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Abstract 

The present study provides predictive models for the functional relationship amongst the input and output variables of 

Electrical Discharge Machine (EDM) environment. The parametric optimization of this process can be regarded as a multi-

objective task. No particular parametric combination of input parameters can offer the maximum Material Removal Rate 

(MRR) and a better surface finish concurrently, due to its conflicting nature. Hence, a Multi-objective optimization approach 

has been attempted for the best process parametric combinations by modelling EDM process using of Artificial Neural 

Networks (ANN). It provides an optimized input data set to EDM system and the results show an improvement with a better 

productivity, a reduced material removal time and product cost at the material removal rate and surface finish. Extensive 

experiments have been accompanied with a wide range of machining settings, for modelling and, then, for validating the 

model. The model is quite capable of predicting the MRR and surface roughness. Also, it is found that the quality of the 

surface decreases as MRR increases. The maximum MRR obtained is 51.58 mm3/min with the surface finish of 0.1466 µm.  
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1. Introduction 

Electrical Discharge Machining (EDM) is a more 

widely and effectively non-conventional machining 

process used. It is rather the fourth in the extensively used 

machining methods, after milling, turning, and grinding 

process. Therefore, it is regarded as the most conventional 

Non-conventional machining process. One of the prime 

advantages of the process is that it can machine any 

material, regardless of its hardness as long as the material 

is electrically conductive, by the application of thermal 

energy. Thus, it is extensively used for manufacturing of 

aerospace component, forming tools, injection mould, 

plastic moulds, forging dies, automobile components, and 

surgical instruments. Generally, these are made from 

“difficult-to-machine” materials, such as titanium alloys, 

nickel-based super alloys, and hardened tool steels, etc. 

Amongst these materials, AISI D2 tool steel has wide 

varieties of applications in the die material, in tool and die 

making applications; furthermore, this steel can be 

hardened and tempered to offer a higher strength and wear 

resistance as compared to low carbon steels [1 - 4]. 

Moreover, EDM process has some limitations as well, 

viz. the high specific energy consumption, inferior 

machining performance (productivity) and accuracy of the 

dimensions of EDMed surface are the some major issues 

in the die sinking EDM process. These shortcomings 

mostly limit the applications of EDM. Moreover, it is very 

tough to control the dimensions in EDM, owing to the 

complexity and non-linearity of the EDM parameters. 

Hence, investigators are frequently fascinated with the 

process modelling and optimization of EDM to increase 

the accuracy of the process. In the past, substantial 

development has been dispensed to boost the productivity, 

and also the versatility of EDM process. Many authors [5 - 

10] used the various ANN model to determine the process 

model considering input parameters such as Ip, Ton, V, 

etc. for the prediction of responses like MRR and Ra and 

established that they are performing with reasonable 

accuracy, under varying machining conditions. Recently 

with the developments in the soft computing techniques 

the researchers have paid a great deal of attention to the 

solution of non-linear problems. It has exhibited a great 

prospective in solving difficult, non-linear, real-life and 

complex problems in many different fields manufacturing 

process modelling, multi-objective optimization, pattern 

recognition, signal processing and control [2, 7, 11 - 14]. 

Baraskar et al. [15] used an empirical model for relating 

the surface roughness and MRR, RSM has been applied in 

developing the models. S. Joshi and S. Pande [16] reposted 

an intelligent approach for process modeling and 

optimization of EDM. Physics based process modeling 

using Finite Element Method (FEM) has been integrated 

with the soft computing techniques like Artificial Neural 

Networks (ANN) and Genetic Algorithm (GA) to improve 
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prediction accuracy of the model with less dependence on 

the experimental data. Yadav and Yadava [17] optimized 

the process parameters of the slotted electro discharge 

abrasive grinding process using a combined approach of 

artificial neural network and non-dominated sorting 

genetic algorithm II. Das et al. [18] used Recurrent Elman 

Network (REN) for the prediction of the surface roughness 

in Electrical Discharge Machining (EDM) of SKD 11 tool 

steel.  

In the last two decades, with the developments in the 

soft computing techniques, researchers have paid a great 

deal of attention to the solution of non-linear problems. As 

it has exhibited a great prospective in solving difficult non-

linear real- life complex problems in many different fields, 

manufacturing process modelling, multi-objective 

optimization, pattern recognition, signal processing and 

control. 

