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Abstract 

Effects of inertia and buoyancy forces are numerically investigated on fluid dynamics and heat transfer characteristics for 

the flow past a heated square cylinder in an unconfined flow regime.  Non-dimensional number in the study chosen are Re = 1 

- 45, Ri = 0 - 1.50, Ŭ = 0oï 90o. The orientation of the cylinder and the Prandtl number are kept fixed as ◖ = 0oand Pr = 100. 

Numerical experiments in generalized body-fitted coordinates subject to Boussinesq approximation were conducted in the form 

of solution of continuity, momentum and energy equations. The momentum and energy equations are discretized using finite 

difference method.  The equations are solved by using SMAC type implicit pressure correction scheme.  The flow is noticed 

steady for 1 Ò Re Ò 30 and 0 Ò Ri Ò 0.50 at Ŭ = 0o, 1 Ò Re Ò 20 and 0 Ò Ri Ò 0.50at Ŭ = 45o, 1 Ò Re Ò 10 and 1.0 Ò Ri Ò 1.50  

at Ŭ = 90o.  Onset of vortex-shedding is observed initially at Re = 30, Ŭ = 45o, 0 Ò Ri Ò 0.50, the flow becomes unsteady and 

periodic flow.  At small magnitudes of Reynolds number, the wake on downstream side of cylinder is found thin, and it becomes 

wider at large magnitudes of Reynolds number.  It is noticed that the width of the wake reduces in size with increasing 

Richardson number.  Maximum mean lift coefficient is found to occur at Re = 20, Ri = 1.5 and Ŭ = 90o, and maximum mean 

drag coefficient is noted at Re = 1 for the chosen range of Richardson number and free-stream orientations.  For the whole 

range of Reynolds and Richardson numbers, the front face(s) of the cylinder had more crowding of isotherms in comparison 

with other faces of the cylinder. The front face(s) of the cylinder have high rate of heat transfer as compared to other cylinder 

faces.  Heat transfer rate from the cylinder is enhanced either with increase in Richardson number or Reynolds number. 
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1. Introduction  

The geometry of the cylindrical cross-section chosen in 

the present study is shown in Fig. 1, which affects the flow 

dynamics, wake properties and heat transfer characteristics 

significantly.  In the past few decades, the fluid flow past 

bluff bodies of various cross-sections have been extensively 

examined, especially the cylindrical objects. Active and 

passive control methods are basically employed to control 

the vortex-shedding from bluff bodies.  For a cylindrical 

object of square cross-section, the free-stream orientation is 

an important parameter, which affects the dynamics of flow 

considerably.  In the present study, the mixed convective 

flow is considered as it is closer to real engineering 

applications such as tall buildings, chimneys, bridges, 

vortex generators etc. Electronic components, heat 

exchangers, extended surfaces, cooling towers are also 

important from the point of view of heat transfer. The 

present ploblem is closer to the engineering problems such 

as cooling of immersed assembly of core and windings in 

the oil in case of large electric transformers.Shell and tube 

oil cooler that is used for cooling of hydraulic power packs 

and hydraulic equipment like hydraulic systems on 

excavators and earthmoving equipment. Cooling of various 

electric and hybrid power train components in electric 

vehicles etc. In the present study, the effects of Re = 1, 5, 

10, 20, 30, 40, 45 and Ri = 0, 0.25, 0.50, 1.0, 1.25, 1.50 on 

fluid dynamics and characteristics of heat transfer are 

analyzed at a fixed Prandtl number Pr = 100 and cylinder 

orientation ◖ = 0o withthe range of orientations of the free-

stream 0o Ò Ŭ Ò 90o. TheCPU time required for 

computations in this studyis 9072 hours.   

The two-dimensional flow dynamics across an elevated 

square cylinder is considered in mixed convection by 

accounting Oberbeck-Boussinesq model. Variation of fluid 

properties in Oberbeck-Boussinesq model such as viscosity, 

specific heat, thermal diffusivity with temperature are 

ignored completely. The five dimensionless parameters that 

described the flow dynamics are as follows: the bluff-body 

orientation with respect to the x-axis = f, Free-stream 

orientation with respect to gravity = Ŭ, Prandtl number (Pr) 

= 
o

o

n

k
, Richardson number (Ri) = 

s

2

g (T T )d

U

¤

¤

b -
 and 

Reynolds number (Re) = 

o

U d¤
n

. Where on = kinematic 

viscosity, ok  = thermal diffusivity at a certain reference 

temperature (TÐ), Ts = uniform surface temperature of the 

bluff-body, TÐ = fluid temperature of the free-stream, d = 
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characteristic length scale of the body, b = co-efficient of 

volume expansion and g  = gravitational intensity of the 

fluid. 

 
Figure 1. Geometry of the proposed problem with and without 

cylinder orientation (◖). 

Sohankar et al. [1] investigated numerically a2-D, 

incompressible, unsteady air flow across a square cylinder 

for the conditions 45 Ò Re Ò 200,0 Ò ◖ Ò 45o, Ŭ = 90o, 

2.5%Ò BR Ò 5% (BR = blockage ratio).  They compared 
the boundary conditions and showed that the Neumann 

boundary condition was less effective than the convective 

Somerfield boundary condition in reducing the CPU time 

and upstream influence from the outlet of the computational 

domain. Sharma and Eswaran [2] studied numerically for 

parameters Re = 100, -1 Ò Ri Ò 1, Ŭ = 0o, ◖ = 0o, and Pr = 

0.7, the heat transfer characteristics of two-dimensional 

flow across a cylinder of square cross section, the 

temperature of the cylinder is maintained constant. In 

energy equation, the viscous dissipation term is ignored 

completely and considered the effects of opposing and 

aiding buoyancy. They found that the shedding of vortices 

are completely suppressed at a critical Richardson number, 

Ri = 0.15. Sharma and Eswaran [3]numerically investigated 

the two-dimensional upward flow (Ŭ = 0o) by taking into 

account the opposing and aiding buoyancy, heat transfer 

characteristics across a cooled or heated square cylinder and 

the channel-confinement effect of different BR (BR = 10%, 

30%, and 50%)  for -1 Ò Ri Ò 1, Pr = 0.7, Re = 100, Ŭ = 0o 

and ◖ = 0o.  They noticed that the least heating required for 

vortex-shedding suppression decreases with increasing 

blockage ratio up to a certain value of BR (BR = 30%), and 

increases thereafter. Chatterjee and Mondal [4] investigated 

numerically the buoyancy (aiding/opposing) effects on the 

2-D upward flow and heat transfer across a cooled or heated 

cylinder of square cross-section within the Boussinesq 

approximation at BR = 2%, 50 Ò Re Ò 150, -1 Ò Ri Ò 1, Pr 

= 0.7and Ŭ = 0o.  They observed that with increased heating 

there is an increment in Strouhal number and instantly falls 

to zero at some Richardson number (critical).  They also 

noticed that with the increase in blockage ratio, the critical 

Richardson number was decreased. 

