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Abstract 

An online operator position prediction approach based on artificial neural network for teleoperation systems is proposed 

in this paper, which predicts future position of operator's hand based on current available data. The neural network gathers 

inputs for some time at the beginning of the operation, then is trained, and is finally exploited through the rest of the 

operation. Superiority of the proposed approach can be investigated from two aspects. Firstly, no limiting assumption is 

required in this approach in contrast with the proposed methods in the literature. Secondly, unknown operator intention can 

be dealt with in real time if it is not too sudden and unpredictable. Two different scenarios are considered in this paper: in 

scenario I a simple harmonic motion is both applied and predicted, whereas in scenario II not only the applied motion is more 

complicated, but also it is different from the motion which is supposed to be predicted. The results of the second scenario 

show that the designed architecture can be readily extended to a variety sort of situations in which little information exists 

regarding operator intention. Computer simulations and experiments using Phantom Omni haptic devices further validate the 

feasibility and performance of the proposed approach, i.e. master and slave robots can move simultaneously with no specific 

a priori knowledge about operator intention, despite large time delay in the system. 
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1. Introduction 

Novel approaches based on predictive control methods 

have been recently proposed in order to circumvent the 

time delay in the teleoperation system [1]. From a broader 

perspective, predictive control methods can be considered 

as a part of environment-, operator-, and task-adapted 

(EOT-adapted) controllers [2]. Here we stick to a simpler 

categorization, and we consider two main predictive 

approaches: predicting the environment model and 

predicting the operator motion. 

To date, most of the works are concerned with the first 

approach. This method, which is called model-mediated 

teleoperation [3], has been widely used in designing 

teleoperation systems in recent years. Sample works 

regarding this approach can be found in [4, 5]. On the 

other hand, predicting the operator motion (Figure 1) can 

also play an important role in improving the quality of 

teleoperation systems, as Jarrassé et al. [6] proved the 

influence of human motion prediction on increasing 

transparency of teleoperation systems. This is, however, a 

more complicated task since the human operator might 

show unpredictable motions [7]. The works which have 

been done regarding this issue can be categorized into two 

main approaches: offline and online. 

Offline motion prediction is fundamentally based on 

minimum principles [8], with the most widely used 

principle being the minimum jerk principle [9], which 

states that between two predefined points the human hand 

follows the trajectory whose jerk is the minimum amount. 

The basic concept of online motion prediction is, however, 

predicting the human behavior during the operation based 

on the online data generated by him/her. Linear prediction 

[10], polynomial or spline predictors [11], double 

exponential smoothing (DES) [12, 13], autoregressive 

(AR) method [14] and Markov-chain-based Kalman filter 

[15] are some samples of online methods. Recent methods 

based on state observer have also been proposed [16]. 

Unlike offline methods which are basically derived from 

physical principles, the common core of online methods is 

numerical data. This advantage makes online approaches 

more adaptive to various applications, but at the same time 

rather more intricate to design. 

Each of the above-mentioned methods for online 

prediction has also some disadvantages. For instance, DES 
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can be utilized when the data shows a trend, but not 

seasonality. Triple exponential smoothing (TES) shall be 

used in this case instead [17]. As another example, AR 

method models the future state as a linear combination of 

the current and previous states, which may fail to correctly 

predict the future states for more complex motions where 

this dependency is nonlinear. To mitigate these 

restrictions, a prediction method based on artificial neural 

network (NN) is proposed in this paper. 

Control of teleoperation systems based on NN has 

recently gained researchers’ attentions [18, 19]. Due to the 

universal approximation property of NNs, any kind of 

linear or nonlinear relationship between the inputs and 

outputs can be modeled with a proper NN [20]. It might be 

interesting to say that it has been contended that even a 

quadratic regression model is computationally less 

efficient in comparison with a NN [21]. Also, from 

prediction task perspective, NNs do not require any 

assumption regarding the trend or seasonality of the 

motion beforehand. These properties have made NN a 

suitable choice for predicting the future states of a system. 

Nicolau et al., for instance, exploited a NN for prediction 

of the roll motion of a ship [22]. However, to the best of 

authors' knowledge, no previous work has utilized NN for 

predicting operator motion in teleoperation systems.  

In this work, we make use of an artificial NN to predict 

the position of the operator's hand online. The NN is 

trained for a short time at the beginning of the operation, 

and then can predict the operator movements thereafter. 