The vital apprehension in EDM is the slower MRR, 

poor surface quality and precise duplication of the 

complex tool profile into the die cavity. To improve the 

MRR, generally a greater discharge current is essential. 

However, due to this, there is a deterioration of the 

accuracy of the machined product. The aim of the present 

analysis is to attain the optimum input parameters for the 

process by RSM. This may facilitate increasing the 

productivity (MRR) of the process and precision of the 

EDMed product. Concurrently, it may lead to the 

production of complex shapes accurately in shorter lead 

times. In this trend several efforts have been made for 

modelling analysing, and optimisation of the EDM 

process. The intension is to find the suitable parameters 

that increase the productivity without affecting the surface 

quality much. EDM process is a very complex process, it 

is a stochastic process too, and it is affected by many 

parameters; henceforth it is very difficult to select the 

parametric combination that could establish the greatest 

machining performance, i.e., higher MRR along with a 

decent surface finish. Moreover, these responses MRR and 

Surface finish are contradictory in nature. Higher MRR is 

required to achieve high productivity, and a lower surface 

roughness is required to achieve better surface quality. The 

aim of the current analysis is to recommend the optimum 

input process parameters for the process using artificial 

neural network. This analysis provides an optimized input 

data set to EDM system and the results show an 

enhancement and facilitate enhancing the productivity 

(MRR) and quality accuracy of EDMed components. 

2. Experimental Environment 

Experiments were conducted as per the following 

machining condition:  

 Processing Machine : Electronica Electraplus PS 

50ZNC die-sinking EDM machine Figure 1.  

 Work piece material : AISI D2 (DIN 1.2379) tool steel, 

density 7.7 g/cc, rectangular in shape having a 

 thickness of 4 mm. (with negative polarity). 

 Electrode material : electrolytic copper with 30mm 

diameter with positive polarity 

 Flushing :  Pressure of 0.3 kg f /cm2,  side flushing 

technique.  

 Dielectric fluid : Commercial grade EDM oil (specific 

gravity=0.76, freezing point = 94C). 

 Machining Time : 15 min 

 
Figure 1. Experimental setup 

Since the influencing parameters of EDM are very 

diverse and complex, it is therefore chosen on the basis of 

the literature survey, machining capability, manufactures 

manual, preliminary experiments and the experience. The 

four input process parameters, viz. Ip, Ton, Tau, and V 

along with the ranges are illustrated in Table 1. The parametric 

range of pulse current varies from 5 A to 15 A as per the 

availability in the machine. Pulse duration varies in the range 

of 50 µs to 100 µs. The duty cycle varies from 50 to 83 and 

voltage from 40 to 50. To reduce the significance of the 

unaccounted factor on the response the experiments were 

carried out in a random order. The responses were observed 

for each experiment and the results were displayed. 

Table 1. Machining Parameters along with their levels. 

Input 

Parameters 

Unit Levels and Values 

Ip   A   5, 6,7,8,9,10,11,12,13,14,15  

Ton   µs  50, 55, 60, 65, 70, 75, 80, 85, 90, 

95, 100  

τ    50, 66.5, 75, 80, 83  

V   V   40, 41, 42, 43, 44, 45, 46, 47, 48, 

49, 50  

2.1.   Measurement of Response 

The response MRR is computed as the volume of 

material loss from the work material divided by the 

duration of machining. The obtained Weight loss is 

transferred to volumetric loss (mm3/min) using the 

following equation 1. To calculate the MRR the following 

equation: 
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𝑀𝑅𝑅 =
∆𝑉𝑤

𝑇𝑎
=

∆𝑊𝑤

𝜌𝑤𝑇
                                 (1) 

where ∆Vw is the loss of volume the work material , 

∆Ww is the loss of weight of the work piece, T is the 

machining time of the process, and ρw = 7700 kg/m3  is 

the density of the work material. Precision balance 

(Sartorius, Japan) with a resolution of 0.001 gram was 

used to measure the weight of the work piece before 

and after the machining process. For an effective 

assessment of the EDM process, the greater MRR is 

considered as the best machining performance.  

