6

+ 𝐶2𝑟
1
2

(−𝛽+𝜉)
Δ5Δ6) 

 

𝜎𝑟(𝑟)

= 𝐶11(𝑟)𝑟𝑛𝛥3(Δ1Δ5(1 + 𝑛 + 𝜈)

+ 𝑟−𝜇Δ4(1 + 𝑛 − 𝜇 + 𝜈))

+
1

2
𝐶11(𝑟)𝑟

1
2

(−2−𝛽−𝜉)
𝛥3Δ5Δ6 (−𝐶1(𝛽 − 2𝜈 + 𝜉)

+ 𝐶2𝑟𝜉(−𝛽 + 2𝜈 + 𝜉))

+
𝑎−𝑛−𝛽𝛦𝑎𝑟𝑛+𝛽−𝜇𝛼𝑎(𝑟𝜇𝛷1 + 𝛷2)

−1 + 𝜈
 

𝜎𝜃(r) 

= 𝐶11(𝑟)𝑟𝑛𝛥3(Δ1Δ5(1 + 𝜈 + 𝑛𝜈)

+ 𝑟−𝜇(Δ4 + Δ4(1 + 𝑛 − 𝜇)𝜈))

+
1

2
𝐶11(𝑟)𝑟

1
2

(−2−𝛽−𝜉)
𝛥3Δ5Δ6 (𝐶2𝑟𝜉(2 − 𝛽𝜈 + 𝜈𝜉)

− 𝐶1(−2 + 𝜈(𝛽 + 𝜉)))

+
𝑎−𝑛−𝛽𝛦𝑎𝑟𝑛+𝛽−𝜇𝛼𝑎(𝑟𝜇𝛷1 + 𝛷2)

−1 + 𝜈
 

 

 

 

 

(32) 

where auxiliary constants are 

𝜉 = √4 + 𝛽2 − 4𝛽𝜈 

 

𝛥3 = 16((−2 − 2𝑛 − 𝛽 + 𝜉)(2 + 2𝑛 + 𝛽 + 𝜉)(2 + 2𝑛

+ 𝛽 − 2𝜇 + 𝜉)(−2 − 2𝑛 − 𝛽

+ 2𝜇 + 𝜉))
−1

 

Δ4 = Δ2(𝛽 + 𝑛(2 + 𝑛 + 𝛽) + 𝛽𝜈) 

Δ5 = 𝑛2 + 𝑛(2 + 𝛽 − 2𝜇) + (−2 + 𝜇)𝜇 + 𝛽(1 − 𝜇 + 𝜈) 

Δ6 = 𝛽 + 𝑛(2 + 𝑛 + 𝛽) + 𝛽𝜈 

(33a) 

 

 

 

(33b) 

Integration constants in the solution of Eq. (32) are 

determined for free-free boundary conditions as 
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𝐶1 =
2𝑏

1
2

(𝜉−2𝜇)
𝑎

1
2

(𝜉−2(𝜇+𝑛))

𝛥3Δ5Δ6(𝑎𝜉 − 𝑏𝜉)(𝛽 − 2𝜈 + 𝜉)
 (𝑎𝜇+

𝜉
2𝑏

𝛽
2

+𝑛+1 (𝛥3𝑎𝑛(Δ1Δ5𝑏𝜇(𝜈 + 𝑛 + 1) + Δ4(−𝜇 + 𝜈 + 𝑛 + 1))

− 𝛼𝑎(𝜈 + 1)(𝛷1𝑏𝜇 + 𝛷2))

+ 𝑎
𝛽
2

+𝑛+1𝑏𝜇+
𝜉
2(−Δ1𝛥3Δ5(𝜈 + 𝑛 + 1)𝑎𝜇+𝑛 + 𝛼𝑎(𝜈 + 1)𝛷1𝑎𝜇

− 𝛥3Δ4𝑎𝑛(−𝜇 + 𝜈 + 𝑛 + 1) + 𝛼𝑎(𝜈 + 1)𝛷2)) 