Two main contributions can be mentioned for the proposed 

method: Firstly, using the proposed approach, the 

teleoperation system is able to predict not only the 

expected operator motions, but also the unexpected ones if 

they are not unpredictably sudden. This property enables 

human operator to carry out more than one single task at 

once, thus there is no need to reinitialize the operation if 

the task is decided to be altered slightly. Secondly, there is 

no restricting assumption in the proposed method from 

applicability point of view, i.e. no specific detailed 

information about the operator's intended motion is needed 

beforehand. This feature makes the applicability of the 

system much wider; from surgery and suturing in medical 

robotics, which is believed to have major research impact 

in the next decade [23], to ordinary pick and place tasks in 

industry. It should also be asserted that the defined motion 

is set just as a general case; the NN system can predict any 

other type of motion.        

2. System architecture 

In this work, both free motion (no environment) case 

and constant known time delay is assumed, shown in 

Figure 2. The structure of the NN is also illustrated in 

Figure 3, which is a feedforward network with three 

layers. The input layer is comprised of the current and 

previous positions of the master robot. If there are m 

neurons in the input layer and s is assumed to be the 

sample time, the input to the NN will be 𝐗(𝑡)

∶= [𝑥(𝑡) 𝑥(𝑡 − 𝑠) 𝑥(𝑡 − 2𝑠)   ⋯    𝑥(𝑡 − (𝑚 − 1)𝑠)]𝑇. 

The hyperbolic tangent function is considered as the 

activation function for the hidden layer.  

The output layer always includes one neuron which is 

the predicted future position of the master robot, namely 

𝑥̂(𝑡 + 𝜏), where τ denotes the time delay and the accent ^ 

refers to the predicted version of the respective parameter. 

The activation function for this neuron is the identity 

function, i.e. 𝑓(𝑥) = 𝑥. 

The NN training is carried out based on the 

backpropagation gradient descent method. According to 

this method, the weight update in each iteration or epoch 

follows the relation (2.1), 

(2.1) 𝛥𝑤𝑖𝑗
(𝑛)
= −𝜂

𝜕𝐸

𝜕𝑤𝑖𝑗
(𝑛)

 

where 𝑤𝑖𝑗
(𝑛)

 represents the connection weight between the 

ith neuron in the (n-1)th layer and the jth neuron in the nth 

layer, 𝑛 = 2, 3,… , 𝑁 with N denoting the total number of 

layers, and Δ shows the change in the respective weight. 

Also η is the learning rate, which is assumed to be 

constant, and E is the objective function to be minimized 

which is 𝐸 =
1

𝑃
∑ (𝑜𝑝 − 𝑑𝑝)

2𝑃
𝑝=1 , where o and d are the 

actual and desired outputs of the NN, respectively, and P 

represents the total number of presented training sets to the 

network. The update of the biases follows the same rule by 

simply replacing 𝑤𝑖𝑗
(𝑛)

 with 𝑏𝑗
(𝑛)

 in the relation (2.1). More 

detailed explanation about the concepts and formulation of 

the gradient descent method can be found in [24]. 

Generally, there are two approaches to training a NN: 

batch-mode and incremental-mode [24]. In this work, both 

methods will be used for training the NN.  

As mentioned before, the proposed teleoperation 

system in this paper is designed based on online prediction 

scheme. The system performs according to the following 

procedure: 

In the first phase, the operator moves the master robot 

reciprocally for some time. Knowing a rough estimation of 

the period of the motion beforehand, which is denoted by 

𝑇ℎ, we record the operator's motion for the first 𝑇1 

seconds, where 𝑇1 is slightly bigger than 𝑇ℎ. The slave 

robot receives delayed signals in this phase. 

In the second phase, the network is trained in 𝑇2 

seconds and the operator are asked to cease the operation. 

Due to small amount of  𝑇2, this interruption is expected 

not to negatively affect the whole operation. 

Finally, after 𝑇1 + 𝑇2 seconds, the NN is completely 

ready to be implemented in the system. Although the 

motion is expected not to be too far from the trained one in 

this phase, it is not indeed a restricting assumption, as we 

will show later in section 5 that the NN can predict even 

untrained motions and there is no need to keep the same 

motion during the whole operation. 

 
Figure 1. A teleoperation system with master state prediction. y and z are two arbitrary parameters 

𝑧(𝑡 − 𝜏𝑠) 𝑧(𝑡) 

𝑦̂(𝑡) 𝑦̂(𝑡 + 𝜏𝑚) 𝑦(𝑡) 

Master Side Slave Side 
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Figure 2. Architecture of a unilateral teleoperation system in which a neural network carries out the prediction task. 

 

Figure 3. Structure of the proposed neural network. 