The other response considered for this analysis was 

surface roughness. It is regarded as the degree of product 

quality that influences the cost of the product. This 

response is also influenced by the input parameters.  

The surface roughness of the EDMed surfaces 

were measured by a portable stylus type profilometer, 

Talysurf (Taylor Hobson, Surtronic 3+) for the quantitative 

valuation of the influence of EDM process parameters on 

the response surface finish. Generally, it is described as the 

arithmetic mean value of the profile calculated from 

centerline. It is defined as: 

Ra =
1

L
∫ |y(x)|

L

0
dx                                                        (2) 

where L is the total  measured  sampling length, y 

is the profile curve and x is the direction of the profile.  

The instrument is set to a sampling length L = 0.8 mm, 

filter 2 CR, measuring speed 1 mm/s and 4 mm evaluation 

length. The contour obtained during the measurement was 

digitized and latter regulated over the dedicated advanced 

surface finish analysis software, Talyprofile.  

The measurement of the roughness was carried out in 

four different direction to catch all kind of irregularities and 

the average of the all measurements were taken as the Ra 

value for the evaluation. The experimental design matrix is 

depicted in Table 2 along with the measured MRR and Ra, 

respectively.  

3. Multi-objective Optimization 

A multi-objective optimization problem involves more 

than one objective function that need to be optimized 

simultaneously. Generally, it is not possible to get a single 

solution that simultaneously optimizes each objective 

function. In the present paper, multi-objective optimization 

problem of the EDM process is solved by minimizing the 

surface roughness and maximizing the material removal 

rate. 

 If 𝑀𝑅𝑅 = 𝑓1(𝐼𝑃 , 𝑇𝑜𝑛, 𝜏, 𝑉) and 𝑅𝑎 = 𝑓2(𝐼𝑃 , 𝑇𝑜𝑛, 𝜏, 𝑉) 

Multi-objective optimization problem can be represented 

by 

Maximize 𝑓1(𝐼𝑃 , 𝑇𝑜𝑛, 𝜏, 𝑉) 

Minimize 𝑓2(𝐼𝑃, 𝑇𝑜𝑛,𝜏, 𝑉) 

Subject to 

 5 ≤ 𝐼𝑃 ≤ 15 

 50 ≤ 𝑇𝑜𝑛 ≤ 100 

 50 ≤ 𝜏 ≤ 83 

      40 ≤ 𝑉 ≤ 50 

      𝐼𝑃, 𝑇𝑜𝑛, 𝜏, 𝑉 ∈ 𝑍 

 

Table 2. Experimental value of the responses MRR and Ra. 

Run 

Order 

Ip 

A 

Ton 

µs 

Tau 

% 

V 

volt 

MRR 

mm3 /min 

Ra 

µm 

1 10 75 66.5 45 9.04 5.98 

2 5 50 50 50 5.18 5.01 

3 5 100 83 40 5.25 5.03 

4 5 50 83 40 8.87 4.71 

5 15 100 50 50 51.09 8.10 

6 10 75 66.5 45 8.95 6.12 

7 5 100 50 40 4.35 4.89 

8 15 100 50 40 51.00 10.93 

9 5 100 83 50 6.97 5.70 

10 15 100 83 40 33.02 12.49 

11 5 50 83 50 14.12 5.19 

12 10 75 66.5 45 8.42 6.54 

13 15 50 83 40 20.00 12.01 

14 10 75 66.5 40 8.94 8.20 

15 10 75 83 45 9.36 7.13 

16 15 75 66.5 45 33.08 9.68 

17 10 50 66.5 45 9.18 5.87 

18 5 75 66.5 45 5.36 6.07 

19 10 75 66.5 45 10.35 5.55 

20 15 50 83 50 29.16 8.43 

21 5 50 50 40 4.61 4.59 

22 15 50 50 40 29.74 10.49 

23 10 75 66.5 45 11.01 6.25 

24 10 75 50 45 9.25 5.92 

25 15 50 50 50 33.10 7.43 

26 5 100 50 50 4.35 5.59 

27 15 100 83 50 33.11 9.01 

28 10 75 66.5 50 11.01 6.35 

29 10 100 66.5 45 10.43 7.27 

30 10 75 66.5 45 9.35 6.75 

4. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are simple 

electronic devices modelled after the neural structure of 

the brain. ANNs are powerful tools for many complex 

applications such as optimization, system identification 

and pattern reorganization. ANNs are capable to learn 

from experiments and to perform non-linear mappings. 

