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Abstract 

Reliability, availability, and maintainability are considered as a crucial metrics that are used to evaluate the performance 

of the industrial systems. In this work, an integrated reliability, availability, and maintainability (RAM) model of the 3-out-

of-4 system was proposed to quantify the values of RAM indices and to identify the most critical equipment which mainly 

affects the system performance. The Markovian approach was adopted to model the system behavior. A transition diagram 

for the proposed model was constructed and differential equations of the proposed model were formulated to obtain the state 

probability. The availability at steady state, reliability at transient state and maintainability were analyzed and investigated. 

The proposed model was verified and validated.  A real data of industrial system in Oil and Gas Egyptian Company was 

applied to validate the proposed model and the effect of failure and repair rates at different mission time was presented and 

discussed. The results of the applied proposed system revealed that the system availability at steady state is 99 %, the system 

reliability is 0.59%, and the system maintainability is 0.99%.  On the other hand Turbine no. three was found the most 

critical item in the system and need more attention to improve the system performance. It could be said that the proposed 

model is considered an excellent tool for industrial systems performance evaluations. 
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1. Introduction  

RAM is an important performance metrics in system 

analysis and considered a good starting point for system 

improvements [1]. The Oil and Gas industry has 

consistently increased its requirements, combined with the 

rise in technological systems, and increased 

competitiveness of service providers to implement 

adequate management strategies for these systems to 

improve their availability and productivity to comply with 

those most demanding standards. One important point in 

this regard is to have knowledge about the RAM of the 

main equipment in this industry [2]. Evidentially, a fault-

based (Breakdown) maintenance system in the Oil and Gas 

industry is a costly and time-consuming process, resulting 

in a substantial and intangible loss to system operators.   

Corvaro, et al. [3], assesses operational performance of 

reciprocating compressors used in Gas and Oil industry 

using RAM model. The study aimed to evaluate the effect 

of different factors related to RAM and devoted to 

collaborating with the private sector aiming continuous 

quality improvement. Aoudia, et al. [4], studied the 

economic impact of maintenance management 

ineffectiveness of one of the main industrial plants of a 

major Oil and Gas group. Sharma and Kumar, [5] built a 

RAM model applied to a process industry using the 

Markovian approach in steady state. Parametric 

computations and indices of RAM to assess system 

performance in repairable industrial systems using Genetic 

Algorithm (GA) and the Markovian approach were 

presented [6, 7].  

Evidently, the integration of reliability, availability and 

maintainability of investigation tends to good results. 

However, reliability, Availability, and maintainability 

were investigated individually or two of them in the other 

industries. Much effort has been made by the researchers 

providing performance modelling and availability analysis 

applied on different industrial systems as Paper Plant, 

Paint, and thermal power plant Industry [8-10].  

Aggarwal, et. al. [11] presented a model using Markov 

birth-death process, the concept of fuzzy reliability and 

availability. A numerical method with the assumption that 

the failure and repair rates of each subsystem follow the 

exponential distribution has been developed. In which a 

mathematical modeling of the system is carried out using 

the mnemonic rule to derive Chapman–Kolmogorov 

differential equations and solved it by Runge-Kutta fourth-

order method Which is considered one of the most 

common methods that are used in solving the differential 

equations as well as it is considered one of the oldest and 

the best method in numerical analysis moreover; it 
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provides a popular way to solve the differential equations. 

When the system includes a large numbers of differential 

equations, MATLAB program could be used to solve these 

large equations. For this, the MATLAB software is 

considered one of the multi programs that could be used 

for numerical computations.   

Lin, et al. [12] presented a reliability study using both 

classical and Bayesian semi-parametric frame-works, they 

illustrated how a wheel- set’s degradation data can be 

modeled and analyzed to ease the calculation of system 

reliability during applying preventive maintenance. Singh, 

and Goyal, [13] developed methodology to study the 

transient behaviour of repairable mechanical biscuit 

shaping system on a biscuit manufacturing plant for 

determining the availability of the system based on 

Markov modelling. The differential equations have been 

solved using Laplace Transforms.  Laplace Transform 

commonly used in the transient state to obtain the state 

probabilities, in which the differential equations are 

converted to algebraic equations to simplify the system 

solution.  