Dhiman et al. [5] considered the upward, steady, 

confined flow in the vertical channel and investigate the 

characteristics of heat transfer for the flow around a square 

cylinder within the Boussinesq approximation, under aiding 

buoyancy at  1 Ò Re Ò 40, 0 Ò Ri Ò 1, Pr = 0.7 and 25% Ò 

BR Ò 50%.  They reported that the onset of flow separation 

occurs at 2 Ò Re Ò 3, 25% Ò BR Ò 30% and at 3 Ò Re Ò 4, 

BR = 50%, irrespective of the value of Richardson number. 

Also, with increase in Re and Ri, the surface mean Nusselt 

number was increased. Yang and Wu [6], numerically 

studied the effects of opposing/aiding buoyancy and side 

ratio on 2-D flow and characteristics of heat transfer past a 

rectangular cylinder (cooled/heated) by adopting the 

Boussinesq approximation at 0.5 Ò SR Ò 2 (SR = side ratio), 

Ŭ = 0o, -1 Ò Ri Ò 1, Pr = 0.7 and Re = 100. They noticed the 

Karman vortex-street for the flow conditions. They also 

noticed the complete suppression of vortex-shedding atRi = 

0.15 and SR = 1. Moulai et al. [7] numerically investigated 

the mixed convective flow past a heated square cylinder 

under aiding buoyancy effect and heat transfer in air (Pr = 

0.71), in a confined channel for the parameters 20 Ò Re Ò 45 

and 1.61x103 Ò Gr Ò 6.33x103 at a fixed blockage ratio of 

0.1.  In their study, the strong dependency of wake region is 

observed on Grashof and Reynolds numbers. On decreasing 

the Grashof number and increasing the Reynolds number 

the wake region of square cylinder increase in their size.  

Enhancement of heat transfer from the front face of square 

cylinder is seen with increase in Reynolds number, and 

enhancement of heat transfer from the side faces of square 

cylinder is seen with increasing the Grashof number. 

Rashid and Hasan [8] investigated numerically the 

phenomenon of vortex shedding and its suppression at Re = 

100, Pr = 0.71, Ri and Ŭranges chosen in the study are 0 to 

1.6 and 0oÒ Ŭ Ò 90o. Rashid and Hasan [9] studied the 

influence of free-stream orientation and buoyancy on the 

flow structure and aerodynamic characteristics around a 

square cylinder for Re = 100, Pr = 0.71, 0o Ò Ŭ Ò 90o and 1.2 

Ò Ri Ò 1.6. Rashid and Hasan [10] investigated numerically 

the effect of free-stream orientations and buoyancy together 

on flow structure and heat transfer in two-dimensional 

mixed convective flow past a square cylinder.  The 

numerical experiments have been conducted at a fixed 

Reynolds number (Re) of 100 and Prandtl number (Pr) of 

0.71.  The Richardson number (Ri) ranges from 1.2 to 1.6, 

while free-stream orientation chosen in the range from 0o to 

90o. Haider and Rashid [11] investigated numerically the 

effect of Prandtl number on the flow past a square cylinder 

in mixed convective flow regime at 0o¢ Ŭ ¢ 90o , 0 ¢ Ri ¢ 

1.6, Pr = 0.7 and 7, Re = 100 and ◖ = 0o. Anshumaan and 

Rashid [12] studied numerically the effect of buoyancy and 

inertia forces on the flow and heat transfer characteristics 

for the conditions 1 Ò Re Ò 10, 0 Ò Ri Ò 0.75, Pr = 100, Ŭ = 

90Á and ◖ = 0Á. Rashid and Hasan [13] numerical 

investigated the transformations / bifurcations from steady 

to unsteady or unsteady to steady flow states in 2-D mixed 

convection across a square cylinder (heated) in laminar flow 

regime. The parameters chosen in their study were 0o¢a¢ 

90o and 0 ¢ Ri ¢ 1.6 and Pr = 0.71. The magnitudes of 

Reynolds and Richardson numbers were varied to obtain the 

neutral curves in Ri-a plane. 

Yuan et al. [14] investigate numerically the flow patterns 

and vortex-shedding around a square cylinder using a 

control circular bar on upstream and downstream. The 

Lattice Boltzmann method (LBM) was used to investigate 

the flow over a square cylinder. Re = 100 for square 

cylinder, 30 and 50 for different circular bars were chosen 

(based on the width of the square cylinder (D) and diameter 

of circular bar (d)). The L/D and G/D ratios chosen were 1-

5 (where L and G are the center-to-center distances between 

the bar and cylinder). They found that the maximum 

percentage reduction in drag coefficient was 59.86% by 

upstream control bar, and the maximum percentage 

reduction in rms lift coefficient was 73.69% by downstream 
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control bar. Yuan et al. [15] numerically investigate the 

patterns of flow across a square cylinder with a circular bar 

upstream and a splitter plate downstream by Lattice 

Boltzmann method (LBM). The parameters chosen in their 

study were Re = 100 (based on side length of square 

cylinder (D)), Ds/D = 1-5, G/D = 0-7 and L/D = 1-6 (where 

Ds, G and L  are the center-to center distance, surface-to-

surface distance and the splitter plate length). They found 

that the maximum percentage reduction in mean drag 

coefficient was 68.76% at (ds, g, l) = (2.5, 0, 3)which was 

in pattern VI. The vortex-shedding from the square cylinder 

and the circular bar was completely suppressed in pattern 

VI. They also observed that the small distance between the 

square cylinder and the splitter plate plays a more vital role 

in suppression of vortex-shedding as compared with large 

distance and length. Rafik et al. [16] used the finite-volume 

method to investigate the laminar 2-D unsteady flow of 

nanofluids and heat transfer characteristics past a square 

cylinder inclined with respect to the main flow. The 

Reynolds number, nanoparticle volume fraction and 

inclination angle are chosen 100, 0-5% and 0o-45o, 

respectively. Enhancement of heat transfer is reported in 

their study with nanoparticles addition. It is also reported 

that by increasing the nanoparticles concentration for a 

specific inclination angle the local Nusselt number 

increases. 