𝐶2 = −
1

𝛥3Δ5Δ6(𝑎𝜉 − 𝑏𝜉)(−𝛽 + 2𝜈 + 𝜉)
2𝑏−𝜇𝑎−𝜇−𝑛 (−𝛼𝑎(𝜈 + 1)𝛷1𝑏𝜇𝑎

𝛽
2

+𝜇+𝑛+
𝜉
2

+1

− 𝛼𝑎(𝜈 + 1)𝛷2𝑏𝜇𝑎
1
2

(𝛽+2𝑛+𝜉+2)
+ Δ1𝛥3Δ5𝑏𝜇(𝜈 + 𝑛 + 1)𝑎

1
2

(𝛽+2𝜇+4𝑛+𝜉+2)

+ 𝛥3Δ4𝑏𝜇(−𝜇 + 𝜈 + 𝑛 + 1)𝑎
1
2

(𝛽+4𝑛+𝜉+2)

− 𝛥3𝑎𝜇+𝑛𝑏
1
2

(𝛽+2𝑛+𝜉+2)
(Δ1Δ5𝑏𝜇(𝜈 + 𝑛 + 1) + Δ4(−𝜇 + 𝜈 + 𝑛 + 1))

+ 𝛼𝑎(𝜈 + 1)𝑎𝜇(𝛷1𝑏𝜇 + 𝛷2)𝑏
1
2

(𝛽+2𝑛+𝜉+2)
) 

 

 

 

 

 

 

(34) 

If the disk is made of an isotropic and homogeneous material, Eq. (31) turns into [42] 

𝑢𝑟
′′(𝑟) +

1

𝑟
𝑢𝑟

′ (𝑟) −
1

𝑟2 𝑢𝑟(𝑟) = (1 + 𝜈)𝛼𝑇′(𝑟) = (1 + 𝜈)
𝛼

𝑟
(

𝑇𝑎 − 𝑇𝑏

ln (
𝑎
𝑏

)
 ) = (1 + 𝜈)

𝛼

𝑟
𝛹2 =

𝛥

𝑟
  

(35) 

Solution of Eq. (35) under free-free boundary condition is  

𝑢𝑟(𝑟) =
1

2(𝜈 − 1)(𝜈 + 1)𝑟(𝑎 − 𝑏)(𝑎 + 𝑏)
{𝑎2(𝜈 + 1)𝑙𝑛𝑎(𝛥 − 2𝛼𝛹2)(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2)

− 𝑏2(𝜈 + 1)𝑙𝑛𝑏(𝑎2(𝜈 + 1) − (𝜈 − 1)𝑟2)(𝛥 − 2𝛼𝛹2)

+ (𝜈 − 1)𝑟2(𝑎 − 𝑏)(𝑎 + 𝑏)(2𝛼(𝜈 + 1)𝛹1 − 𝛥 + 𝛥(𝜈 + 1)𝑙𝑛𝑟)} 

 

𝜎𝑟(𝑟) = −
𝐸(𝛥 − 2𝛼𝛹2)(𝑏2(𝑟2 − 𝑎2)𝑙𝑛𝑏 + 𝑎2𝑙𝑛𝑎(𝑏 − 𝑟)(𝑏 + 𝑟) + 𝑟2(𝑎 − 𝑏)(𝑎 + 𝑏)𝑙𝑛𝑟)

2(𝜈 − 1)𝑟2(𝑎 − 𝑏)(𝑎 + 𝑏)
 

 

𝜎𝜃(𝑟) =
1

2(𝜈 − 1)(𝜈 + 1)𝑟2(𝑎 − 𝑏)(𝑎 + 𝑏)
(E((𝜈 + 1)(𝛥 − 2α𝛹2)(𝑎2𝑙𝑛𝑎(𝑏2 + 𝑟2) − 𝑏2(𝑎2 + 𝑟2)𝑙𝑛𝑏 + 𝑟2(𝑏2 − 𝑎2)𝑙𝑛𝑟)

− 𝛥(𝜈 − 1)𝑟2(𝑎 − 𝑏)(𝑎 + 𝑏))) 

 

 

 

 

 

(36) 

4. Revisited the Benchmark Example 

Jabbari et al. [39] and Eslami et al. [40] used the 

following material and geometrical properties to study the 

thermo-mechanical analysis of both traction-free cylinders 

and spheres which are subjected to both internal pressure 

and surface temperature differences.  