The K-out-of-N system is the most important type for 

the repairable system according to reliability theory and, it 

is used in many applications such as petroleum industry. 

An investigation of a 2-out-of-3 system has been presented 

recently in published work in which the reliability and 

availability have been evaluated and analyzed for the 

system using Kolmogorov’s equations and applied on 

some particular cases. In this analysis, mean time to 

system failure (MTSF), steady-state availability, busy 

period and profit function were derived to evaluate the 

system reliability and availability [14-15]. Preeti, [16] 

presented an analysis which considered as a powerful tool 

to analyze reliability of a linear consecutive 2-out-of-3-F 

system with common cause shock failure in which the 

transient equations of the reliability and steady equations 

of the availability have been investigated. Yusuf, [17] 

evaluate the system reliability indices of a repairable 3-

out-of-4 system with preventive maintenance involving 

four types of failures using Kolmogorov equations.  

Apparently, the literature review -up to our reading- 

revealed the following points:  

 The researchers concentrated, to more extent, on the 

investigation of availability and reliability of the 

industrial systems. 

 Oil and Gas industry need more attention to improve 

and maintain its system performance. 

 A little attention is paid to investigate the integration of 

RAM for different industrial application. 

 No more work on studying of RAM analysis for a 

multi-component system such as 3-out-of-4 system. 

Moreover, the applications of RAM analysis as an 

adopted approach for maintenance policies for Oil and Gas 

Industrial systems could be proposed and applied for 

increasing customer satisfaction, reduce the frequency of 

failures and maintenance costs. This is a motivation of the 

present work. 

The aim of this work is to develop a comprehensive 

RAM model for industrial systems evaluation. This study 

has two main parts, as presented in Fig.1; the first is to 

develop 3-out-of-4 system RAM model based on the 

Markovian approach. Availability at steady state, 

reliability at transient state and maintainability are 

analyzed and investigated. The differential equations are 

solved using Rung-Kutta method with aided of MATLAB 

software to get the system availability at steady state (Ass) 

and solved by Laplace transform to get reliability at 

transient state. The second is to apply the proposed model 

for the performance measure of a real case of Oil and Gas 

industrial system. This model provides results for a 

complete reliability, availability, and maintainability 

(RAM) analysis utilizing data sets from a production 

system in an Oil and Gas plant. A parametric investigation 

of various values of system failure rates and repair rates on 

system reliability (Rs), availability, and maintainability and 

their effects on the system performance are presented. The 

results of that analysis help the designers/engineers and 

managers to quantify and measure the system 

performance; conversely, suitable maintenance 

policies/strategies can be selected to enhance the 

productivity of the plant. 

 
Figuer1: Steps of the presented work. 

2. System Description   

In this section, the 3-out-of-4 system is described. The 

system consists of four units in which one unite is standby 

(sb) and the other three units must be in the operating state 

(o) for the system to work. The system failed (F) when two 

units failed and the other two units are in good state (g). 

Based on Markov assumption [18], differential equations 

that describe the proposed system are written to analyze 

the probability for each state. These equations are further 

solved for determining the RAM indices. The states of the 

system according to Markov are shown below in Table (1), 

and the transition diagram in Fig.2 depicts a model 

showing all the possible states of the system. 

Construct the transition diagram of 

the 3-out-of-4 system 

Solve the system equations by 

software program and get the values 

of RAM 

Write the system availability, 

reliability, and maintainability 

(RAM) equations  

Implement the proposed model on a 

real case study  

Present a parametric investigation to 

evaluate the system criticality 

Start  

End 

Part.1   

Part.2   



 © 2018 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 12, Number 1  (ISSN 1995-6665) 61 

Table 1: System states 

State Component state  System condition 

Available and standby Failed 

S0 T1, T2, T3, T4 - Working  

S1 T2, T3,T4 T1 Working  

S2 T1, T3, T4 T2 Working  

S3 T1, T2, T4 T3 Working  

S4 T3, T4 T1, T2 Failed 

S5 T2, T4 T1, T3 Failed  

S6 T2, T3 T1, T4 Failed  

S7 T1, T4 T2, T3 Failed 

S8 T1, T3 T2, T4 Failed  

S9 T1, T2 T3, T4 Failed  

 
Figure 2: State transition diagram. 

