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Abstract 

The buoyancy-driven flow in a crescent cavity is numerically analyzed by employing the finite volume method for the 

first time. The enclosure was filled with an incompressible fluid, whose thermal properties are given by Pr. The enclosure's 

left and right arcs have different temperatures. Two cases are adopted in the present work; in the first case, the left and right 

arcs were considered cold and hot. While for the second case, the thermal boundary conditions of the arcs were shifted. The 

results were illustrated for Prandtl number  0.71 ≤ Pr ≤ 50  blockage ratio of the space 0.1 ≤ B ≤ 0.5  and Rayleigh number 

103 ≤ Ra ≤ 105 . For both considered cases, the velocity profiles increased with the increasing Ra  and decreasing  B . While 

the increase in Ra  increases the values of  Nu  for both arcs. Also, the flow and thermal pattern are not affected by changing 

the fluid's thermal properties represented by Pr. Furthermore, when the influence of buoyant force is substantial, and the 

cavity width is wide, the shifting thermal boundary conditions become evident. These new results can be exploited in heat 

exchanger applications as well as insulating systems. 
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Nomenclature  

Symbol Description Unit 

B  The blockage ratio of the space  

g  Gravitational acceleration m/s2 

d Width of the gap inside the cavity   m 

H Cavity height m 
n Normal vector  

Nu Mean Nusselt number  

p Pressure N/m2 

P Nondimesional  pressure  

Pr Prandtl number    

Ra Rayleigh number  
T Temperature oC 

u Velocity component in x-direction m/s 

U 
Non-dimensional velocity component in X-
direction 

 

v Velocity component in y-direction m/s 

V 
Non-dimensional velocity component in Y-
direction 

 

x Coordinate in the horizontal direction m 

X Non-dimensional coordinate in the horizontal 

direction 
 

y Coordinate in the vertical direction m 

Y 
Non-dimensional coordinate in the vertical 

direction 
 

Greek Symbols  

α Thermal diffusivity m2/s 
β Thermal expansion coefficient  K-1 

  Non-dimensional temperature   

ν Kinematic viscosity  m2/s 

ρ Density  kg/m3 

Subscripts  

c Cold  
h Hot   

l Local  
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1. Introduction 

The buoyancy-driven convection, or sometimes called 

the free convection, in enclosures is a topic of great 

interest in heat transfer. This famous problem has received 

wide interest in the scientific community [1-3]. This is not 

a sudden chance, but it is due to its huge practical 

applications. These applications include nuclear reactors, 

thermal storage systems, cooling of electronic equipment, 

solar energy, heat exchangers, refrigerators, melting and 

solidification, drying and food technologies, wet clutches 

and airplane cabin insulation [4-9]. Unfortunately, most of 

the published papers on this problem are concerned with 

the classical well–known square or rectangular geometries. 

Whereas the papers concerned with the complicated 

geometries are much less than that related to the classical 

geometries. Samples of the complicated cavities include 

triangular  [10-13] , vee-corrugated [14-16] , wavy [17] ,  

elliptical [18] , parallelogrammic [19-22]  , trapezoidal  

[23] , parabolic [24]  ,  C-shape [25] , T-shape  [26]  ,  L-

shape [27]  ,   - shape  [28]  , U-shape [29]   and  F-shape 

[30]. 

 Dutta et al. [31] examined entropy production and 

natural convection inside a rhombic enclosure with a wavy 

and non-uniformly heated upper wall by numerical means. 