The survey of the earlier studies suggested that none of 

the previous studies have been carried out to investigate the 

effects of buoyancy and free-stream orientations on fluid 

dynamics and heat transfer characteristics for the flow past 

a heated square cylinder for the ranges of parameters, 

Reynolds number, 1 Ò Re Ò 45, Richardson number, 0 Ò Ri 

Ò 1.50, Prandtl number, Pr = 100, cylinder orientation, ◖ = 

0o and orientation of free-stream, Ŭ = 0o, 45o and 90o. The 

focus of the present study is to elucidate the role of 

Reynolds and Richardson numbers, and free-stream 

orientations on time histories of lift and drag coefficients, 

streamline patterns, contours of vorticity, isotherm patterns, 

mean (time mean) lift and drag coefficients (CL and CD), 

time mean coefficient of moment (CM), surface pressure and 

surface vorticity.  In addition, the local Nusselt number 

(NuL) and mean (time mean) Nusselt number (Nu) are 

investigated in detail.  The novelty of the present work is 

the solution of complex problem of bluff-body numerically 

with the consideration of range of Richardson number, 

Reynolds number and orientation of free-stream. In the 

knowledge of the author no study of flow past bluff-body is 

found till date with these range of parameters, specifically 

the free-stream orientations range. 

2. . MATHEMATICAL FORMULATION  

In the current study, the fluid flow is considered as 

unsteady, 2D, incompressible, laminar and viscous across 

an elevated square cylinder. The buoyancy impacts are 

considered by the Oberbeck-Boussinesq model 

approximation (Tritton[17]). The equations involving 

continuity, momentum and energy have been written in the 

following form; 

Continuity Equation 

.V 0Ð =                                            (1) 

Momentum Equation 

( )2DV 1
P V g T T

Dt
¤ ¤

¤

=- Ð +n Ð - b -
r

     (2) 

Energy Equation 

2T
V. T = T

t
¤

µ
+ Ð k Ð

µ
            (3) 

In the above equations (1)-(3), T, P and V  are the 

temperature, pressure and the vector of local fluid speed. 

The density, thermal diffusivity as well as the 

kinematic viscosity at free-stream reference temperature 

(TÐ) are ¤r , ¤k  and ¤n , respectively. Figure 1 shows 

the proposed problem geometry considered in the present 

study. In figure 1, forces/span are Fxin x direction and Fyin 

x and y direction, CL and CD are the lifting and dragging 

coefficients, respectively with reference to orientation of 

free-stream. U¤ is the free-stream velocity, f is the cylinder 

orientation, d is the edge of square cylinder and g is the 

gravitational intensity. 

The initial condition in the flow region are selected to be 

the free-stream variables written as, 

( )P P T T , V U Sin i Cos j .Ĕ Ĕ, a a¤ ¤ ¤= = = = + (4) 

The unit vectors in the x and y directions are Ĕ Ĕi and j in 

the above relation. 

Condition of no-penetration &no-slip are used as 

boundary conditions for the component of velocity on the 

square cylinder surface, the square cylinder surface is 

maintained at higher constant temperature Ts 

sV 0, T T .= =              (5) 

Normal momentum condition at the cylinder surface is 

used for pressure. At large distances from the cylinder, the 

uninterrupted free-stream conditions are used. 

Mathematical equations of mass, momentum and energy 

are transformed into dimensionless form, with the time 

scales; velocity and length chosen are, 

i) Time scale  ód / U¤ô = residence time spend by fluid 

particles in the neighborhood of the cylinder. 

Non-dimensional time and velocities are written as, 

t = tU¤/d, u = U/U¤ and v = V/U¤.            (6) 

ii) Velocity scale  óU¤ô = magnitude of the velocity of 

free-stream. 

iii) Length scale  ódô = side of square cylinder. 

Fluid temperature change scale is(sT T¤- )&change in 

pressure scale is
2

oU¤r , and the non-dimensional pressure 

and temperature are written as, 

Ð ȟʃ Ȣ            (7) 

Mass, momentum and energy equations in dimensionless 

form with Oberbeck-Boussinesq approximation in 

Cartesian coordinates, modified into generalized body-

fitted coordinates (Thompson et al. [18]) are written as, 

Continuity: 

x x y yu v 0,
å õ å õµ µ µ µ
x +h + x +h =æ ö æ ö
µx µh µx µhç ÷ ç ÷

   (8) 

 

¹

¹

¹
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x ï Momentum: 

2

x x

u u u p p 1
U U u,

Re

x h å õµ µ µ µ µ
+ + =- x +h + Ðæ ö

µt µx µh µx µhç ÷
(9) 

y ï Momentum: 

(10) 

Energy Equation: 

21
U U .

(Re.Pr)

x hµq µq µq
+ + = Ð q

µt µx µh
               (11) 

The corresponding non-dimensional Cartesian velocity 

components in the above equations are u and v. 

Dimensionless components of velocity are referred to as 

U  and Ux h
  inɝ and ɖ directions. The body-fitted 

velocity coordinate components are connected to the 

Cartesian components as, 

x yU u v,x=x +x           (12) 

x yU u v.h=h +h           (13) 

2Ð is the transformed Laplacian operator written as, 

2 2 2
2

2 2
A 2B C P Q
µ µ µ µ µ

Ð ¹ + + + +
µx µxµh µh µx µh

(14) 

Coefficients A,B,C,P, and Q are, 

2 2

x yA=x +x, x x y yB=x h +x h,
2 2

x yC=h +h  (15) 

and,     

 
2 2P, Q.Ð x= Ð h=                         (16)  

the Laplacian 
2Ð in the Cartesian coordinates are 

written as,  

2 2
2

2 2x y

µ µ
Ð ¹ +

µ µ
.           (17) 

2.1. Boundary conditions 

Condition of no-penetration and no-slip is used for 

components of velocity at the rigid surface of a square 

cylinder. 1.0q=  is used for temperature on the cylinder 

surface. The normal momentum equation is employed for 

pressure on the rigid cylinder surface, 

p p x p y

x y

µ µ µ µ µ
= +

µh µ µh µ µh
          (18) 

where, 
p p

and
x y

µ µ

µ µ
 on the surface of cylinder are 

found from the momentum equations of x and y. 