 
 

3. Model Proposed 

The differential equations associated with the transition 

diagram are derived on the basis of Markov birth-death 

process. Various probability considerations generate the 

following sets of differential equations: 

[(d/dt) + λ1+ λ2 +λ3] P0 (t) = μ1P1 (t) + μ2P2 (t) + μ3P3 (t)  (1)  

[(d/dt) + μ1 +λ2 + λ3 + λ4] P1 (t) = μ2 P4 (t) + μ3 P5 (t) + μ4 

P6 (t) + λ1 P0 (t)                                                                 (2) 

[(d/dt) + λ1 + λ3 + λ4 + μ2] P2 (t) = μ1 P4 (t) + μ3 P7 (t) + μ4 

P8 (t) + λ2 P0 (t)                                                                 (3) 

[(d/dt) + λ1+ λ2 + λ4 + μ3] P3 (t) = μ1 P5 (t) + μ2 P7 (t) + μ4 

P9 (t) + λ3 P0 (t).                                                                (4) 

[(d/dt) + μ1 + μ2] P4 (t) = λ1P2 (t) +λ2 P1 (t)                       (5) 

[(d/dt) + μ1 + μ3] P5 (t) = λ1 p3 (t) + λ3 P1 (t)                     (6) 

[(d/dt) + μ4] P6 (t) = λ4 P1 (t)                                             (7) 

[(d/dt) + μ2 +μ3] P7 (t) = λ2 P3 (t) + λ3 P2 (t)                      (8) 

[(d/dt) + μ4] p8 (t) = λ4P2 (t)                                              (9) 

[(d/dt) + μ4] P9 (t) = λ4 P3 (t)                          (10) 

Where, the initial conditions at time t = 0 are: 

pi(t) = {
1, ifi = 0
0, ifi ≠ 0

                                                          (11) 

Where: 

d /dt: derivative with respect to t.,P0 (t): probability that 

the system is working at full capacity at time t, Pi (t): state 

probability that the system is in the ith state at time t, λi: 

failure rate for unit i, μi: repair rate for unit i. 

3.1. Availability Equations 

To get the steady state availability of the system (ASS), 

(i.e., time independent performance behavior) which is 

mean d/dt =0 and t → ∞, the above equations (eq. 1 to 10) 

become:  

(λ1 + λ2 + λ3) P0 = μ1P1 + μ2P2 + μ3P3                             (12) 

(μ1 + λ2 + λ3 + λ4) P1 = μ2 P4 + μ3 P5 + μ4 P6 + λ1 P0      (13) 

(λ1 + λ3 + λ4 + μ2) P2= μ1 P4 + μ3 P7 + μ4 P8 + λ2 P0       (14) 

(λ1+ λ2 + λ4 + μ3) P3 = μ1 P5 + μ2 P7 + μ4 P9 + λ3 P0        (15) 

(μ1 + μ2) P4 = λ1 P2+ λ2 P1                                                                     (16) 

(μ1+ μ3) P5 = λ1 p3 + λ3 P1                                               (17) 

(μ4) P6= λ4 P1                                                                  (18) 

(μ2+μ3) P7 = λ2 P3 + λ3 P2                                               (19) 

(μ4) p8 (t) = λ4 P2                                                            (20) 

(μ4) P9 = λ4 P3                                                         (21) 
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These equations were solved using Rung-Kutta Forth 

order method and MATLAB, the values of steady state 

probabilities are as follows: 

P1 = (λ1/μ1) P0,   P2 = (λ2 / μ2) P0,   P3 = (λ3 / μ3) P0m, 

P4 = (λ1λ2) / (μ1μ2) P0,   P5 = (λ1λ3) / (μ1μ3) P0, 

 P6 = (λ1λ4) / (μ1μ4) P0, P7 = (λ2λ3) / (μ2μ3) P0,      

P8 = (λ2λ4) / (μ2μ4) P0,  P9 = (λ3 λ4) / (μ3 μ4) P0 

The probability of full working capacity (P0) is 

determined using normalizing conditions (i.e.,∑ P9
𝑖=0 i= 1) 

as follows: 

P0= [(μ1 μ2 μ3 μ4) / (λ1 μ2 μ3 μ4 + λ2μ1μ3 μ4 + λ3 μ1 μ2 μ4 + λ1λ2 

μ3 μ4 + λ1λ3 μ2 μ4 + λ1λ4 μ2 μ3 + λ2λ3 μ1 μ4 + λ2λ4 μ1 μ3 + λ3λ4 

μ1 μ2)]                                                          (22) 