Whereas its lower and sidewalls were kept cold. They 

deduced that the Nuav was enhanced with the increase in 

the tilting angle. Hussein [32] explored the influence of the 

hot concentric circular cylinder on the free convection 

inside a parallelogrammic cavity loaded with air. He 

concluded that the increase in Ra  enhanced the Nuav  

values. The numerical investigation of the free convective 

flow inside a parallelogrammic enclosure with cold 

sidewalls was investigated by Salih and Mustafa [33]. The 

lower wall was partially heated, whereas the rest of this 

wall, together with the upper wall, were isolated. The 

authors deduced that Nuav  was enhanced by increasing the 

heat source length for all values of Ra and the cavity's 

inclination angle. The impact of various boundary 

conditions on free convection inside a porous 

parallelogrammic cavity was numerically addressed by 

Anandalakshmi and Basak [34]. The results revealed that 

the Nuav  was enhanced for high Da  for Rayleigh- Benard 

boundary condition. The numerical investigation of MHD 

buoyancy-driven convective flow inside an enclosure 

cavity elliptic shape was made by Adekeye et al. [35]. The 

cavity was loaded with a fluid saturated with a porous 

media, a hot top wall and a cold bottom wall. The authors 

reported that the impact of the tilted angle on the heat 

transmission rate was significant at 58o ≤  ≤ 90o. The 

numerical analysis of the free convection inside an 

octagonal enclosure included, inside it, a hot solid circular 

cylinder was presented by Hussain and Hussein [36]. All 

enclosure walls were cold. The cylinder was moved in 

three different directions (i.e., vertical, horizontal and 

diagonal). The study findings were presented for various 

Ra numbers and cylinder locations. It was found that the 

Nuav  attained its peak value at the highest  Ra. Chen and 

Cheng [37] numerically and experimentally analyzed the 

buoyancy-driven convection of air in a tilted arc-shaped 

cavity. It was found that the increase in Gr intensified the 

Nuav. Also, they observed that the vortex pattern was 

affected by the values of inclination angles. The numerical 

examination of the buoyancy-driven convective flow 

inside an inclined cavity of L –shape loaded with 

Newtonian fluid was performed by Tasnim and Mahmud 

[38]. They deduced that there was a linear relationship 

between ( Nuav and the tilted angle of the cavity at AR = 

0.25 and  Ra =103 and 104 . Mustafa [39] explored air free 

convective flow confined in a parabolic enclosure with 

cold vertical walls numerically. The upper wall of the 

cavity was thermally isolated, while the lower one was hot. 

It was found that the highest Ra and small value of the 

parabolic equation maximized the Nuav  values. Wang et al. 

[40] numerically explored air convective flow inside a 

circular cavity containing a hot flat plate. The outer cavity 

wall was maintained at an isothermal cold temperature. 

The results indicated that the  Nuav  was intensified when 

the flat plate was located vertically inside the cavity. Wang 

et al. [41] researched the impact of the orientation of the 

internal cylinder on the natural convective flow inside a 

cavity of a circular geometry numerically. The authors 

deduced that the local Nusselt number was enhanced when 

the cylinder was located in the corner-upward orientation. 

The numerical study of natural convection in a 3D 

spherical enclosure with cold external walls was 

performed by Welhezi et al. [42]. The cavity included a 

hot cubical body filled with various kinds of fluids. The 

results indicated that the Nuav was maximized at Pr = 25 

and  Ra = 107. The numerical analysis of the free 

convective flow inside an isosceles triangular cavity was 

conducted by Roy et al. [43]. The enclosure's bottom wall 

was heated in a uniform and non-uniform manner. The 

local Nusselt number was shown to have an oscillating 

tendency. Saha [44] numerically analyzed transient 

laminar free convective flow inside a triangular cavity 

having hot inclined walls. The bottom wall of it was kept 

thermally insulated. He deduced that the instantaneous 

Nuav  strongly depended on Pr, Ra  and the cavity aspect 

ratio. Oztop et al. [45] considered natural convection 

inside a tilted triangular cavity heated from below. The 

vertical wall was hot, while the inclined one was cold. The 

authors deduced that the heat transmission was influenced 

by the inclination angle and Ra. El-Hassan et al. [46] 

numerically researched natural convection inside a gamma 

of right-angled triangular enclosures. The upper walls were 

kept thermally insolated, whereas the inclined wall was 

cold and the vertical one was hot. They deduced that the 

Nuav was related to the cavity cross-sectional area. Yesiloz 

and Aydin [47] conducted a computational and 

experimental study on free convection inside a triangular 

enclosure loaded with water. The vertical, bottom, and 

inclined walls were cold, hot and thermally insulated, 

respectively. They recommended a correlation of  Nu  as a 

function of the Ra. The buoyancy-driven convective flow 

inside a tilted enclosure bounded by adiabatic horizontal 

flat walls was examined by Mushatet [48]. The enclosure's 

sidewalls were wavy and preserved at hot temperatures. 