𝑎 = 1.0𝑚; 𝑏 = 1.2𝑚; 𝜈 = 0.3; 𝛦𝑎 = 200 𝐺𝑃𝑎; 

𝜌𝑎 = 7800
𝑘𝑔

𝑚3 ; 𝛼𝑎 = 1.2 10−6 1

℃
;  𝑘𝑎 = 15.379

𝑊

𝑚℃
 ; 

 𝑝𝑎 = 50 𝑀𝑃𝑎;  𝑝𝑏 = 0;   𝑇𝑎 = 10℃;   𝑇𝑏 = 0℃ 

In the present study the same example is to be extended 

to a hollow disk or annulus under free-free boundary 

conditions. In the benchmark examples, the homogeneity 

indexes are to be all the same, 𝛽 = 𝑛 = 𝜇 = 𝑞, and they 

are determined hypothetically.  Jabbari et al. [39] and 

Eslami et al. [40] did not consider the centrifugal forces. 

The constant angular velocity is assumed to be 𝜔 =
100 𝑟𝑎𝑑/𝑠, and the hypothetically chosen values of the 

inhomogeneity indexes are to be  −3 ≤ 𝛽 ≤ 3    in the 

present example. The results are presented in Figs. 2-3 and 

Table 1. It may be noted that, for the disks made of 

isotropic and homogeneous materials, 𝛽 = 𝑛 = 𝜇 = 𝑞 =
0,  Eqs. (24), (30), and (36) are used in all examples 

instead other closed-form expressions derived for FGM 

discs. This allows an auto-control mechanism for the 

present computations.  

Variations of the dimensionless elastic fields with the 

inhomogeneity index under individual and combined loads 

are illustrated in Fig. 2. Variation of the dimensionless 

equivalent stress with the inhomogeneity index under 

combined loads is also shown in Fig. 3. If the present 

graphs for combined thermal and pressure loads in Figs. 2-

3 are compared with the benchmark graphs, it is seen that 

the present graphs are very close to the graphs for 

cylinders [39]. Fig. 2 and 3 suggest 

 The rotation effects seem to be much important than 

the thermal effects. The thermal effects may be 

negligible for this example. 

 As 𝑟/𝑎 increases the dimensionless radial displacement 

increases under individual thermal loads for all 

inhomogeneity indexes. Maximum combined radial 

displacements are observed at the inner surface. 
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Figure 2. Variation of the elastic fields in an annulus with the inhomogeneity index 
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Figure 3. Variation of the dimensionless equivalent stress with the inhomogeneity index under combined loads for free-free boundary 

conditions. 
Table 1. Variation of the dimensionless elastic fields with the inhomogeneity indexes 

 𝑢𝑟/𝑎  𝜎𝑟/𝑝𝑎  𝜎𝜃/𝑝𝑎  

r/a 𝛽 = −2 𝛽 = 2 𝛽 =  −2 𝛽 = 2 𝛽 = −2 𝛽 = 2 

Thermal 

1. 0.00000568 0.0000056 0. 0. -0.0252823 -0.0256429 

1.04 0.00000615 0.0000061 -0.0006996 -0.0008291 -0.0117571 -0.0172315 

1.08 0.00000647 0.0000065 -0.0009132 -0.0012579 -0.0016646 -0.0073190 

1.12 0.00000666 0.0000067 -0.0007991 -0.0012733 0.00585425 0.00421912 

1.16 0.00000674 0.0000068 -0.0004687 -0.0008510 0.011432 0.017512 

1.2 0.00000671 0.0000068 0. 0. 0.0155387 0.032693 

Centrifugal 

1. 0.00052199 0.0005413 0. 0. 2.08796 2.16504 

1.04 0.00051597 0.0005350 0.0153977 0.0195631 1.83938 2.23156 

1.08 0.00051035 0.0005292 0.0211395 0.0296796 1.62687 2.29506 
1.12 0.00050504 0.0005237 0.0194235 0.0300443 1.44374 2.35514 