The artificial boundary is split into two portions to 

enforce the boundary conditions. One portion is the inflow 

and the other portion is the outflow. This is accomplished 

by controlling the local normal velocity variable direction. 

For a typical outer surface normal pointing towards the 

inside of the flow domain ĔU.n 0> implies inflow and 

ĔU.n 0< implies outflow. The boundary conditions on 

both the portions are written as 

The inflow Portion 

Uninterrupted free-stream conditions for speed and 

temperature are enforced at the inflow part, written as, 

Ĕ Ĕ0, p 0, U Sin i Cos j.q= = = a + a       (19) 

Pressure is update by implementing the normal 

momentum equation. 

The outflow Portion 

Hasan et al. [19] proposes a numerical boundary 

condition for velocities at the outflow portion, this is 

executed in the present study. They utilizes vorticity 

considerations and mass conservation for incompressible 

flows to extrapolate the radial decay laws for the deviation 

/ perturbation in circumferential and radial velocities 

created due to the presence of a body in an otherwise 

uniform undisturbed stream. They reported that by using 

their outflow velocity condition for domains comparatively 

smaller sizes, the precise computations would be carried out 

easily. The presence of the body causes deviations to the 

circumferential and radial velocity components are shown 

to obey radial decay laws with a leading order term written 

as (Hasan et al. [19]), 

2
r r 1

2
2

2

v v S / r

S / r if 0
v v

S / r if 0

¤

q q¤

-

ûG=î
- ü

G¸îý

.       (20a)

   

The local circumferential and radial free-stream 

components are represented as vq¤ and rv ¤, 

respectively, these components are obtained from the 

Cartesian free-stream velocity components. The circulation 

on the artificial boundary in the above equation is 

represented by the symbol óGô, which can be estimated from 

the existing velocity field. The constants S1 and S2 are 

obtained by interpolating the values of the deviations in the 

circumferential and radial velocity components at an 

interior point (i). Thus, the circumferential and the radial 

velocity components on the artificial boundary at a point (B) 

would be determined using equations (20a) as, 

() ( ){ }( )2 2
r r r i B rB i B

v v v r r v¤ ¤- +  ,                                

( )
( ){ } ( )

( ){ }( )

2 2
i Bi B

B

i Bi B

v v r r v if 0
v

v v r r v if 0

q q¤ q¤

q

q q¤ q¤

û- + G=î
ü

- + Gî̧ý

(20b) 

These components can then be utilized for obtaining the 

Cartesian components u, v.A derivative of second order for 

temperature in h direction is used, written as, 

2

22
K

µ q
=

µh
          (20c) 

At an interior point, K2 is the magnitude of 2nd order 

derivative and uses the 2nd order backward difference 

scheme. 

The boundary condition (traction free) of [20] and [21] 

is used for pressure, written as, 

n1 U
p .

Re n

µ
=

µ
           (21) 

In the above equation the local normal is represented by

n and the local normal velocity is 
nU . 
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2.2. Grid structure 

In the current research, a mesh that is uniform in ɝ and ɖ 

directions is taken into account in the mapped 

computational ɝ-ɖ plane. The spacing of mesh

( and )Dx Dh is assigned in terms of fixing the number 

of mesh points in the required (x and h) directions. The 

body-fitted coordinates (x,y) and (x,y)x h are 

chosen for the mapping of grid points in the physical plane 

to satisfy the Laplacian equations in the physical domain (

P Q 0= =) written as, 

2 20, 0.Ð x= Ð h=           (22) 

Mapped/inverted equations in the computational x-h 

domain are given as, 

2 2 2

2 2

x x x
D 2E F 0,
µ µ µ
- + =

µx µxµh µh
         (23) 

2 2 2

2 2

y y y
D 2E F 0.
µ µ µ
- + =

µx µxµh µh
         (24) 

In Eqs. (23)-(24) D, E, F are, 
2 2

2 2

x y
D ,  

x x y y
E   and  

x y
F .

å õ å õµ µ
= +æ ö æ ö
µh µhç ÷ ç ÷

å õå õ å õå õµ µ µ µ
= +æ öæ ö æ öæ ö
µx µh µx µhç ÷ç ÷ ç ÷ç ÷

å õ å õµ µ
= +æ ö æ ö
µx µxç ÷ ç ÷

         (25) 

Discretization of Eqs. (23) - (24) on uniform grid 

( , )Dx Dhis done in computational plane in order to 

achieve grid in physical plane. An identical number 

of grid points are placed initially on the cylinder surface and 

finally on the artificial boundary, which corresponds to the 

number of mesh points in the computational plane in x 

direction. For elliptic Eqs. (23) - (24), the said 

boundary points function as Dirichlet boundary condition. 

The discrete solution of Eqs. (23)-(24) need a quasi-linear 

approach, as the equations are not linear to the undefined 

grid point coordinates ( x , y). In the quasi-linearized 

method the D, E and F coefficients are discretized using the 

previous iterates, and the derivatives 
2 2 2 2 2 2

2 2 2 2

x x x y y y
, , , , and

µ µ µ µ µ µ

µx µxµh µh µx µxµh µh
 are 

discretized using current/new iterates with finite difference 

schemes of second order (central). The corresponding linear 

algebraic set of equations were solved using Gauss-Seidel 

method to extract the new iterates from existing previous 

values. One Gauss-Seidel sweep is used per iteration for the 

two discretized equations (23)-(24). In previous study of 

Rashid and Hasan [13], the comprehensive analysis of grid 

structure is discussed. 