He deduced that the local Nusselt number was reduced 

with higher values of wavy wall amplitude. Adjlout et al. 

[49] numerically analyzed free convection inside an 

inclined chamber with an insulated horizontal wall. The 

flat left and wavy right sidewalls were considered cold and 

hot, respectively. The results indicated that the increase in 

the number of undulations decreased the heat transmission 

rate when the tilt angle was more than 75o . Koulali et al. 

[50] numerically examined natural convective flow inside 

a corrugated enclosure with two superimposed fluid layers. 

The upper and lower walls were kept adiabatic and under a 

constant heat flux, respectively, whereas the vertical walls 

were assumed cold. They found that the corrugated wall 

improved the heat transmission in the cavity. The 

numerical examination of the buoyancy-driven convective 

flow inside a tilted trapezoidal enclosure was performed by 
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Hussein et al. [51]. Both its sidewalls were assumed cold, 

whereas the lower and upper walls were hot and adiabatic, 

respectively. They concluded that the Nuav  attained its 

peak value at a tilt angle equal to ( 30o ). Natarajan et al. 

[52] numerically explored the free convection inside a 

trapezoidal enclosure with cold sidewalls and a top 

adiabatic wall. The enclosure's bottom wall was heated 

either uniformly or non-uniformly. They concluded that 

the  Nuav  was decreased for the non-uniform heating case. 

The numerical analysis of the buoyancy-driven convection 

inside an inclined trapezoidal enclosure was introduced by 

Lasfer et al. [53]. Both upper and lower walls were 

assumed adiabatic. Whereas the inclined left sidewall was 

hot, and the vertical right sidewall was cold. It was 

deduced that the Nuav  was a function of the aspect ratio, 

Ra  and the inclination angle. Additional works related to 

the buoyancy-driven convection in complex shape cavities 

can be found in [54-63]. Based on the comprehensive 

literature and our wide experience in the convection heat 

transfer, there has been no research to date that has 

quantitatively explored free convection inside a crescent 

shape cavity. So, the contribution of the current work is to 

research this novel problem in more detail and with intense 

attention. 

2. The physical model, governing equations and 

boundary conditions 

Fig. 1 shows the physical model for a crescent-shaped 

cavity formed by meeting its inner and outer arcs. Also, 

the cavity height is defined by H, and the width of the gap 

inside the cavity is defined by d. The ratio  d/H  is called 

the blockage ratio B , and it is selected between ( 0.1 and 

0.5 ). The cavity's left and right arcs have different 

temperatures. Two cases are adopted in the present work; 

in the first case, the left and right arcs were considered 

cold and hot. Whereas, in the second case, the left and 

right arcs were considered hot and cold, respectively. The 

cavity was filled with an incompressible fluid, whose 

thermal proprieties are given by Pr. The temperature 

difference between these arcs is responsible for making the 

thermal buoyancy force driving the natural convection 

inside the cavity.     

 
Figure1. Physical representation of the crescent cavity. 

 

Before describing the mathematical model, it is worth 

presenting the assumptions are used in this work:-   

1. No-slip condition is assumed between the fluid and the 

solid arcs of the cavity. 

2. The flow is 2 D, steady, laminar and Newtonian. 

3. The thermo-physical characteristics of the fluid are not 

related to temperature except the density, which was 

dealt with by the Boussinesq approximation. 

4. In this type of work, the physical phenomena are not 

related to time, so the equations for this work are not 

related to time.     

The dimensionless form of the governing continuity, 

momentum and energy equations in the Cartesian 

coordinate system read [3-6]: 
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The last term in Eq.(3) illustrates Y-direction's 

connection between the momentum and energy equations. 

Eqs. (1-4) are presented in nondimensional form after 

converting the dimensional parameters in this way: 
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While the Prandtl and Rayleigh numbers in the above 

equations are expressed as follows  

[64] : 
3( )
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Pr =  0.71, 6.1 and 50.  0.71 for air, 6.1 for water and 

50 for oil.  

The Prandtl number expresses the thermal properties of 

the fluid. Whereas the Rayleigh number indicates the 

intensity of the thermal buoyancy inside the cavity. 