Having the values of probabilities (P0-P9) determined, 

ASS is calculated as a summation of all working state 

probabilities as follows:  

ASS= P0 + P1 + P2 + P3                                                     (23) 

3.2. Reliability Equations. 

To get the reliability (RS) of the system under 

consideration at any time, the equations (1 to10) are solved 

taking Laplace transform and the probability transform are 

as follows: 

[S + λ1 + λ2 +λ3] P0(S) = μ1P1(S) + μ2P2(S) + μ3P3(S)    (24)  

[S + μ1 +λ2 + λ3 + λ4] P1(S) = μ2 P4(S) + μ3 P5(S) + μ4 

P6(S) + λ1 P0(S)                                                              (25) 

[S + λ1 + λ3 + λ4 + μ2] P2(S) = μ1 P4(S) + μ3 P7(S) + μ4 

P8(S) + λ2 P0(S)                                                              (26) 

[S +λ1+λ2 +λ4 + μ3] P3(S) = μ1 P5(S) + μ2 P7(S) + μ4 P9(S)  

+ λ3 P0(S).                                                                       (27) 

[S +μ1 + μ2] P4(S) = λ1 P2(S) + λ2 P1(S)                         (28) 

[S + μ1+μ3] P5(S) = λ1 p3(S) + λ3 P1(S)                          (29) 

[S + μ4] P6(S) = λ4 P1(S)                                                 (30) 

[S + μ2 +μ3] P7(S) = λ2 P3(S) + λ3 P2(S)                         (31) 

[S + μ4] p8 (S) = λ4 P2(S)                                                (32) 

[S + μ4] P9(S) = λ4 P3(S)                                                 (33) 

Where S is the Laplace transform variable. 

To determine RS, a verification model is applied. It 

could be noted that the probabilities of the failed states 

haven’t any effect on the system reliability, so the system 

reliability could be calculated considering only the 

working states (i.e., excluding the failed states). Based on 

this result, the probability of failed states could be 

neglected during solution of the complex systems and the 

probabilities of operating states are only considered.  

The previous equations (24 to 33) are solved using 

MATLAB 2015 at the following initial conditions at time 

t= 0 where, 

pi(t) = {
1, if i = 0
0, if i ≠ 0

                                                         (34) 

After solving these equations, the probabilities of 

operating states for the system, under consideration, are 

calculated as follows:  

P0 = (C A B) / D                                                             (35) 

P1= (λ1 A B) / D                                                             (36) 

P2 = (λ2 C B) / D                                                             (37) 

P3 = (λ3 C A) / D                                                            (38) 

Where: 

A= μ2+ S +λ1 +λ3 +λ4                                                                                (39) 

B= μ3+ S +λ1 +λ2+λ4                                                      (40) 

C= μ1+ S +λ2 +λ3 +λ4                                                      (41) 

D= see appendix A                                                         (42) 

Having the values of probabilities of working states 

determined, RS is calculated as follows:  

Rs(S) = P0(S) + P1(S) + P2(S) + P3(S)                         (43) 

Taking the inverse of Laplace transforms then, P0, P1, 

P2, and P3, are calculated as F(t) and the system reliability 

is calculated at time t as follows:  

R (t) = P0 (t) + P1 (t) + P2 (t) + P3 (t)                          (44) 

3.3. Maintainability Equations 

For any system, the system maintainability (MS) is 

calculated as follows: 

MS (t) = 1- e
 (-μt)                                                                                     (45) 

Where(μ) is the repair rate (μ= 1 ⁄ MTTR), MTTRs  is a 

mean time to repair of the system and is calculated as a 

function in mean time to repair (MTTR) and mean time 

between failure (MTBF) of system component i where: 

MTTRS =

∑ 𝑀𝑇𝑇𝑅𝑖/𝑀𝑇𝐵𝐹𝑖𝑛
𝑖=1

∑ 1/𝑀𝑇𝐵𝐹𝑖𝑛
𝑖=1

                                     (46) 

4. Implementation of Proposed Model 

Fig. 3 depicts the block diagram of the real industrial 

system in Egyptian Petrol Company. This system is 

consists of two unites of fuel supply connected in parallel 

with each other; in which the natural gas unit is active and 

the diesel unit is standby. The fuel supply units are 

connected in series with four turbines which are connected 

in parallel with each other (3-out-of-4); three of them are 

in operating state while the fourth is in the standby state 

and the system fails when two components (Turbines) fail. 