The methodology constituting the generation of an O-

type structured grid, numerical scheme utilized in present 

study, boundary conditions at cylinderôs solid surface and 

on the artificial boundary (outflow/inflow portions) are 

elaborated in detail in the previous studies of Rashid and 

Hasan [13] Hasan and Rashid [22]. For pressure correction, 

scheme identical to SMAC scheme is utilized which is 

elaborated in the study of Hasan and Sanghi [23]& Hasan et 

al. [19]. The discretization of governing equations of mass 

and momentum is done by employing spatial discretization 

of finite difference type on a non-staggered body-fitted grid.  

In the interior, a fourth-order central scheme is employed 

for diffusion terms, while for the convection terms a hybrid 

scheme of third-order upwind scheme (Kunio Kuwahara 

[24]) and fourth-order central is employed. For near 

boundary points (artificial and solid), second-order central 

schemes are employed for both convection and diffusion 

terms. For pressure interpolation, the concept of Rhie and 

Chow [25] is utilized. 

2.3. Dimensionless output parameters 

From application perspective, the influence of flow 

across a body is described in terms of the gross quantities, 

such as the moments or forces the fluid exerts on the object, 

and the overall rate of heat transfer between the fluid and 

the body. All such global parameters are described below in 

a dimensionless manner for the two-dimensional problem 

that is considered in the present study, 

1. CL = y xC sin C cosa- a, (Lift coefficient),

    

2. CD = x yC sin C cosa+ a, (Drag coefficient),

    

3. 
2 2

M oC 2M U d ,¤= r  (Moment 

coefficient),   

4. Nu = [ ]o sQ 4k (T T )¤- , (Nusselt number),

    

5. St = f d U .¤  (Strouhal number).  

   

Cy, Cxin the above equations are coefficients of forces in 

y and x directions given as,  

yx
x y2 2

o o

2F2F
C and C .

U d U d¤ ¤

= =
r r

         (26) 

Fx and Fy are the forces per unit cylinder span in x and y 

directions, respectively (Fig. 1). M is the overall moment 

the fluid exerted on the cylinder per unit span. Q is the 

maximum rate of heat transfer per unit cylinder span, and ko 

is the fluid's thermal conductivity. The vortex-shedding 

frequency is expressed by 'f'. 

The force coefficients in dimensionless form are, 

1 1

x x y

0 0

2
C 2 J p d J d ,

Re
= h x+ Wh xñ ñ          (27) 

1 1

y y x

0 0

2
C 2 J p d J d ,

Re
= h x- Wh xñ ñ          (28) 

 (29) 

The Fourierôs law of heat conduction is utilized to find 

out the heat transfer rate from the cylinder written as, 
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T
q k bdl.

n

µ
=-

µñ
           (30) 

Heat transfer rate / unit width óbô is calculated as, 

q T
k dl.

b n

µ
=-

µñ
           (31) 

Nusselt number is represented as, 

( )o s

q b
Nu .

4k T T¤
=

-
          (32) 

Nusselt number in dimensionless form is written as, 

( )
1

2 2
x y

0

1
Nu J d .

4

µq
= h +h x

µhñ          (33) 

2.4. Location of artificial boundary, grid size and time step 

selection 

For finding out a suitable artificial boundary position, 

such that the numerical boundary conditions imposed on it 

does not affect considerably the dynamics of flow adjacent 

to the square cylinder. This is done by truncating the 

original grid with artificial boundary from the middle of the 

cylinder at a dimensionless distance of 120. The original 

grid of 241 x 325 mesh points is then truncate from the 

middle of the cylinder at dimensionless lengths of 100, 80, 

60, 40 and 20 to give six numerical grids of equal grid cell 

size. For every truncated grid and at ◖ = 0o, Pr = 0.71, Re = 

100, Ri = 0 and Ŭ = 0o, the Strouhal number, mean drag and 

lift coefficients are obtained from the numerical 

experiments. It is observed that change in the values of the 

lift coefficient are marginal for a dimensionless distance 

beyond 20 and change in the magnitudes of coefficient of 

drag and St beyond a dimensionless distance of 40 are quite 

small, and the length beyond 40 appears to be ideal for 

computations. The artificial boundary is positioned at a 

dimensionless distance of 40 from the middle of the cylinder 

for all subsequent reported computations. For the forced 

flow regime, the effects of grid size is analyzed by setting 

the far boundary at a distance of 40 from the middle of the 

square cylinder for Re = 45, Pr = 100, Ŭ = 90o, ◖ = 0o and 

using a time step of 0.001 dimensionless units. Numerical 

experiments were conducted on3 grids of 161 x 179 (G1), 

241 x 258 (G2) & 321 x 338 (G3) mesh points for the close 

boundary spacing of 0.0197, 0.0137 & 0.0104, respectively. 

The drag coefficient (mean), Strouhal number & Nusselt 

number (mean) for a free-stream orientation of 90o are 

reported in Table 1 at various grid sizes. In moving from 

grid G1 to G2 the %age variation in the flow parameters 

including drag coefficient (mean), Strouhal number & 

Nusselt number (mean) is 0.275, 0.197 & 1.451, and in 

moving from grid G2 to G3 the %age variation is 0.701, 

0.196 & 1.488,  respectively. The outcome shows clearly 

that the %age variation in the flow parameter is very small 

(less than 1.5 percent) when moving from coarser to finer 

grid. Hence, the grid 241 x 258 (G2) is considered suitable 

for computations in order to conserve computational time. 

 

Table 1. Grid size sensitivity for square cylinder at Re = 45, Pr = 

100, Ri = 0 and Ŭ = 90o. 

Grid 

Near 

boundary 
spacing for 

the grid 

Grid 

Size DC  St Nu  

G1 0.0197 
161 
x 

179 

1.5631 0.2030 17.6021 

G2 0.0137 

241 

x 

258 

1.5588 0.2034 17.3503 

G3 0.0104 

321 

x 

338 

1.5479 0.2038 17.0958 

In order to determine the appropriate time step, the 

calculations were done in the forced & mixed convection 

regimes at the time steps of 0.0005 and 0.001 for Re = 45, 

Pr = 100, Ŭ = 90o and ◖ = 0o. In Table 2 the drag coefficient 

(mean), Strouhal number & Nusselt number (mean), are 

compared for Richardson numbers 0 and 1.5 at different 

time steps. Moving from a time step of 0.0005 to 0.001 in 

the forced flow regime, the %age variation observed is 

0.532, 0.098 & 0.811, respectively in the drag coefficient, 

Strouhal number& Nusselt number. 