Convection heat transmission is evident in the cavity due 

to the temperature difference between the fluid and the 

enclosure's arcs. The values of the heat transfer rate are 

expressed by the local and mean Nusselt numbers as 

follows: 
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                                                   (8) 

The Nu  represents the mean of local values of the 

Nusselt number. That means the value of Nu increases 

with increasing the temperature gradient.                                                                                                                                      

           To complete the mathematical model, the 

appropriate boundary conditions must be specified as 

follows [3-6]: 

For the cold arc of the cavity  

0, 0, 0U V                                      (9) 

 For the hot arc of the cavity 

0, 0, 1U V                                     (10) 
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3. Simulation procedure and the numerical test 

To achieve the numerical simulation of the current 

study, a set of points must be accomplished and verified. 

These points can be summarized into two main parts as 

follows: 

 Creating the grids and checking the density of their 

elements to minimize the error in the numerical results. 

 Verifying the used numerical model. 

The code Gambit is used to draw and create the grids of 

the studied space. Fig. 2 depicts the shape of the grid after 

its completion. The density of the elements was verified in 

each case from the value of the ratio ( B ). The results of 

this verification are shown in Table 1. It can be concluded 

that the element numbers for (case 2) are sufficient to 

reach satisfactory results. So, this step is called grid 

indpendency test.  

The numerical code ( ANSYS-CFX ) was used as a 

solver in this investigation. The code transforms the 

differential equations ( Eqs. (1-4) ) into a matrix system by 

integrating the initial conditions ( Eqs. 9 and 10), 

employing the finite volume approach. The high-resolution 

scheme solves the convective terms of the matrix system. 

While the SIMPLEC algorithm coupled the pressure and 

velocity. The results of the calculation can be adopted 

when the error becomes ( 10-8 ) for momentum equations 

and (10-6) for energy equations. To validate the numerical 

scheme used in this study, the natural convection problem 

in a square cavity at  Ra =103 and 105  as performed by  

Barakos et al. [65]  is resolved again by employing the 

same numerical approach of the current paper. Also, this 

code was used to solve the previous problems considered 

by  Kuehn and Goldstein [66]  and Matin and Khan [67]. 

The comparison presented in Figs 3 and 4 shows that very 

good confidence was noticed. These comparisons confirm 

the accuracy of the method used. 

 

Figure 2. The shape of the created grid. 

Table 1. Grid independency test for  Pr = 6.01 and Ra = 104. 

B Case Number of 
elements 

Nu difference 

 

0.5 

1 55275 4.4985 0.33% 

2 110550 4.5132 0.18% 

3 231100 4.5215 - 

 

0.4 

1 44220 4.3952 0.57% 

2 88440 4.4205 0.016% 

3 176880 4.4198 - 

 

0.3 

1 35376 4.2262 2.20% 

2 70752 4.3217 0.12% 

3 141504 4.3165 - 

 

0.2 

1 28301 4.1984 0.89% 

2 56602 4.2362 0.16% 

3 113204 4.2432 - 

 
0.1 

1 22641 4.1291 0.87% 

2 45282 4.0931 0.62% 

3 90564 4.0674 - 

 

    
Barakos et al. [65] 

( Ra = 103 ) 
Present result Barakos et al. [65] 

            ( Ra = 103 ) 
Present result 

    
Barakos et al. [65] 

            ( Ra = 105 ) 
Present results Barakos et al. [65] 

            ( Ra = 105 ) 
Present result 

  
Figure 3. Comparison of streamlines (left) and isotherms ( right )  between current study results and Barakos et al. [65] results for Pr = 6.1. 
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Figure 4. Comparison of Nu values of current study results and 

the results of Kuehn and Goldstein [66] and Matin and Khan [67] 

at  Pr = 6.2.   

4. Results and discussion 

The buoyancy-driven flow of a fluid trapped in a room 

with a crescent shape cross-section was investigated 

numerically in the current study. The studied parameters 

are Prandtl number  0.71 ≤ Pr ≤ 50, blockage ratio of the 

space  0.1 ≤ B ≤ 0.5  and Rayleigh number  103 ≤ Ra ≤ 105.   