 

 

3. Controller design for the slave side 

3.1. Inverse kinematics of Phantom Omni 

Phantom Omni haptic device provides three 

translational and three rotational degrees of freedom. The 

translational degrees of freedom are resulted from the three 

angles 𝑞𝑖  (𝑖 = 1, 2, 3) which are depicted in Figure 4. The 

inverse kinematics relations are expressed as follows [25] 

(3.1) 

𝑞1 = −atan2(𝑥𝑒 , 𝑧𝑒 + 𝐿4);    𝑞2 = 𝛾 + 𝛽;      

 𝑞3 = 𝑞2 + 𝛼 −
𝜋

2
 

where 𝛼 ∶= cos−1(
𝐿1
2+𝐿2

2− 𝑟2

2𝐿1𝐿2
), 𝛽 ∶= atan2(𝑦𝑒 − 𝐿3, 𝑅), 

𝛾 ∶= cos−1(
𝐿1
2+𝑟2−𝐿2

2

2𝐿1𝑟
), 𝑅 ∶= √𝑥𝑒

2 + (𝑧𝑒 + 𝐿4)
2 and 

𝑟 ∶= √𝑥𝑒
2 + (𝑧𝑒 + 𝐿4)

2 − (𝑦𝑒 − 𝐿3)
2. Also 𝐿1 = 𝐿2 =

133.35 𝑚𝑚, 𝐿3 = 23.35 𝑚𝑚, and 𝐿4 = 168.35 𝑚𝑚. For 

more detailed description and proof, please refer to the 

main reference [25]. 

3.2. Controller design 

PID controller is adopted for the slave side in this 

paper. If the actuators are in Cartesian space themselves, 

the error can be defined straightforwardly as 𝑒̃(𝑥)(𝑡)
∶= 𝑥𝑚(𝑡 − 𝜏) − 𝑥𝑠(𝑡) before and during the NN training, 

and 𝑒(𝑥)(𝑡) ∶= 𝑥̂𝑚(𝑡) − 𝑥𝑠(𝑡) after the NN training. 

However, if the actuators function in joint space, the error 

should be defined as  𝑒̃𝑖
(𝑞)(𝑡) ∶= 𝑞𝑖,𝑚(𝑡 − 𝜏) − 𝑞𝑖,𝑠(𝑡) 

before and during the NN training, and 𝑒𝑖
(𝑞)(𝑡)

∶= 𝑞̂𝑖,𝑚(𝑡) − 𝑞𝑖,𝑠(𝑡) after the NN training for each joint (i 

= 1, 2, 3). Hence, the control input for the slave robot is 

obtained as 

(3.2) 
𝑢𝑠(𝑡) = 𝑘𝑝

(𝑥)
𝑒(𝑥)(𝑡) + 𝑘𝑑

(𝑥)
𝑒̇(𝑥)(𝑡)

+ 𝑘𝐼
(𝑥)
∫𝑒(𝑥)(𝑡)𝑑𝑡 

in Cartesian space, and 

(3.3) 

𝑢𝑠,𝑖(𝑡) = 𝑘𝑝,𝑖
(𝑞)
𝑒𝑖
(𝑞)(𝑡) + 𝑘𝑑,𝑖

(𝑞)
𝑒̇𝑖
(𝑞)
(𝑡)

+ 𝑘𝐼,𝑖
(𝑞)
∫𝑒𝑖

(𝑞)(𝑡)𝑑𝑡 

in joint space, where us is the slave control input, kp, kd and 

kI are PID constant gains, superscripts (x) and (q) denote 

the Cartesian and joint space respectively, and subscript i 

= 1, 2, 3 represents the joints of Phantom Omni. Note that 

before and during the NN training, 𝑒(𝑡) is replaced by 𝑒̃(𝑡) 
in (3.2) and (3.3). 

We consider a one-degree-of-freedom motion in x-

direction of Cartesian coordinates in this paper. So, for 

obtaining 𝑞̂𝑖,𝑚(𝑡) from the inverse kinematic relations we 

set 𝑦̂𝑚(𝑡) = 𝑦𝑑𝑒𝑠 and 𝑧̂𝑚(𝑡) = 𝑧𝑑𝑒𝑠, where 𝑦𝑑𝑒𝑠 and 𝑧𝑑𝑒𝑠 
are constant desired positions in y- and z-directions for the 

end effector on which it is going to stay during the 

operation, while 𝑥̂𝑚(𝑡) is attained from the NN output 

(section 2). 

 
𝑢𝑠(𝑡) 𝑥̂(𝑡) 𝑥̂(𝑡 + 𝜏) 𝐗(𝑡) 
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(2)
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Figure 4. Phantom Omni reference XYZ coordinates, joints qi and 

their resulting translational DoFs. 