Table 2. Time step sensitivity for a = 90o, f = 0o, Re = 45, Pr = 

100 at Ri = 0 and 1.5. 

Richardson 

number 

Time 

step (DŰ) 
DC  St Nu  

Ri = 0 

 

0.0005 

0.001 

1.5671 

1.5588 

0.2036 

0.2034 

17.4911 

17.3503 

Ri = 1.5 
0.0005 

0.001 

1.6341 

1.6299 

0.2587 

0.2583 

17.6798 

17.7566 

The %age variation in drag coefficient (mean), Strouhal 

number & Nusselt number (mean) in mixed convection at 

Ri = 1.5 is 0.257, 0.154 & 0.434, respectively. From the 

above discussion, it is suggested that minor span has no 

noticeable effect on the performance (<1 %). So a time step 

of 0.001 is selected for all the computations. 

3. CODE VERIFICATION AND VALIDATION  

Checking of numerical method, selection of numerical 

parameters, and the code used for numerical simulation is 

verified and validated by examining the present results with 

those reported in previous studies with in the forced and 

mixed convection. Numerical simulations were performed 

at Ŭ = 90o, ◖ = 0o, Re = 5, Pr = 100 and 0 Ò Ri Ò 0.50. It is 

depicted in Table 3 that the present results of mean (time 

mean) drag coefficient (CD) obtained from computations is 

in agreement with results reported in the earlier studies of 

Dhiman et al. [26], Paliwal et al. [27] and Dhiman et al. [28]. 

Computations have been carried out for the conditions, Re 

= 5, Pr = 100, Ri = 0.0 and Ŭ = 90o.  It is seen from Table 4 

that the present result of mean Nusselt number (Nu) is in 

agreement with the results of Dhiman et al. [28],  Paliwal et 

al. [27] and  [29] [30] [31]. 
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Table 3. Mean drag coefficient (CD) at Re = 5, Pr = 100, Ri = 0.0, 

0.25, 0.50 and Ŭ = 90o 

 Ri = 

0.0 

Ri = 

0.25 

Ri = 

0.50 

 

Dhiman et al. [26] 4.840   Numerical 

Paliwal et al. [27] 4.814   Numerical 

Dhiman et al. [28]  4.686 4.729 Numerical 

Present Study 4.364 4.377 4.405  

Table 4. Mean Nusselt number (Nu) at Re = 5, Pr = 100, Ri = 0.0 

and Ŭ = 90o 

 Nu  

Dhiman et al. [28] 5.504 Numerical 

Paliwal et al. [27] 5.723 Numerical 

Present Study 5.370  

Table 5. Comparison of L,r.m.sC , DC , Nu  and St for square 

and circular cylinders at Ri = 0, Re = 100 and Pr = 0.71. 

 
Cylinder 

L,r.m.sC  DC  Nu  St 

Experimental 

Okajima [32] 

Ŭ = 90o 

Square 
- - - 

0.141-

0.145 

Luo et al. [33] 

Ŭ = 90o 

Square 
- - - 0.146 

Collis and 

Williams [34] 

a = 90o 

Circular 

- - 5.160  

Wang and 

Travnicek [35] 

a = 90o 

Circular 

- - 5.101  

Wang et al. 
[36] 

a = 90o 

Circular 

- - - 0.161 

Numerical 

Sohankar et al. 
[1] 

Ŭ = 90o 

Square 
0.139 1.460 - 0.146 

Saha et al. [37] 

Ŭ = 90o 

Square 
- 1.510 - 0.159 

Sharma and 

Eswaran [2] 

Ŭ = 0o 

Square 

0.183 1.559 4.070 0.148 

Ranjan et al. 
[38] 

Ŭ = 90o 

Square 
0.190 1.449 4.124 0.145 

Yoon et al. 
[39] 

Ŭ = 90o 

Square 
0.179 1.428 - - 

Present (a = 
0o) 

Square 
0.175 1.438 4.051 0.143 

Present (a = 

90o) 

Circular 
- 1.316 5.240 0.163 

The discrepancies between present results and the 

previous results of Dhiman et al. [26], Paliwal et al. [27] and 

Dhiman et al. [28] reported in Table 3 and 4 are found due 

to the slight differences in the numerical procedures adopted 

and the level of accuracy of the discrete solutions chosen. 

In the previous studies of [26], [27] and [28] uses a confined 

flow field structure (channel flow with slip conditions) 

while in the current study the flow field is chosen to be 

unconfined.  The boundary conditions chosen by [26], [27] 

and [28] are different from the present study. In the studies 

of [26] and [28] finite volume method is utilized, and in the 

present study finite difference method is used. So it is 

difficult to get identical results with different numerical 

procedures, resulting in discrepancies in the results. 

Table 5 compares the mean drag coefficient, rms lift 

coefficient, Strouhal number and mean Nusselt number, 

obtained in the current analysis with the data reported in 

earlier studies for circular and square cylinders at ◖ = 0o, Ri 

= 0, Pr = 0.71 and Re = 100. The data obtained from the 

current simulations are in close agreement with those 

obtained in the previous numerical and experimental 

studies. Present data of Strouhal number is in close relation 

with the data reported for both circular and square cylinders 

in earlier experimental studies. 

4. RESULTS AND DISCUSSION 

The current study is carried out for the range of 

parameters 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, 0o Ò Ŭ Ò 90o at a fixed 

◖ = 0o and Pr = 100.  Effects of Reynolds and Richardson 

numbers and orientation of the free-stream on patterns of 

streamline, vorticity contours, patterns of isotherm, non-

dimensional time histories of drag and lift coefficients, 

mean (time mean) drag and lift coefficients (CL and CD), 

mean coefficient of moment (CM), surface pressure and 

surface vorticity, local Nusselt number (NuL) and mean 

Nusselt number (Nu) have been carried out in detail. 