4.1.  Case 1 (Cold left arc and hot right arc):  

In this case, the left and right arcs of the cavity were 

preserved at constant cold and hot temperatures, 

respectively. Figs. 5 and 6 show the streamlines inside the 

crescent shape cavity for various values of  Ra,  Pr  and B  

related to ( case 1 ). Fig. 5 shows the impact of changing 

both the blockage ratio B and  Ra  numbers at a constant  

Pr  number ( i.e., Pr = 6.01 ). While, Fig. 6 presents the 

impact of changing  Pr  number and blockage ratio B at a 

constant  Ra number (i.e., Ra = 104). It can be seen from 

both figures that the variation in the values of  B has a 

clear effect on the cavity geometry. So, it switches from a 

semi-circle shape at the largest value of   B  or at B = 0.5  

to a crescent shape at the lowest value of  B  or at B = 0.1. 

As the value of  B   decreases gradually, the left arc of the 

cavity becomes more concave to the internal space until it 

attains the crescent shape at  B = 0.1. Therefore, the width 

of the gap inside the cavity decreases with decreasing the 

blockage ratio B.  

Because of buoyancy force, the fluid layers near the hot 

right arc of the cavity become less dense and lighter, so 

they move upward to the top of the cavity. The fluid layers 

near the cold left arc become denser and heavy, moving 

downwards. Therefore, it can be observed from Figs. 5 and 

6 that there is a circular flow inside the center of the cavity 

due to the flow movement between the hot and cold arcs of 

the cavity. The flow pattern in the cavity is uniform for 

lower values of Ra (Ra < 104). In this case, the viscous 

force is more predominant than buoyancy. Therefore, both 

the buoyancy force and the natural convection effects are 

weak. However, when the Ra value reaches Ra = 105, a 

definite disruption in the flow pattern may be observed. 

This is owing to the strong impacts of buoyant force and 

natural convection at high Ra. 

Additionally, when the Ra number rises, the fluid 

velocity increases. Also, the flow vortices can be seen near 

the upper and lower edges of the cavity. Also, it can be 

observed from Figs. 5 and 6 that as the value of B 

decreases from B = 0.5 to 0.1 , the fluid movement 

becomes slow, and the flow pattern becomes 

approximately similar. Since the reduction in the value of 

B  reduces the gap width inside the cavity and makes the 

region of the flow area inside it more restricted. Therefore, 

this hinders the movement of the flow. Furthermore, it can 

be observed from Fig. 6 that there is a small minor vortex 

at the bottom of the cavity and a major vortex at its center 

B = 0.1 and Ra =105.  

Concerning the effect of  Pr  on the streamline 

contours, it can be observed from Fig. 6 that there is no 

significant change in their pattern when the Pr increases 

from ( Pr = 0.71 ) to Pr = 50. Therefore, it can be 

concluded that the flow pattern does not affect by 

changing the fluid's thermal properties represented by the 

Pr. Fig.7 illustrates the isotherms (dimensionless 

temperature) distribution of the fluid in the cavity in terms 

of the studied values of B  and Ra  number at Pr = 6.1. 

Since there is no effect of the Pr  number values on the 

natural convection, as was observed in Fig. 6. Only one 

value of the  Pr  number was tested on the isotherms. 

When  Ra  number is low, the isotherm contours are 

symmetrical, close to each other, uniform and parallel to 

the arcs of the cavity. In this case, the heat is transmitted 

by conductive mode. Because of the high-temperature 

gradient in the cold arc's upper side and the hot arc's lower 

side, the isotherms' intensity increases in these regions. 