4. Stability analysis 

There are well-known approaches for analyzing 

stability of teleoperation systems, such as absolute stability 

which considers the system as an input/output network 

[26], passivity which deals with energy 

generation/dissipation of the system [27], and methods 

such as Lyapunov analysis [28]. We use the absolute 

stability method in this paper. For this aim, the two-port 

network (Figure 5) should first be modeled as 

(4.1) [
𝐹ℎ(𝑠)
−𝑉𝑠(𝑠)

] = [
ℎ11 ℎ12
ℎ21 ℎ22

] [
𝑉𝑚(𝑠)
𝐹𝑒(𝑠)

] 

where 𝑉𝑠(𝑠), 𝑉𝑚(𝑠),𝐹ℎ(𝑠) and 𝐹𝑒(𝑠) are the velocity of the 

slave and master robots, and the human and environment 

forces, respectively, in Laplace space. The matrix 

containing the h-parameters is the hybrid matrix which is 

defined by the following relations if we assume linear 

second order dynamics for the desired behavior of the 

master and slave robots: 

(4.2) 

{
 
 
 
 
 

 
 
 
 
 ℎ11 ∶=

𝐹ℎ(𝑠)

𝑉𝑚(𝑠)
|
𝐹𝑒=0

= 𝑚̅𝑚𝑠 + 𝑏̅𝑚 +
𝑘̅𝑚
𝑠

ℎ12 ∶=
𝐹ℎ(𝑠)

𝐹𝑒(𝑠)
|
𝑉𝑚=0

= 𝑘1𝑒
−𝜏𝑠𝑠

ℎ21 ∶=
−𝑉𝑠(𝑠)

𝑉𝑚(𝑠)
|
𝐹𝑒=0

= −𝑘2𝑒
−𝜏𝑚𝑠

ℎ22 ∶=
−𝑉𝑠(𝑠)

𝐹𝑒(𝑠)
|
𝑉𝑚=0

=
𝑠

𝑚̅𝑠𝑠
2 + 𝑏̅𝑠𝑠 + 𝑘̅𝑠

 

where 𝑚̅, 𝑏̅, 𝑘̅ and τ represent desired mass, desired 

damping coefficient, desired stiffness and time delay, 

respectively, and the subscripts m and s denote the master 

and slave robots, respectively. 𝑘1 > 0 and 𝑘2 > 0 are also 

scaling factors for force and position, respectively. 

Then, according to Llewellyn's stability criteria, the 

system is absolutely stable if the following conditions are 

met: 

 No poles of ℎ11 and ℎ22 lie on the right half plane 

 If any of poles of ℎ11 and ℎ22 lie on the imaginary axis, 

they are simple with real and positive residues 

 For all real values of ω: 

(a): Re(ℎ11) ≥ 0 

(b): Re(ℎ22) ≥ 0  

(c): 2Re(ℎ11)Re(ℎ22) − Re(ℎ12ℎ21) − |ℎ12ℎ21| ≥ 0 

The above conditions, provided that the operator and 

environment are passive (which is almost always the case 

[29]), result in a stable teleoperation system. The first and 

second conditions in addition to (a) and (b) of the third 

condition are fulfilled by choosing positive desired 

impedance parameters [30]. However, satisfying relation 

(c) of the third condition restricts the choices for the 

impedance parameters based on the time delay of the 

system.   

Now we want to investigate the stability of the system 

if we add prediction blocks on master and slave sides. We 

have ideally 𝐹̂𝑒(𝑠) = 𝐹𝑒(𝑠)𝑒
𝜏𝑠𝑠 and 𝑉̂𝑚(𝑠) = 𝑉𝑚(𝑠)𝑒

𝜏𝑚𝑠 

for the components which relate the transmitting signals 

together. By some mathematical manipulation, it is 

straightforward that ℎ̂11 = ℎ11 and ℎ̂22 = ℎ22. Also the 

other two components can be obtained as ℎ̂12

∶=
𝐹ℎ(𝑠)

𝐹̂𝑒(𝑠)
|
𝑉𝑚=0

= 𝑘1 and ℎ̂21 ∶=
−𝑉𝑠(𝑠)

𝑉̂𝑚(𝑠)
|
𝐹𝑒=0

= −𝑘2. The first 

and second conditions and (a) and (b) of the third one have 

obviously not been changed in comparison with (4.2), 

since the predictors do not affect the operator-master robot 

and the environment-slave robot interactions, and thus 

Re(ℎ11)Re(ℎ22) ≥ 0. Therefore, only (c) of the third 

condition should be investigated in order to prove the 

stability of the system. That condition is also met, because 

we have 

(4.3) 

2Re(ℎ̂11)Re(ℎ̂22) − Re(ℎ̂12ℎ̂21) − |ℎ̂12ℎ̂21|

= 2Re(ℎ11)Re(ℎ22) + 2𝑘1𝑘2
≥ 0 

where 𝑘1𝑘2 is positive due to the definition presented 

previously. 