1.16 0.00049994 0.0005184 0.0119405 0.0202913 1.28474 2.4114 

1.2 0.00049496 0.0005132 0. 0. 1.14574 2.46342 

Pressure 

1. 0.00173548 0.0012174 -1. -1. 6.64192 4.56964 

1.04 0.00170714 0.0011954 -0.721683 -0.782553 5.85405 4.73815 

1.08 0.00168181 0.0011765 -0.490729 -0.574911 5.19307 4.90994 

1.12 0.00165928 0.0011602 -0.29798 -0.375911 4.63479 5.08474 

1.16 0.00163939 0.0011461 -0.136284 -0.184559 4.16027 5.26232 

1.2 0.00162198 0.0011339 0. 0. 3.75458 5.4425 

Combined (thermal+pressure) 

1. 0.00174116 0.001223 -1. -1. 6.61664 4.54399 

1.04 0.00171329 0.0012015 -0.722383 -0.783383 5.84229 4.72092 
1.08 0.00168828 0.0011829 -0.491642 -0.576169 5.1914 4.90262 

1.12 0.00166594 0.0011669 -0.29878 -0.377184 4.64064 5.08896 

1.16 0.00164613 0.0011529 -0.136752 -0.185419 4.1717 5.27984 

1.2 0.00162869 0.0011407 0. 0. 3.77012 5.4752 

Combined (thermal+centrifugal) 

1. 0.00052767 0.0005469 0. 0. 2.06267 2.1394 

1.04 0.00052212 0.0005411 0.0146981 0.018734 1.82763 2.21432 

1.08 0.00051682 0.0005357 0.0202264 0.0284217 1.62521 2.28774 

1.12 0.0005117 0.0005304 0.0186244 0.028771 1.44959 2.35936 

1.16 0.00050668 0.0005252 0.0114718 0.0194313 1.29618 2.42891 
1.2 0.00050167 0.0005200 0. 0. 1.16128 2.49612 

Combined (centrifugal+pressure) 

1. 0.00225747 0.0017587 -1. -1. 8.72988 6.73468 

1.04 0.0022231 0.0017304 -0.706286 -0.76299 7.69343 6.96971 

1.08 0.00219216 0.0017057 -0.469589 -0.545232 6.81994 7.20499 

1.12 0.00216432 0.0016839 -0.278557 -0.345867 6.07852 7.43988 

1.16 0.00213933 0.0016644 -0.124343 -0.164267 5.44502 7.67372 

1.2 0.00211694 0.0016471 0. 0. 4.90032 7.90593 

Combined (thermal+centrifugal+pressure) 

1. 0.00226315 0.0017643 -1. -1. 8.7046 6.70904 

1.04 0.00222925 0.0017365 -0.706985 -0.763819 7.68168 6.95248 

1.08 0.00219863 0.0017121 -0.470502 -0.54649 6.81827 7.19767 
1.12 0.00217098 0.0016905 -0.279356 -0.34714 6.08438 7.4441 

1.16 0.00214607 0.0016713 -0.124812 -0.165127 5.45645 7.69124 

1.2 0.00212365 0.0016539 0. 0. 4.91586 7.93862 
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 The dimensionless radial stresses are all in compression 

under individual thermal and pressure loads, combined 

(thermal+pressure), (centrifugal+pressure) and thermo-

mechanical loads, viz., combined thermal, pressure and 

centrifugal loads. The absolute value of the maximum 

radial stress is observed at the vicinity of mid-surface 

under individual thermal, individual centrifugal, 

combined (thermal+centrifugal) loads while it is on the 

inner surface under other loads. 

 Tangential stresses are all in tension except for thermal 

loads for all inhomogeneity indexes. Maximum hoop 

stress is at the inner surface for negative inhomogeneity 

indexes. 

 While 𝛽 =-1 seems to be a better choice for almost 

uniform equivalent stress variation under combined 

(thermal+centrifugal) loads, 𝛽 = 2 is the best for other 

types of combined loads (Fig. 3). 