Therefore, the heat transmission was enhanced compared 

with the rest of the cavity. The clustering of isotherms at 

any point in the cavity arcs can be considered a good 

signal of a severe temperature gradient and a high heat 

transfer. At  Ra =105 , the isotherm pattern changes 

significantly and elongates deeply, especially at the center 

of the cavity. Also, a thermal plume is evident within this 

space. In this case, convective heat transfer becomes 

significant. 
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 Ra = 103 Ra = 104 Ra = 105 

 

Figure 5. Streamlines inside the crescent shape cavity for various values of  Ra and  B  at Pr = 6.1 related to ( case 1 ).  
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Figure 6.  Streamlines inside the crescent shape cavity for various values of  Pr and  B  at Ra = 104  related to ( case 1 ). 
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B = 0.1 
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 Figure 7.  Isotherms inside the crescent shape cavity for various values of  Ra  and  B  at  Pr = 6.1  related to ( case 1 ). 
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Fig. 8 illustrates the distribution of dimensionless 

velocity component V along with the width gap spacing for 

various values of  Ra  and B  at Pr = 6.1. The plus (+) and 

minus (-) signs indicate the direction of the movement of 

the fluid particles. This means that the flow direction is 

downward near the cold left arc. While near the hot right 

arc, its direction is upward. It could be observed that the 

flow velocity rises as Ra increases. In addition, at Ra = 105 

, the maximum velocity of the flow in the vicinity of the 

hot and cold arcs begins to increase by decreasing the 

value of B  from B = 0.5 to 0.1. So, the peak value 

corresponds to the lowest value of B. 

Fig. 9 shows the profiles of the mean values of Nu   in 

terms of Ra, Pr, and B. It can be seen that the values of Nu 

are affected by the variation in both Ra and B whereas 

there is no clear effect of the variation in Pr on their 

values. It is useful to mention that the first group (the red 

lines) was related to the hot arc, while the second group 

(the blue lines) was related to the cold arc. The mean Nu 

values are taken in their absolute values, while the signs ( 

+ and - ) refer to the direction of the convection heat 

transfer. It is noticed that increasing Ra  directly results in 

an increment in the values of  Nu for both arcs. This is 

caused by a rise in the thermal buoyancy's magnitude, 

which arguments the heat transfer rates for both arcs. 

Concerning the effect of the parameter B on the values of 

Nu, it is observed that as B decreases from ( 0.5 ) to ( 0.1 ), 

the  Nu for the hot arc decreases whereas its value for the 

cold arc begins to increase. This means that as the cavity 

width decreases, the heat transmission rate of the hot arc 

while the heat transmission rate of the cold arc increases.  

 
(a)    B = 0.5 

 
(b)  B = 0.4 

 
(c)  B = 0.2                                                                                

 
    (d)  B = 0.1    

 

  Figure 8.  Dimensionless velocity profiles of V  along X  for various values of  Ra and B at Pr = 6.1 related to ( case 1 ).    
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(a)  Pr = 0.71 

 
(b)  Pr = 6.1 

 
(c)   Pr = 50 

Figure 9.  Profiles of mean Nu  number versus Ra  for different values of  Pr  and B  related to ( case 1 ). 

4.2.  Case 2 (Hot left arc and cold right arc):  

In this case, the thermal distribution of the arcs was 

reversed. So, the left and right arcs were preserved at 

constant hot and cold temperatures, respectively. Figs. (10, 

11 and 12 ) illustrate the streamlines and isotherms, 

respectively, inside the crescent shape cavity for various 

values of  Ra,  Pr  and  B   related to (case 2). It can be 

observed from these figures that the pattern of the intra-

compartment flow, in this case, is similar to that found in 

(case 1). However, a simple difference between them can 

be summarized in two points. The first point is that at Ra = 

105, B = 0.4 and 0.5, the core of vortices is affected by 

shifting the thermal boundary conditions of the arcs. 

Therefore, it can be concluded that they move towards the 

cold arc of the cavity for both considered cases. While this 

difference begins to disappear with the decrease in B 

values. Therefore, it could be deduced that the change of 

the thermal boundary conditions becomes discernible 

when the buoyancy force has a substantial influence, and 

the cavity's width is big. The second point is that the minor 

vortices which are observed at Ra = 105 and B = 0.1  are 

replaced by their position from the bottom region in ( Case 

1 )  to the upper region in ( Case 2 ). Once again, there is 

no discernible shift in the pattern of the streamlines when 

the (Pr) increases from Pr = 0.71 to 50. 