The processing elements of neural networks are called 

artificial neurons, or nodes. ANN consists of input layers, 

which are multiplied by weights, and then evaluated by a 

mathematical mapping which computes the activation of 

the neuron. Another function determines the output of the 

artificial neuron. The artificial neurons of ANNs process the 

information. 

Neural networks are categorized by their structure, 

activation functions and training algorithms. Each type of 
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neural networks has its own input-output characteristics; 

therefore, it could be applied only in some specific 

processes. In this one, a neural network is employed for 

modeling the MRR and the Ra in the EDM process. One of 

artificial neural networks, i.e., Back-Propagation Neural 

Network (BPNN) is discussed. The BPNN model consists 

of an input layer, one or two hidden layers, and an output 

layer in a forward multi-layer neural network. The 

architecture of a BPNN with n inputs nodes, r outputs 

nodes and a single hidden layer of m nodes is shown in 

Figure 2. All the nodes have been multiplying the weights 

connected with them. Therefore, the output Ok can be 

expressed as:  

𝑜𝑘 = ∑ 𝑊2𝑘𝑗𝑓(∑ 𝑊1𝑊1𝑗𝑖𝑥𝑖 + 𝑏1𝑗
𝑛
𝑖=1 )𝑚

𝑗=1 + 𝑏2𝑘         (3) 

 

Figure 2. Back-propagation Network 

where function f is the transfer function or activation 

function, W1ji is the weight between the ith input node 

and jth hidden, W2ji is the weight between the jth hidden 

node and kth output node, b1 j is the bias at jth hidden node 

and b2k is the bias at kth output node. 

Eq. 3 presents a kind of function to convert neuron from 

weighted input to output and also is a kind of network to 

make non-linear influence into the BPNN. The present 

study chooses the most general tan-sigmoid transfer 

function S(·) and is defined as f (x)) = 2/(1 + ex p(−2x)) − 

1 , where the range of the value is (−1, 1) . And if a linear 

function is chosen for this transfer function, such as f (x) = 

x, the whole ANN architecture will become the linear 

influence from the input layer to the output layer. 

In case of BPNN a typical node in the input-layer 

receives the input vector, sums them as per their weight 

and bias vectors, passes it through a transfer function and 

gives an output. This output is then compared with the 

actual data, and the error is computed. This error is then 

propagated backwards and used for updating the weight 

and bias vectors of the neurons. When this process is 

finished for all the input vectors, it is called as 1 epoch. 

Once one epoch is over, the mean squared error between 

the actual output values and the corresponding target 

values is determined iteratively. The process is repeated 

until the mean squared error is reached to a particular 

tolerance value. Once the mean squared error reaches the 

desired tolerance level, through the training process, the 

weights are updated and stored so as to present the desired 

output, which can be used later to predict outputs for a 

different set of inputs. The learning is based on conjugate 

gradient descent algorithm. At this stage, the architecture 

of a network is defined and treated as the trained ANN. 

5. Optimization Approach 

The trained ANN model is capable of determining the 

response parameters as a function of four different control 

(input) parameters, i.e., Ton, τ , Ip, V. An attempt was 

made to generate the highest number of input, output 

parameter combinations to get more number of optimum 

points. The input parameters (four in numbers) were 

divided into all possible levels, as given in Table 1. These 

considerations resulted in 11 × 10 × 5 × 11 = 6050 

possible input combinations. The developed ANN model 

was used to determine the MRR and Ra for all possible 

levels of the 6050 combinations. Finally, the results of this 

study proposed best of these combinations 

6. Results 

In the present BPNN model, the inputs of the model 

are Ton, τ, Ip, V. The outputs of the model are MRR and Ra. 