5. Examples with Physical FGMs 

In the present study, three types of physical metal-

ceramic pairs are considered to understand the thermo-

mechanical behavior of such structures. Material 

properties of the constituents are given in Table 2 for 

nickel-silicon nitride (Ni-Si3N4), aluminum-aluminum 

oxide (Al-Al2O3), and stainless steel-zirconium oxide 

(SUS304-ZrO2). Contrary to the benchmark example, the 

inhomogeneity indexes are now to be determined exactly 

regarding to the types of metal and ceramic and their 

locations. Assume that the inner surface is to be full 

ceramic and the outer surface is to be full metal. In this 

case the intermediate surface consists of a mixture of metal 

and ceramic which obeys the power law gradient given by 

Eqs. (2) and (13). The values of inhomogeneity indexes 

depend on the annulus aspect ratio, a/b, as well as the 

constituents’ material properties. Positive inhomogeneity 

index means an increase from the inner surface towards 

the outer. The contrary is true for negative inhomogeneity 

indexes. The inhomogeneity indexes are computed under 

this assumption as follows  
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(37) 

Material and geometrical properties of the annulus are 

determined as: 𝜔 = 100
𝑟𝑎𝑑

𝑠
;  𝑝𝑎 = 30𝑀𝑃𝑎; 𝑝𝑏 =

5𝑀𝑃𝑎; 𝑇𝑎 = 373𝐾;  𝑇𝑏 = 273𝐾; 𝑎 = 0.5𝑚; 𝑏 = 1.0𝑚. 

Results are tabulated in Tables 3-5 and illustrated in Figs. 

4-5. From those tables and figures, it is mostly observed 

that the thermal effects are not negligible as in the previous 

example since the surface temperature difference has been 

taken much higher than the previous example. 

Combined radial displacements of three types FGMs 

are closer to the ceramic constituents. The radial 

displacements build-up as 𝑟/𝑏 increases under thermal 

loadings for three FGMs while they decrease with 

increasing r/b ratios under individual pressure and 

centrifugal loads. Ni/ Si3N4 has the smallest radial 

displacements than other two FGMs while Al/Al2O3 has 

the highest ones. 

The characteristic variation of radial stresses of Ni/ 

Si3N4 and Al/Al2O3 are similar to each other to some 

extent. SUS304/ ZrO2 has entirely combined thermo-

mechanical radial compression stresses while the others 

have tension-compression in nature. It is fascinating that 

the behavior of FGMs are totally different from the 

behaviors of individual metal and ceramics under thermal 

loading. While individual ceramic and metal give thermal 

radial stresses in compression, FGM offers radial stresses 

in tension. Maximum combined thermo-mechanical radial 

stress is observed at both the inner surface and at the 

surface between the inner and mid-surface for both Ni/ 

Si3N4 and Al/Al2O3.  

It is observed from Fig. 4 that the characteristic 

behaviors of Ni/ Si3N4 and Al/Al2O3 are similar under both 

individual pressure and centrifugal loads. However, Ni/ 

Si3N4 seems much proper than Al/Al2O3 under individual 

pressure while it is the worst for individual rotation. For 

combined thermo-mechanical loadings, SUS304/ ZrO2 

exhibits the most appropriate hoop and equivalent stresses 

(Figs. 4-5). The performance of SUS304/ ZrO2 under 

centrifugal forces are better than the others. SUS304/ ZrO2 

also shows the best performance under individual thermal 

loading and combined thermal and mechanical loads. 

Table 2. The physical constituent materials used in the present study 

  E 

(GPa) 

𝜌 

(kg/m3) 

ν k 

(W/mK) 

α 

(1/K) 

 

Metal 

Nickel (Ni) 199.5 8900 0.3 90.7 13.3E-6 

Aluminum (Al) 70 2700 0.3 204 23.E-6 

SUS304 (Stainless Steel) 201.04 7800 0.3262 15.379 12.33E-6 

 

Ceramic 

Silicon Nitride (Si3N4) 348.43 4429 0.24 1.209 5.8723E-6 

Aluminum Oxide (Al2O3) 393 3970 0.3 30.1 8.8E-6 

Zirconium oxide (ZrO2) 116.4 3657 0.3 1.78 8.7E-6 
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Table 3. Elastic fields of circular annulus with physical FGMs (Ni-Si3N4 and Al-Al2O3) under thermal and centrifugal loads 

 Thermal Centrifugal 

r/b Si3N4 Ni-Si3N4 Ni Si3N4 Ni-Si3N4 Ni 

 𝑢𝑟 (𝑚𝑚) 

0.5 0.915496 1.35275 2.07348 0.0544997 0.111344 0.193781 

0.6 1.13013 1.56113 2.56306 0.0527081 0.107424 0.18533 

0.7 1.32442 1.79872 3.00432 0.0518973 0.106284 0.180747 

0.8 1.50395 2.07772 3.41054 0.0514076 0.106298 0.177593 

0.9 1.67208 2.4001 3.78969 0.0508324 0.106125 0.174377 

1. 1.83099 2.76541 4.14696 0.0498919 0.10448 0.170081 

 𝜎𝑟  (𝐺𝑃𝑎) 

0.5 0. 0. 0. 0. 0. 0. 