With respect to the isotherm contours, it was seen that 

the thermal plume was adjacent to the hot left arc and 

extended further inside the cavity until it attained the cold 

right arc. It can be observed by comparing the results in 

Fig.12 with that displayed in Fig.7 that the pattern of 

isotherms is similar to each other except adjacent to the 

arcs boundaries. In a similar manner discussed in ( Case 1 

), the isotherm contours are highly influenced by 

increasing the Ra. Therefore, they switch their pattern 

from uniform lines for low  Ra  to a ripple-like pattern at 

high values. This behavior is due to the high-temperature 

gradient between the cavity's left hot and right cold arcs. 
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Figure 10. Streamlines inside the crescent shape cavity for various values of  Ra and B  at Pr = 6.1  related to ( case 2 ). 
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Figure 11.  Streamlines inside the crescent shape cavity for various values of Pr and  B  at Ra = 104  related to ( case 2 ). 
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Figure 12.  Isotherms inside the crescent shape cavity for various values of  Ra  and B  at Pr = 6.1  related to ( case 2 ). 
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The distribution of dimensionless velocity component 

V  along with the width gap spacing for various values of  

Ra  and B  at  Pr = 6.1 was displayed in Fig.13. The plus 

(+) and minus (-) signs indicate the direction of the 

movement of the fluid particles. This refers to the fact that 

adjacent to the cold right arc, the direction of the flow is 

downward, whereas,  adjacent to the hot left arc, its 

direction is upward. Therefore, the velocity distribution 

was opposite to that noticed in Fig. 8. This result confirms 

that the velocity profiles are strongly affected by changing 

the thermal boundary conditions in cases 1 and 2. Similar 

to that found previously in ( case 1 ), the velocity profiles 

increase with the increase in  Ra  and decrease in B. 

Therefore, their peak value can be found at  Ra = 105  and  

B = 0.1. 

The profiles of the mean values of  Nu  in terms of Ra, 

Pr  and  B were illustrated in Fig. 14. Again, the first set ( 

the red lines) was related to the hot arc, whereas the 

second set ( the blue lines) was related to the cold arc. 

Similar to that found previously in ( case 1 ), the values of 

Nu are not varied clearly with the increase in Pr. This can 

be confirmed by the high similarity of Nu profiles for all 

selected values of  Pr. The results indicated that Nu  

profiles for both cold and hot arcs increased with Ra. On 

another hand, the  Nu was increased with the decrease in B 

for the hot arc, while an inverse effect can be seen for the 

cold arc. Furthermore, all observations and inferred 

analyzes agree with previous analyzes such as [68-75]. 

 
 

 
(a)    B = 0.5                                                          (b)  B = 0.4 

 

 
(c)  B = 0.2                                                                          (d)  B = 0.1 

 

 
Figure13.  Dimensionless velocity profiles of V  along X  for various values of  Ra  and B at Pr = 6.1  related to ( case 2 ). 
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Figure 14.  Profiles of mean  Nu   number versus Ra  for different values of  Pr  and B  related to ( case 2 ). 

 

5. Conclusions 

         The following are the key points that were 

extracted from the current work: 

1. The flow velocity and buoyancy-driven convention 

increase as Ra  increases in both considered cases. 

2. For both considered cases, when the value of  B 

decreases, the fluid movement becomes slow, and the 

flow pattern becomes approximately similar. 

3. For both considered cases, the flow and thermal 

patterns were not affected by changing the fluid's 

thermal properties Pr. 

4. For both considered cases, the velocity profiles increase 

with the increase in Ra and decrease in B. Therefore, 

their peak value can be found at Ra = 105  and  B = 0.1. 

Also, the velocity profiles are affected strongly by 

changing the thermal boundary conditions.  

5. For both considered cases, the increase in Ra  increases 

the values of   Nu  for both arcs.  

6. For ( case 1 ), when the value of  B decreases, the Nu  

for the hot arc decreases whereas its value for the cold 

arc begins to increase. For ( case 2 ), the  Nu  was 

increased with the decrease in B for the hot arc, while 

an inverse effect can be seen for the cold arc.     

7. When the influence of buoyancy force is substantial, 

and the cavity width is big, the shifting thermal 

boundary conditions become obvious. 

8. These new kinds of results can be exploited in heat 

exchanger applications as well as insulating systems.         
9. In future works, we seggest to use a fluid that combines 

rheological and nanoscale properties.  
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