The turbines are considered the most critical items in 

that system because it is used to operate four plants as 

shown in the block diagram. Whereas the actual output for 

each turbine is 3.8 MW and the total power required must 

be not lower than 11.4 MW; otherwise, the system will 

stop working which tends to big losses.  

The transition diagram of this system is built based on 

the Markov, as explained previously (in section 2). Table 

(2) illustrates the number of failures, the repair time, and 

the operating time of this real system that were collected 

from historical data during year 2015. These data are 

applied to validate the proposed model. The RAM analysis 

and discussions are presented in this section.  
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Figure 3: Block diagram of the industrial real system of Egyptian Petrol Company 

(Turbines of power generation). 

The value of the failure rate and repair rate for each 

turbine is illustrated in Table (3) where: 

Failure rate = number of failures / operating time         (47) 

Repair rate = number of failures/ repair time                 (48)  

As an example for T1; 

Failure rate (λ) = 11/ 6471= 0.0017                               (49) 

Repair rate (μ) = 11 / 88 = 0.125                                    (50) 

 

Table 2: The collected historical data of the considered system for 

year 2015.  

 Number of 

failures  
Repair time  

(hours) 

Operating 

time (hours) 

T1 11 88 6471 

T2 8 53 6509 

T3 6 38 6526 

T4 9 105 6456 

 
Table 3: Failure and repair rates of the considered system. 

 T1 T2 T3 T4 

Failure rate (λ) 0.0017 0.0012 0.001 0.0014 

Repair rate ( μ) 0.125 0.15 0.15 0.08 

4.1. System Availability  

By substituting values of failure and repair rates in 

system equations from (Eq.12 to 21) the state probabilities 

are calculated as a function in P0 as follows: 

P1= 0.0136 P0, P2= 0.008 P0, P3= 0.006 P0, 

P4= 0.000011 P0, P5 =0.00001P0, P6 =0.0002 P0 

P7= 0.000005 P0, P8 = 0.00014 P0, P9 = 0.00001 P0 

Where, P0 and Ass are calculated from equations (22) 

and (23) and equal 0.97 and 0.9995 respectively. 

4.2. System Reliability 

RS is calculated as follows: 

 Substitute about λ and µ from Table (3) in equations 

(39 to 42), the variables A, B, C and D could be  

calculated as follows: 

A = 10000.0S + 1541.0                                                  (51) 

B = 10000.0S + 1543.0                                                  (52) 

C = 2500.0(5000.0S + 643.0)                                         (53) 

D = (1.25e15S4 + 5.5112e14S3 + 8.075e13S2 +  

3.9329e12S + 4.1045e8)                                                  (54) 

 Substitute about the variables A, B, C, and D in (eq., 

35-38) to get the probability of the working states. 

 Taking the inverse Laplace of system reliability (eq., 35 

- 38) to get : 

P0 (t) =0.97e (-0.0001t) + 0.015e (-0.15t) + 0.00003e (-0.15t) + 

0.01e (-0.13t)                                                                                                          (55) 

P1 (t) =0.01e (-0.0001t) - 0.0001 e (-0.15t) – 2 e-6e (-0.15t)  

– 0.012e (-0.13t)                                                                                                  (56) 

P2 (t) =0.0075e (-0.0001t) - 0.007e (-0.15t) - 0.0003e (-0.15t) + 

0.0005e (-0.13t)                                                                                                    (57) 

P3 (t) =0.006e (-0.0001t) - 0.007e (-0.15t) + 0.0003e (-0.15t) + 

0.0004e (-0.13t)                                                                                                    (58) 

 Substitute about P0, P1, P2 and P3in equation (44) to 

get RS as follows:  

Rs= 0.9935 e (-0.0001t) + 0.0009 e (-0.15t) + 0.000028 e (-0.15t)  

- 0.0011e (-0.13t)                                                                (59)                

LPG 

Natural gas (supply)  

Diesel generator 
(supply)  