0.6 -0.01477 0.0265844 -0.0191536 0.0035078 0.00849608 0.0071793 

0.7 -0.0171497 0.0339282 -0.0222396 0.0044807 0.0108177 0.0091706 

0.8 -0.0137526 0.0285571 -0.0178342 0.0039350 0.00958235 0.0080538 

0.9 -0.0075515 0.0161291 -0.00979269 0.0023562 0.00583515 0.0048225 

1. 0. 0. 0. 0. 0. 0. 

 𝜎𝜃 (𝐺𝑃𝑎) 

0.5 -0.125218 0.17949 -0.16238 0.0379787 0.0775914 0.0773188 

0.6 -0.0566285 0.123614 -0.07344 0.0314503 0.0561662 0.0637759 

0.7 -0.0087453 0.0326852 -0.01134 0.0269076 0.0432787 0.0542641 

0.8 0.0272743 -0.0484405 0.035369 0.0233343 0.0343077 0.0467034 

0.9 0.0558414 -0.116065 0.072415 0.020245 0.0271806 0.0401003 

1. 0.079391 -0.172665 0.102954 0.0173838 0.0208437 0.0339313 

r/b Al2O3 Al-Al2O3 Al Al2O3 Al-Al2O3 Al 

 𝑢𝑟 (𝑚𝑚) 

0.5 1.37193 2.10962 3.58572 0.0438796 0.0680382 0.167545 

0.6 1.69586 2.44523 4.43236 0.0419658 0.0652997 0.160237 

0.7 1.98782 2.85505 5.19543 0.0409282 0.0645656 0.156275 

0.8 2.2566 3.34168 5.89792 0.040214 0.0648825 0.153548 

0.9 2.50747 3.90588 6.55361 0.0394857 0.0652246 0.150767 

1. 2.74385 4.54737 7.17143 0.038513 0.0643676 0.147054 

 𝜎𝑟  (𝐺𝑃𝑎) 

0.5 0. 0. 0. 0. 0. 0. 

0.6 -0.024965 0.0363991 -0.011622 0.0032025 0.00463795 0.002178 

0.7 -0.0289873 0.0364721 -0.0134946 0.0040907 0.00508015 0.0027821 

0.8 -0.0232453 0.0257909 -0.0108215 0.0035925 0.00395046 0.0024433 

0.9 -0.0127639 0.0126957 -0.00594201 0.0021512 0.0021415 0.001463 

1. 0. 0. 0. 0. 0. 0. 

 𝜎𝜃 (𝐺𝑃𝑎) 

0.5 -0.211649 0.36818 -0.0985297 0.0344894 0.053478 0.0234563 

0.6 -0.0957164 0.104515 -0.0445591 0.0284484 0.0285597 0.0193478 

0.7 -0.0147818 -0.0160097 -0.00688143 0.0242055 0.0172121 0.0164621 

0.8 0.0461005 -0.0752527 0.0214613 0.0208329 0.0110787 0.0141685 

0.9 0.094386 -0.105572 0.0439398 0.0178874 0.00723665 0.0121652 

1. 0.134191 -0.121214 0.0624703 0.0151356 0.00450573 0.0102938 
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Table 4. Elastic fields of circular annulus with physical FGMs (Ni-Si3N4 and Al-Al2O3) under pressure and combined loads 

 Pressures Thermo-mechanical 

r/b Si3N4 Ni-Si3N4 Ni Si3N4 Ni-Si3N4 Ni 

 𝑢𝑟  (𝑚𝑚) 

0.5 0.062949 0.079638 0.114453 1.03294 1.54374 2.38171 

0.6 0.053791 0.069195 0.097522 1.23663 1.73775 2.84591 

0.7 0.047456 0.061447 0.085762 1.42377 1.96645 3.27082 

0.8 0.042888 0.055445 0.077235 1.59824 2.23946 3.66537 

0.9 0.039496 0.050644 0.070862 1.76241 2.55687 4.03493 

1. 0.036928 0.046708 0.065998 1.91781 2.9166 4.38304 

 𝜎𝑟  (𝐺𝑃𝑎) 