4.1. Streamline Patterns, Contours of Vorticity and 

Isotherm Patterns 

Patterns of streamline, vorticity contours and patterns of 

isotherm are depicted in Figs. 2-10for 1 Ò Re Ò 45, 0 Ò Ri Ò 

1.50, 0o Ò Ŭ Ò 90o, ◖ = 0o and Pr = 100.  It is seen from 

patterns of streamlines(Fig. 2-Fig. 4) and contours of 

vorticity (Figs. 5-7) that no vortices are formed at Re = 1 for 

the range of free-stream orientations and Richardson 

number chosen. The vortices are induced at higher 

magnitudes of Reynolds number, and further increases in 

their size with increase in Reynolds number. Similar trends 

are observed for the range of free-stream orientations 

chosen. With the increase in Richardson number the 

vortices are reduced in their size and the wake becomes thin 

as depicted in Figs. 2-7. Due to the fact that there is variation 

in density in the buoyancy term with increasing Richardson 

number, the incoming free-stream fluid near cylinder got 

accelerated with increase in Ri, accelerates the shear layer 

leading to less entrainment of fluid to the vortices from 

shear layers and hence the vortices are reduced in their size. 

Increase in Ri enforces thermal energy diffusion in the near 

wake of the cylinder which creates stabilizing buoyant 

forces with respect to the ambient fluid just outside the shear 

layer. The buoyancy induced current tends to stabilize the 

flow, thus thinning of wakes takes place. Figures. 2-7 

depicted that, at a fixed Ri with increasing Re, the wakes 

became wider behind the cylinder because of high rate of 

momentum transfer to the fluid particles at higher Re. Also 

the entrainment of the fluid to the vortices increases with 

increasing Reynolds number.   
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Figure 2. Streamline patterns for 1 Ò Re Ò 30, 0 Ò Ri Ò 0.50, Ŭ = 0o, at Pr = 100. 

 

Figure 3. Streamline patterns for 1 Ò Re Ò 30, 0 Ò Ri Ò 0.50, Ŭ = 45o, at Pr = 100. 
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Figure 4. Streamline patterns for 30 Ò Re Ò 45, 1.0 Ò Ri Ò 1.50, Ŭ = 90o, at Pr = 100. 

 

Figure 5. Contours of vorticity for the conditions (Pr = 100, Ŭ = 0o, 1 Ò Re Ò 30, 0 Ò Ri Ò 0.50). 
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Figure 6. Contours of vorticity for the conditions (Pr = 100, Ŭ = 45o, 1 Ò Re Ò 30, 0 Ò Ri Ò 0.50). 

 

Figure 7. Contours of vorticity for the conditions (Pr = 100, Ŭ = 90o, 30 Ò Re Ò 45, 1.0 Ò Ri Ò 1.50). 
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Figure 8. Isotherm patterns at Pr = 100, Ŭ = 0o, Re = 1, 10, 30 and Ri = 0.0, 0.25, 0.50. 

 

Figure 9. Isotherm patterns at Pr = 100, Ŭ = 45o, Re = 1, 10, 30 and Ri = 0.0, 0.25, 0.50. 
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Figure 10. Isotherm patterns at Pr = 100, Ŭ = 90o, Re = 30, 40, 45 and Ri = 1.0, 1.25, 1.50. 

The crowding of isotherms are observed more on leading 

face(s) of cylinder in comparison with other faces of 

cylinder as shown in Figs. 8-10 for condition (0 Ò Ri Ò 1.50, 

1 Ò Re Ò 45,0o Ò Ŭ Ò 90o, ◖ = 0o, Pr = 100). The trends are 

observed similar for the range of Richardson number 

chosen.  Crowding of isotherms move near to the cylinder 

surface either with increase in Ri or Re as shown in Figs. 8-

10.  Similar trends have been observed for entire free-stream 

orientations range.  More accumulation of isotherms on 

front face(s) of cylinder leading to higher rate of heat 

transfer from front face(s). The rate of heat transfer 

increases further either with increase in Richardson number 

or Reynolds number due to the fact that momentum of the 

fluid particles increases with the increase in Richardson or 

Reynolds numbers.  More heated fluid particles replacement 

is observed from the colder fluid particles with increasing 

Richardson and Reynolds numbers leading to higher heat 

transfer rate from all the faces of square cylinder. 

4.2. Surface Pressure and Surface Vorticity 

Variation of surface pressure and surface vorticity at Re 

= 1 - 45, Ri = 0 - 1.50, Ŭ = 0o- 90o, Pr = 100 and ◖ = 0o is 

shown in Figs. 11-12.  It is shown in Fig. 11 that the cylinder 

surface pressure is observed highest on the front face(s) 

(AB, AB and AD, AD at Ŭ = 0o, Ŭ = 45o and Ŭ = 90o) of the 

cylinder that is placed in front of the free-stream.  Surface 

pressure is noticed minimum on the rear face(s) (CD, CD 

and BC, BC at Ŭ = 0o, Ŭ = 45o and Ŭ = 90o) of the cylinder 

and intermittent for the side faces of the cylinder.  Similar 

trends are seen for the range of free-stream orientations 

chose.  It is shown in figure that with increase in the 

magnitudes of Reynolds number the pressure on the front 

face(s) decreases to a minimum due to an increase in the 

momentum of fluid particles with an increase in the 

magnitudes of Reynolds number. Pressure increases on the 

rear face(s) as the Reynolds number increase. The trend for 

the whole range of free-stream orientations is observed 

similar. An increment in the magnitude of Richardson 

number, leading to an increases in pressure gradient in the 

stream wise direction across the square cylinder for the 

selected range of Reynolds number chosen.  Similar trends 

have been observed for the chosen range of the orientations 

of free-stream.  The pressure at the vertices (A, B, C and D) 

of the cylinder is found to be maximum for the chosen 

parametric range, and it decreases due to acceleration 

(inertia/buoyancy induced) of the fluid particles around the 

cylinder vertices. 

It is seen from Fig. 12 at 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, 0o 

Ò Ŭ Ò 90o, ◖ = 0o and Pr = 100 that the vorticity along the 

surface is observed large on leading face(s) of cylinder for 

entire range Ŭ. Surface vorticity changes its sign across the 

stagnation point that lies on leading face(s) of cylinder as 

shown in Fig. 12. 
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Figure 11. Variation of cylinder surface pressure 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, Ŭ = 0o, 45o, 90o. 