Input  

Turbine (T1) 

Turbine (T2) 

Turbine (T3) 

Turbine (T4) 

Electrical loads  

Gas injection  

Loading plant  

Oil plant  

Output 
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4.3. System maintainability 

MTTRs is calculated from equation (46) based on the 

historical data of the system components which is 

illustrated in Table.2, (i.e., μs= 0.1196, MTTRS= 8.36 hr) 

where, 

MTTR= repair time / number of failure                         (60) 

MTBF= 1/ failure rate                                                    (61) 

 So, MTTRS= ∑4
i=1 

((88/11+53/8+38/6+105/9)/(1/0.0017+1/0.0012+1/0.001+1

/0.0014)) =  8.36 h 

                                           

∑4
i=1(0.0017+0.0012+0.001+0.0014)                             (62)  

Then the system maintainability at time t is as follows: 

M (t) = 1- e (-0.1196 t)                                                         (63) 

5. Results Discussion 

An analysis of system performance has been carried out 

at different values of failure and repair rates of system 

components. The effects of these values on the system 

availability, reliability, and maintainability are discussed in 

the following sections. 

5.1. Availability analysis  

The ASS was calculated at different values of failure 

rate and repair rate as follows:  

Fig. (4) Shows the effect of failure rate for each turbine 

on the system availability at different values of failure rate 

(i.e., λ=0.001, 0.002, 0.003, 0.004, 0.005, 0.006) without 

changing repair rate values mentioned in Table (3). It 

could be seen from this Figure that the system availability 

decreases, slightly, with increasing failure rate of the 

system component. Moreover, it is observed that turbine 

(T4) has the lower availability than the other turbines.  

On the other hand Fig. (5) depicts the effect of repair 

rate for each turbine on system availability at different 

values of repair rate (i.e., μ=0.06, 0.09, 0.12, 0.15, 0.18, 

0.21) without changing failure rate values mentioned in 

Table (3). It is observed that the system availability 

increases, slightly, with increasing repair rate of turbines, 

and (T4) has the higher availability than the other turbines 

this because it has the lower value of repair rate. This 

revealed that increasing the failure rate reduces the 

availability while increasing the repair rate leads to 

increasing the availability.  

 

Figure 4: Effect of turbines failure rate (λ) on system availability 
at steady state. 

 

 

Figure 5: Effect of turbines repair rate (μ) on system availability 

at steady state. 

5.2. Reliability Analysis  

Fig. (6), depicts RS of the system under consideration at 

real data of λ and µ mentioned previously in Table (3), 

along operating time and it is concluded that the system 

reliability decreases with time and the system reliability 

after 5000 running hours is 0.59%.  

 

 

Figure 6:  Effect of time on reliability of the system. 

To investigate the effect of the failure rate of system 

components individually on RS at different mission time, 

the failure rate of each turbine is changed within range 

(0.001 to 0.006 with incremental value 0.001) while, the 

values of rapier rates for all turbines and failure rates of 

the other turbines are the same real data.  

Fig. (7), Illustrates the criticality of the system 

components, i.e., which turbine decreases RS. It could be 

noted with comparing the cases of (λ = 0.001) for each 

turbine that T3 has the higher effect on the system 

reliability and therefore it is the critical component as 

shown in Fig. (7-a), furthermore, with increasing λ to 

0.006 for the same cases, it is also still the critical one as 

shown in Fig (7-b). 
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Figure 7:(a) and (b) Effect of failure rate (λ) on the system reliability at transient state. 

 

5.3. Maintainability Analysis  

Fig. (8) Illustrates the maintainability of each turbine 

as well as Ms of the overall system at real data along 

first 100 operating hours. It could be seen that the 

maintainability of T4 is lower than the 

maintainability of the other components; this is due 

to the lower value of its repair rate than the others.  

 

Figure 8: Maintainability of each turbine and the overall system 

versus time. 

To investigate the effect of repair rate of overall system 

on Ms along the first 100 hrs of operating time, the repair 

rate of the system is assumed within range (0.0 to 0.21 

with incremental value 0.03) as shown in Fig. (9). It could 

be seen that the increase in the system repair rate increases 

Ms. 

 

Figure 9: Effect of Repair Rate on Maintainability of the Overall 

System at Different Mission Time.  