A set of training, validation and testing was performed by 

30 data where 22 data were used for training, 6 data were 

used for validation and 6 for testing. The training data 

were applied to train the BPNN model, where the testing 

data were used to verify the adequacy of the trained BPNN 

model for the prediction of MRR and Ra. The one hidden 

layered BPNN and two hidden layered BPNN were 

trained with a different number of neurons. After data 

training, through different combinations of number of 

neurons, the comparison results of the actual versus the 

ANN were obtained. The Mean Absolute Error (MAE) 

and Mean Percentile Error (MPE), as the difference 

between actual and ANN, was determined for each MRR 

and Ra value. Finally, the graphs at hidden neurons were 

plotted for comparison MRR (actual vs. ANN) and Ra 

(actual vs. ANN). These graphs are presented in Figures 4 

and 5. The most agreeable hidden layers neurons were 

found 2 and 3 for BPNN model, as shown in Figure 3. The 

satisfactory MAE and MPE of the trained BPNN for 

training, validation and testing data sets are given in Tables 

3 and 4. Figures 6 and 7 indicate the variation in ANN 

model values and it can be observed that all the MRR and Ra 

values through ANN model are coinciding with the actual 

experimental values. Further, no abnormality in actual Vs 

ANN data comparison is apparent in the Figures 6 and 7. 

The Figures show that the performance of ANN model is 

very close to the actual MRR and Ra, which, in comparison, 

indicates that the ANN model results are closer to actual 

outputs. Here, it can be concluded that the ANN model 

provides better results in the EDM process using D2 steel. 

Another parameter, which we have considered to 

compare the proposed ANN model result with 

experimental result, is the regression analysis or the R-

value. Figure 8 shows the R values based on ANN model 

and the experimental data for the MRR and Ra. The solid 

line represents the best possible regression fit between 

targets and outputs for training, validation, testing and all 

data sets. The value of R, which is shown on the top of 

Figure 8, represents the relation-ship between those two. 

In neural networks, R=1 indicates the perfect match 

between targets and outputs. Since the net-works cannot be 

made to learn perfectly, the general value of R lies near to 1. 

The closer its value to 1, the better the neural network is. 

On the other hand, the value of R close to 0 indicates the 
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nonlinear relationship between targets and outputs. For the 

present study, the input parameters were divided into all 

possible levels within their working range as illustrated in 

Table 1. The ANN model was developed to predict the MRR 

and Ra for all combination levels of the input parameters. 

The neural network was simulated with 6050 the data set. 

After training, a list of 50 optimized input-output parameter 

combinations was obtained through ANN and is presented 

in Table. 5. Table 5 indicates the output parameter, the 

MRR in decreasing order and corresponding Ra at 50 

optimized input parameter combinations. It also helps to 

select the input parameter combination at the required 

MRR.  

Table 3. Error for MRR 

Error Training data Validation data Testing data 

MAE 0.580003721 2.421624627 0.827826794 

MPE 7.626796553 16.92452563 9.800317507 

Table 4. Error for Ra 

Error Training data Validation data Testing data 

MAE 0.864459133 0.849570064 0.815860784 

MPE 12.1634995 14.11580632 10.8702371 

 

 