 
Figure 12. Surface vorticity variation for square cylinder at1 Ò Re Ò 45,Ŭ = 0o, 45o, 90o, 0 Ò Ri Ò 1.50. 
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Magnitude of surface vorticity increases with increasing 

Reynolds number for the chosen range of orientations of the 

free-stream. Magnitude of surface vorticity also increases 

with increasing Ri, increase in Ri resulting in momentum 

gain of the shear layers which further increases the velocity 

of fluid particles and hence high surface vorticity. The 

vorticity is found to be maximum at the vertices adjacent to 

the front face(s) of the cylinder in comparison with other 

vortices.  The reason is the large fluid particle velocities 

around the front face(s) vertices. This happens for the entire 

range of Ŭ. 

4.3. Time Histories of Lift and Drag Coefficients 

Figure 13 and figure 14 shows the variation of 

coefficients of lift and drag (CL and CD) with respect to non-

dimensional time at 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, 0o Ò Ŭ Ò 90o 

, ◖ = 0o and Pr = 100. It is depicted in time histories of lift& 

drag coefficients in figure 13 and figure 14 that the flow is 

found to be steady over the chosen range of free-stream 

orientations, Reynolds and Richardson numbers, except at 

Re = 30, Ŭ = 45o and 20 Ò Re Ò 45, Ŭ = 90o.  At a Reynolds 

number Re = 30, 0 Ò Ri Ò 0.50 and Ŭ = 45o the onset of 

vortex-shedding is observed and the flow becomes unsteady 

and periodic flow.  Figure 13 shows that the high amplitudes 

of lift coefficient for Ŭ = 45o are observed due to the 

shedding of big size vortices on the downstream side of the 

cylinder wake. It can be seen from Fig. 13 that for Ŭ = 0o, 

the lift coefficient (negative) is found to be maximum at Re 

= 1 and decreases with increase in Reynolds number.  

Similar trends have been observed for the entire range of 

Richardson number.  At Ŭ = 45o and 90o, positive lift 

coefficient is found to occur at Re = 1 and changes to 

negative lift coefficient at higher magnitudes of Reynolds 

number. The lift coefficient (negative) is found to be 

maximum for Re = 30 at Ŭ = 45o and Re = 20 at Ŭ = 90o. The 

trend remains same for the entire range of Richardson 

number.  

Figure 14 indicates that the drag coefficient decreases 

substantially over the whole range of Richardson number 

with an increase in the magnitudes of Reynolds number. 

The pattern for the whole range of free-stream orientations 

is observed same. Magnitudes of drag coefficient increase 

substantially with an increase in magnitudes of Richardson 

number at Re = 1, and observed least for other selected 

Reynolds number. The effects of Ri is dominating at small 

magnitudes of Re and least at large magnitudes of Re as 

depicted in Fig. 14. 

4.4. Mean Lift Coefficient, Mean Drag Coefficient and 

Mean Coefficient of Moment 

Mean (time mean) lift coefficient (CL) variation with Ri 

is shown in Fig. 15 for 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, Ŭ = 0o, 

45o& 90o, Pr = 100 and ◖ = 0o.  It is shown in figure that the 

mean lift coefficient either negative or positive increases 

with increasing Richardson number.  Similar trends are 

observed for the entire free-stream orientations range.  With 

reference to Fig. 1 negative lift coefficient means CL is in 

downward direction and towards right.  It is depicted in Fig. 

15 that the magnitude of mean coefficient of lift is observed 

maximum at Re = 20, Ri = 1.5 and Ŭ = 90o.  For the chosen 

range of Re, mean lift coefficient variation is observed 

minimum (of the order of 10-3 i.e. nearly zero) with 

increasing Ri at Ŭ = 0o. For the entire Reynolds number 

range the mean lift coefficient variation with Richardson 

number is found to be large at Ŭ = 45° and 90o. At Ŭ = 0o 

and with an increase in Reynolds number for a fixed 

Richardson number, the mean lift coefficient is shifted 

towards zero. At Ŭ = 45o and 90o, the mean lifting 

coefficient for a given Richardson number is changed from 

+ ve to ïve with an increasing Reynolds number other than 

Ri = 0 and Ŭ = 90o.  The pressure gradient across the cylinder 

in transverse direction increases with increasing Re, 

resulting in high mean lift coefficient. Effect of Re on mean 

coefficient of lift is dominating as depicted in Fig. 15. 

Significant effects of Richardson number on mean lift 

coefficient is observed. 

Figure 16 depicts the mean drag coefficient (CD) 

variation with Ri at 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, Ŭ = 0o, 45o& 

90o, Pr = 100 and ◖ = 0o.  Figure 16 shows that the mean 

drag coefficient at a fixed magnitude of Richardson number 

decreases with an increase in the Reynolds number for the 

whole free-stream orientations range.  For the chosen range 

of Richardson number, the mean coefficient of drag is 

always observed to be highest at Re = 1. The trend for the 

chosen range of free-stream orientations is observed similar. 

The pressure gradient across the cylinder in stream wise 

direction is found more at lower magnitudes of Reynolds 

number leading to large mean drag coefficient.  Effects of 

Reynolds number are dominating and effects of Richardson 

number are slight on mean drag coefficient as depicted in 

Fig. 16. 

Mean moment coefficient variation with Ri is shown in 

Fig. 17 for 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, 0o Ò Ŭ Ò 90o, Pr = 100 

and ◖ = 0o.  It is seen from figure that mean moment 

coefficient (CM) variation with Ri and Reynolds number is 

slight (nearly zero, of the order of 10-3) forŬ = 0o.  For the 

chosen Re range, mean moment coefficient increases with 

increase in Ri at Ŭ = 45o and 90o. For the range of Ri chosen, 

the mean moment coefficient decreases with increase in Re 

except for Ri = 0, Ŭ = 45o and 90o as depicted in Fig. 17. At 

Ri = 0 the mean moment coefficient is found nearly zero for 

the entire range of Reynolds number.  Mean moment 

coefficient for selected range of Richardson number is 

always observed highest at Re = 1. Same trend is observed 

for the chosen range of orientations of the free-stream. 
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Figure 13. Variation of CL with tfor 1 Ò Re Ò 45, 0 Ò Ri Ò 1.50, Ŭ = 0o, 45o& 90o at Pr = 100, ◖ = 0o. 
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