0.5 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.6 -0.0198148 -0.0187403 -0.0198148 -0.031077 0.016340 -0.031789 

0.7 -0.0136735 -0.0125855 -0.0136735 -0.0263425 0.032160 -0.026743 

0.8 -0.0096875 -0.0089115 -0.0096875 -0.019505 0.029228 -0.019468 

0.9 -0.0069547 -0.0065699 -0.0069547 -0.01215 0.015394 -0.011925 

1. -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 

 𝜎𝜃  (𝐺𝑃𝑎) 

0.5 0.0366667 0.0473966 0.0366667 -0.05057 0.304478 -0.048396 

0.6 0.0264815 0.0296411 0.0264815 0.001303 0.209421 0.016822 

0.7 0.0203401 0.0199344 0.0203401 0.038502 0.0958984 0.0632634 

0.8 0.0163542 0.0141393 0.0163542 0.066963 6.543.10-6 0.0984268 

0.9 0.0136214 0.0104453 0.0136214 0.089708 -0.0784388 0.126136 

1. 0.0116667 0.0079682 0.0116667 0.108442 -0.143853 0.148552 

r/b Al2O3 Al-Al2O3 Al Al2O3 Al-Al2O3 Al 

 𝑢𝑟  (𝑚𝑚) 

0.5 0.0581001 0.106582 0.32619 1.47391 2.28424 4.07945 

0.6 0.0495052 0.0946808 0.277937 1.78733 2.60521 4.87054 

0.7 0.0435357 0.0847664 0.244422 2.07228 3.00439 5.59613 

0.8 0.039207 0.07593 0.220119 2.33602 3.48249 6.27159 

0.9 0.0359721 0.0675964 0.201958 2.58292 4.0387 6.90633 

1. 0.033503 0.0593678 0.188095 2.81587 4.6711 7.50658 

 𝜎𝑟  (𝐺𝑃𝑎) 

0.5 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.6 -0.0198148 -0.0164097 -0.0198148 -0.0415773 0.024627 -0.029259 

0.7 -0.0136735 -0.0105156 -0.0136735 -0.0385701 0.031037 -0.024386 

0.8 -0.0096875 -0.0075873 -0.0096875 -0.0293403 0.022154 -0.018066 

0.9 -0.0069547 -0.0059712 -0.0069547 -0.0175675 0.008866 -0.011434 

1. -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 

 𝜎𝜃  (𝐺𝑃𝑎) 

0.5 0.0366667 0.0747737 0.0366667 -0.140493 0.496432 -0.038407 

0.6 0.0264815 0.0344695 0.0264815 -0.0407865 0.167544 0.0012701 

0.7 0.0203401 0.0174417 0.0203401 0.0297638 0.018644 0.0299209 

0.8 0.0163542 0.009302 0.0163542 0.0832876 -0.05487 0.051984 

0.9 0.0136214 0.0050426 0.0136214 0.125895 -0.09329 0.0697264 

1. 0.0116667 0.0026557 0.0116667 0.160993 -0.11405 0.0844307 
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Table 5. Elastic fields of circular annulus with 𝑆𝑈𝑆304 − 𝑍𝑟𝑂2. 

 Thermal Centrifugal 

r/b 𝑍𝑟𝑂2 𝑆𝑈𝑆304 − 𝑍𝑟𝑂2 𝑆𝑈𝑆304 𝑍𝑟𝑂2 𝑆𝑈𝑆304 − 𝑍𝑟𝑂2 S𝑈𝑆304 

 𝑢𝑟  (𝑚𝑚) 

0.5 1.35634 1.5991 1.92226 0.13647 0.173756 0.169483 

0.6 1.67659 1.91271 2.37753 0.130518 0.165861 0.161298 

0.7 1.96523 2.21899 2.7871 0.127291 0.161489 0.156647 

0.8 2.23095 2.53105 3.16354 0.125069 0.158363 0.153359 

0.9 2.47897 2.8539 3.51438 0.122804 0.155188 0.150113 

1. 2.71267 3.18944 3.84451 0.119779 0.151119 0.146012 

 𝜎𝑟  (𝐺𝑃𝑎) 

0.5 0. 0. 0. 0. 0. 0. 