 

 

6. Conclusion  

A RAM model of a 3-out-of-4 system has been 

proposed based on the Markovian approach. Availability at 

steady state, reliability at transient state and 

maintainability equations have been formulated. A real 

data of Oil Gas Egyptian Company was applied to obtain 

the system reliability, availability, and maintainability. A 

parametric investigation of various values of system 

failure and repair rates on system reliability, availability, 

and maintainability, as well as their effects on the system 

performance, are presented. The finding of this study could 

be concluded as follows: 

 The proposed RAM model could be used as an 

integrated model, to investigate system reliability, 

availability, and maintainability of 3-out-of-4 system.  

 It could be also used to determine the most critical 

component of the system. 

 The proposed model helps maintenance engineers and 

designers to evaluate the system performance and 

carried out modification.  

 The implementation of the proposed model revealed 

that the system availability at steady state is 99%, and 

the system maintainability is 0.99% but the system 

reliability after 5000 running hours is 0.59%. This 

means that, an enhancement required improving the 

system reliability and reducing the system down time. 

It is observed that T3 is the most critical component in 

the system and need special attention with careful 

observation to reduce it’s down time and increase the 

system performance. 
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D= (μ 1S
3
 + μ 2S

3
 + μ 3S

3
 + S λ1

3
 + 3.0S

3
 λ1 + S λ2

3
 + 3.0S

3
 λ2 + S λ3

3
 + 3.0S

3
 λ

3
 + S λ4

3
 + 3.0S

3
 λ

4
 + λ1 λ2

3
 + λ1

3
 

λ
2
 + λ1 λ3

3
 + λ1

3
 λ3 + λ1 λ4

3
 + λ2 λ3

3
 + λ1

3
 λ4 + λ2

3
 λ3 + λ2 λ4

3
 + h2

3
 λ4 + λ3 λ4

3
 + λ3

3
 λ4 + S

4
 + 3.0S

2
 λ1

2
 + 3.0S

2
 λ2

2
 

+ 3.0S
2
 λ3

2
 + 3.0S

2
 λ4

2
 + 2.0 λ1

2
 λ2

2
 + 2.0 λ1

2
 λ3

2
 +2.0 λ1

2
 λ4

2
 + 2.0 λ2

2
h3

2
 + 2.0 λ2

2
 λ4

2
 + 2.0 λ3

2
 λ4

2
 + μ1μ2S

2
 + 

μ1μ3S
2
 + μ2μ3S

2
 + μ1S λ1

2
 + 2.0 μ1S

2
 λ1+ μ1S λ2

2