Figure 3. BPNN for prediction of MRR and Ra 

Table 5. Sorted out list of optimum input-output parameter 

combinations 

Sl. No. Ip 

A 
Ton 

µs 
Tau V MRR 

mm3/min 
Ra 

µm 
1 15 100 50 40 51.59 10.47 

2 15 100 50 41 51.51 10.43 

3 15 100 50 42 51.43 10.40 

4 15 100 50 43 51.34 10.36 

5 15 100 50 44 51.25 10.32 

6 15 100 50 45 51.15 10.27 

7 15 100 50 46 51.04 10.23 

8 15 95 50 40 50.94 10.51 

9 15 100 50 47 50.92 10.18 

10 15 95 50 41 50.87 10.48 

11 15 100 50 48 50.80 10.13 

12 15 95 50 42 50.80 10.44 

13 15 95 50 43 50.72 10.41 

14 15 100 50 49 50.67 10.07 

15 15 95 50 44 50.64 10.37 

16 15 95 50 45 50.55 10.33 

17 15 100 50 50 50.54 10.01 

18 15 95 50 46 50.45 10.28 

19 15 95 50 47 50.35 10.24 

20 15 95 50 48 50.24 10.19 

21 15 95 50 49 50.13 10.13 

22 15 90 50 40 50.07 10.55 

23 15 90 50 41 50.01 10.52 

24 15 95 50 50 50.01 10.08 

25 15 90 50 42 49.95 10.48 

26 15 90 50 43 49.88 10.45 

27 15 90 50 44 49.81 10.41 

28 15 90 50 45 49.73 10.38 

29 15 90 50 46 49.65 10.34 

30 15 90 50 47 49.56 10.29 

31 15 90 50 48 49.47 10.24 

32 15 90 50 49 49.36 10.19 

33 15 90 50 50 49.26 10.14 

34 15 85 50 40 48.93 10.58 

35 15 85 50 41 48.89 10.56 

36 15 85 50 42 48.84 10.53 

37 15 85 50 43 48.78 10.49 

38 15 85 50 44 48.72 10.46 

39 15 85 50 45 48.66 10.43 

40 14 100 50 40 48.63 10.08 

41 15 85 50 46 48.59 10.39 

42 15 85 50 47 48.51 10.35 

43 14 100 50 41 48.50 10.02 

44 15 85 50 48 48.43 10.30 

45 14 100 50 42 48.36 9.96 

46 15 85 50 49 48.34 10.25 

47 15 85 50 50 48.25 10.20 

48 14 100 50 43 48.21 9.89 

49 14 100 50 44 48.05 9.82 

50 14 100 50 45 47.89 9.75 
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Figure 4. MPE & MAE of ANN with Single Hidden Layer 

 

 

 

Figure 5. MPE & MAE of ANN with Two Hidden Layer 

 

 

Figure 6. Comparison between Exp. MRR and ANN MRR 



 © 2016 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 10, Number 1  (ISSN 1995-6665) 17 

 

Figure 7. Comparison between Exp. Ra and ANN Ra 

 

Figure 8. Compression between Target and Output of ANN 

7. Discussions 

The present work proposes a methodology to 

determine the optimal combination of control parameters 

in the EDM process using D2 steel. The ANN model was 

applied to predict the process performance. It is always a 

difficult task to find an optimal configuration of BPNN. 

There is no exact rule for setting the proper number of 

neurons in a hidden layer to avoid over-fitting or under-

fitting to make the learning phase convergent. For the best 

performance of the BPNN, the proper number of nodes in 

the hidden layer is selected through a trial and error 

method based on the number of epochs needed to train the 

network. It is compared with the results obtained from the 

experiments and the average absolute error obtained for 

the network. For the input data, the BPNN has almost an 

identical generalization ability. A BPNN was developed to 

model the process parameters. Optimal process parameter 

combinations, corresponding to different MRR and Ra, 

were determined out of 6050 possible combinations. The 

presented list of 50 optimum parameter combinations can 

act as guidelines for effective and efficient machining of 

D2 steel using EDM process. Through an optimized input 

data set, the improved output results will enhance the 

productivity with a better machining surface quality. 



 © 2016 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 10, Number 1  (ISSN 1995-6665) 18 

Furthermore, the production cost and machining time 

will be saved through the optimum machining speed in 

every run. This work in the area of machining D2 steel, 

through EDM process and ANN application, will solve 

various challenging problems faced by the engineers and 

technocrats in the field of modern manufacturing systems. 

Present manufacturing industries can achieve the ultimate 

goals of higher productivity (higher MRR), better quality 

(required surface finish) and lower production cost (reduced 

material removal time), which would help manufacturers 

to compete in the world market. 

8. Conclusion 

The present research paper provides an effective and a 

novel approach for modelling and the optimisation of the 

machining conditions of EDM process for attaining the 

maximum material removal rate and the minimum surface 

roughness. The extensive experiments were carried out 

initially and were simulated to generate a huge data. The 

different parametric combination was used to generate the 

experimental data. After training, a list of optimized input-

output parameter combinations was obtained through ANN 

and presented. This attempt provides an optimized input 

data set to EDM system and the results show an 

improvement, with a better productivity, a reduced 

material removal time and a product cost at the desired 

surface finish. The optimised value of the present research 

is found to be 51.588 mm3/min with a level of surface 

finish of 0.0955 µm. 
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