0.6 -0.00731 0.001025 -0.01789 0.002950 0.004511 0.0063420 

0.7 -0.00849 0.002963 -0.02078 0.003768 0.006304 0.0081010 

0.8 -0.00681 0.003702 -0.01666 0.003309 0.006010 0.0071144 

0.9 -0.00374 0.002721 -0.00915 0.001982 0.003883 0.00426 

1. 0. 0. 0. 0. 0. 0. 

 𝜎𝜃  (𝐺𝑃𝑎) 

0.5 -0.06197 -0.00546 -0.1517 0.031770 0.040451 0.0681457 

0.6 -0.02803 0.013470 -0.06861 0.026206 0.038564 0.0561143 

0.7 -0.00433 0.013459 -0.01059 0.022297 0.036985 0.0476314 

0.8 0.013499 0.002947 0.03304 0.019190 0.035259 0.0408597 

0.9 0.027638 -0.01408 0.06765 0.016477 0.033118 0.0349215 

1. 0.039293 -0.03551 0.096182 0.013942 0.030381 0.0293543 

 Pressures Thermo-mechanical 

 𝑢𝑟  (𝑚𝑚) 

0.5 0.196163 0.157868 0.115531 1.68897 1.93073 2.20727 

0.6 0.167144 0.131506 0.098324 1.97425 2.21007 2.63715 

0.7 0.146989 0.114426 0.086352 2.23951 2.49491 3.0301 

0.8 0.132374 0.102797 0.077653 2.4884 2.79221 3.39455 

0.9 0.121452 0.094606 0.071135 2.72323 3.10369 3.73562 

1. 0.113116 0.088701 0.066144 2.94557 3.42926 4.05667 

 𝜎𝑟  (𝐺𝑃𝑎) 

0.5 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.6 -0.01981 -0.02084 -0.01981 -0.02418 -0.01530 -0.0313666 

0.7 -0.01367 -0.01480 -0.01367 -0.01839 -0.00553 -0.0263493 

0.8 -0.00969 -0.01055 -0.00969 -0.01318 -0.00084 -0.0192342 

0.9 -0.00695 -0.00741 -0.00695 -0.00871 -0.00080 -0.0118433 

1. -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 

 𝜎𝜃  (𝐺𝑃𝑎) 

0.5 0.036667 0.027359 0.036667 0.006462 0.062351 -0.0468881 

0.6 0.026482 0.022931 0.026482 0.024660 0.074965 0.0139907 

0.7 0.020340 0.020174 0.020340 0.038309 0.070618 0.0573767 

0.8 0.016354 0.018363 0.016354 0.049044 0.056569 0.0902567 

0.9 0.013621 0.017129 0.013621 0.057736 0.036171 0.116194 

1. 0.011667 0.016267 0.011667 0.064902 0.011134 0.137203 

 

 

 

 



 © 2018 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 12, Number 3  (ISSN 1995-6665) 227 

 

Figure 4. Variation of the hoop stress with FGM types under individual and combined loads 

6. Conclusions 

The present study addresses exact thermo-mechanical 

analysis of a rotating FGM circular annulus or disc. After 

proposing closed form solutions for separate loads such as 

centrifugal, thermal, and pressure, two parametric studies 

are conducted. The first study is related to the benchmark 

example with hypothetically chosen inhomogeneity 

parameters. This example is originally handled for circular 

annuli in this manuscript. The second study considers the 

thermo-mechanical behavior of three types of physical 

ceramics, metals, and FGMs. 

Separate and combined effects of each loading are 

studied in two examples. Those studies generally imply 

that the effect of thermal loads may be either negligible 

compared to inertia forces as in the first benchmark 

example or may be having higher importance than the 

inertias as in the second example. It is also concluded that 

the thermal characteristics of both individual metal and 

ceramic are totally different from FGM’s thermal traits. 

The author hopes that both the formulas proposed in the 

present study and graphs are to be helpful for the demands 

of the related industries.  
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Figure 5. Variation of the equivalent stress with FGMs under combined loads 
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