 + 2.0 μ1S

2
 λ2 + μ2S λ1

2
 + 2.0 μ2S

2
 λ1 + μ1S λ3

2
 + 2.0 μ1S

2
 λ3 + 

μ2S λ2
2
 + 2.0 μ2S

2
λ2 + μ3S λ1

2
 + 2.0 μ3S

2
 λ1 + μ1S λ4

2
 + 2.0 μ1S

2
 λ4 + μ2S λ3

2
 + 2.0 μ2S

2
 λ3 + μ3S λ2

2
 + 2.0 μ3S

2
 λ2 

+ μ2S λ4
2
 + 2.0μ2S

2
 λ4 + μ3S λ3

2
 + 2.0 μ3S

2
 λ3 + μ3S λ4

2
 + 2.0 μ3S

2
 λ1+ μ1 λ1 λ2

2
 + μ1 λ1

2
 λ2 + μ1 λ1 λ3

2
 + μ1 λ1

2
 λ3 

+ μ2 λ1 λ2
2
 + μ2 λ1

2
 λ2 + μ1 λ2 λ3

2
 + μ1 λ2

2
 λ3 + μ2 λ1 λ3

2
 + μ2 λ1

2
 λ3 + μ3 λ1 λ2

2
 + μ3 λ1

2
 λ2 + μ1 λ2 λ4

2
 + μ1 λ2

2
 λ4 + 

μ2 λ1 λ4
2
 + μ2 λ2 λ3

2
 + μ2 λ1

2
 λ4+ μ2 λ2

2
 λ3 + μ3 λ1 λ3

2
 + μ3λ1

2
 λ3 + μ1 λ3 λ4

2
 + μ1 λ3

2
 λ4 + μ3 λ1 λ4

2
 + μ3 λ2 λ3

2
 + μ3 

λ1
2
 λ4 + μ3 λ2

2
 λ3 + μ2 λ3 λ4

2
 + μ2λ3

2
 λ4 + μ3λ2 λ4

2
 + μ3 λ2

2
 λ4 + 5.0S λ1 λ2

2
 + 5.0S λ1

2
 λ2 + 7.0S

2
 λ1 λ2 + 5.0S λ1 λ3

2
 

+ 5.0S λ1
2
 λ3 + 7.0S

2
 λ1 λ3 + 5.0S λ1 λ4

2
 + 5.0S λ2 λ3

2
 + 5.0S λ1

2
 λ4 + 5.0S λ2

2
 λ3 + 7.0S

2
 λ1 λ4 + 7.0S

2
 λ2 λ3+ 5.0S 

λ2 λ4
2
 + 5.0S λ2

2
 λ4+ 7.0S

2
 λ2 λ4+ 5.0S λ3 λ4

2
 + 5.0S λ3

2
 λ4+ 7.0S

2
 λ3 λ4+ 4.0 λ1 λ2 λ3

2
 + 4.0 λ1 λ2

2
 λ3 + 4.0 λ1

2
 λ2 

λ3 + 4.0 λ1 λ2 λ4
2
 + 4.0 λ1 λ2

2
 λ4+ 4.0 λ1

2
 λ2 λ4 + 4.0 λ1 λ3 λ4

2
 + 4.0 λ1 λ3

2
 λ4+ 4.0 λ1

2
 λ3 λ4 + 4.0 λ2 λ3 λ4

2
 + 4.0 λ2 

λ3
2
 λ4+ 4.0 λ2

2
 λ3 λ4 + μ1 μ2 μ3S + μ1μ2S λ1+ μ1 μ2S λ1 + μ1 μ3S λ1+ μ1 μ2S λ3+ μ1 μ3S λ2+ μ2 μ3S λ1+ μ1 μ2S λ4+ 

μ1 μ3S λ3+ μ2 μ3S λ2+ μ1 μ3S λ4+ μ2 μ3S λ3 + μ2 μ3S λ4+ μ1 μ2λ1 λ3 + μ1 μ3 λ1 λ2+ μ1 μ2 λ2 λ3+ μ2 μ3 λ1 λ2+ μ1 μ3 λ2 

λ3+ μ2 μ3 λ1 λ3+ μ1 μ2 λ3 λ4+ μ1 μ3 λ2 λ4 + μ2 μ3 λ1 λ4 + 3.0 μ1S λ1 λ2+ 3.0 μ1S λ1 λ3 + 3.0 μ2 S λ1 λ2 + 2.0 μ1S λ1 

λ4+ 3.0 μ1S λ2 λ3+ 3.0 μ2S λ1 λ3 + 3.0 μ3 S λ1 λ2+ 3.0 μ1S λ2 λ4+ 3.0 μ2S λ1 λ4+ 3.0 μ2S λ2 λ3+ 3.0 μ3 S λ1 λ3+ 3.0 

μ1S λ3 λ4+ 2.0 μ2S λ2 λ4+ 3.0 μ3 S λ1 λ4+ 3.0 μ3S λ2 λ3+ 3.0 μ2S λ3 λ4 + 3.0 μ3S λ2 λ4+ 2.0 μ3 S λ3 λ4+ 2.0 μ1 λ1 λ2 

λ3+ 2.0 μ1 λ1 λ2 λ4+ 2.0 μ2 λ1 λ2 λ3+ 2.0 μ1 λ1 λ3 λ4+ 2.0 μ2 λ1 λ2 λ4+ 2.0 μ3 λ1 λ2 λ3+ 2.0 μ1 λ2 λ3 λ4 + 2.0 μ2 λ1 λ3 

λ4+ 2.0 μ3 λ1 λ2 λ4+ 2.0 μ2 λ2 λ3 λ4+ 2.0 μ3 λ1 λ3 λ4+ 2.0 μ3 λ2 λ3 λ4+ 11.0S λ1 λ2 λ3+ 11.0S λ1 λ2 λ4+ 11.0S λ1 λ3 

λ4+ 11.0S λ2 λ3 λ4+ 9.0 λ1 λ2λ3 λ4) 