Finally, provided that the outputs of the prediction 

block accurately converge to the actual values of their 

respective input parameters and the designed controller in 

section 3 is stable, we can conclude from the above-

mentioned explanations that the whole proposed 

teleoperation system in this paper is stable, since it is 

clearly a special case of the system investigated above. 

 
Figure 5. A two-port teleoperation system with classical architecture   
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5. Results 

In the following subsections, the simulation and 

experimental results are presented. The parameters 

regarding the whole system and the NN are listed in Table 

1. To find the proper sample time for training the NN, we 

ran the simulation test with different sample times, and we 

arrived at a conclusion that the best one is 0.01 s, as 

mentioned in Table 1. To provide an example, we 

compared the sample times of 0.01 s and 0.001 s. It was 

found that with fixed structures, the NN training time in 

the latter case was approximately more than ten times the 

former case, and furthermore, the generality of the latter 

case results was highly poorer than the former case.  

Two scenarios are designed in this section to validate 

the effectiveness of the proposed approach, the 

descriptions of which are given below: 

Scenario I: In this scenario, a simple input force with 

an amplitude and frequency is applied by the operator and 

the same motion continues after the training. This scenario 

is to investigate whether or not the online trained NN is 

able to reproduce the results presented to it as input. 

Scenario II: In this scenario, a more complex input 

force with amplitude and frequency is applied by the 

operator and the same motion continues after the training, 

but after some time, the amplitude and frequency are 

altered. This is done in order to investigate the prediction 

capability of the trained NN in the proposed teleoperation 

architecture when encountering untrained motions. 

Note that in Figures 6 to 9 in this section, the end of 

𝑇1is marked by the first vertical dash-dot line, and the end 

of 𝑇2 is marked by the second dash-dot line. It should also 

be stated that all inputs to the NNs are normalized in the 

interval [−1,+1]. 

5.1. Simulation results 

For simulation, a one-degree-of-freedom teleoperation 

system in x-direction of Cartesian XYZ system was 

simulated by means of Simmechanics library (second 

generation) of MATLAB's Simulink. The dynamics of the 

master and slave robots were considered as linear second 

order ones with 𝑀𝑚 = 𝑀𝑠 = 0.223 𝑘𝑔, 𝐵𝑚 = 𝐵𝑠 =
17.227 𝑁. 𝑠/𝑚 and 𝐾𝑚 = 𝐾𝑠 = 6.286 𝑁/𝑚, where M, B 

and K denote mass, damping coefficient and stiffness, 

respectively. This dynamics can represent a Phantom 

Omni robot [31]. NN training is performed using batch-

mode method. A constant time delay τ is also simulated for 

the system. The slave control input in this case is achieved 

from (3.2). The system and NN parameters for the two 

scenarios are summarized in Table 2. 

Scenario I: The simulated human force which is 

applied to the master robot is illustrated in Figure 6(a). The 

results for this scenario are depicted in Figures 6(b) to 

6(d). 

As can be seen from Figure 6(b), the slave robot is able 

to predict the master robot motion and move ahead of it, 

which results in simultaneous motion of the master and 

slave robots, as can be seen in Figure 6(c). This leads to a 

highly transparent, yet stable, teleoperation system in 

which the time delay is not felt by the operator. A 

comparison between the pre-training and post-training 

portions of the operation in Figure 6(c) will further prove 

this fact. It is noticeable that a code written in MATLAB 

environment indeed needs more amount of time to train a 

NN in comparison with codes written in C or C++, as will 

be shown later in section 5-2. Therefore, the amount of 

time 𝑇2 required for NN training is much larger in 

simulation study than in experimental test in this paper. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Simulation of Scenario I. (a) Human force. (b) Master 

position and predicted master position. Note that prediction occurs 

after T2 (second dash-dot line). (c) Master and slave positions. (d) 
Position error. Note that during the whole operation, including 

T1+T2, the definition for e^(x) is depicted. 
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Table 1. System and NN parameters which are in common among 

all simulation and experimental tests. 

Parameter Description Value Unit 

m Number of input layer neurons 10 - 

s System sample time 0.01 sec 

τ System time delay 0.5 sec 

T1 Time for gathering NN inputs 10 sec 

- 
Number of hidden layer neurons for 

Scenario I 
10 - 

- 
Number of hidden layer neurons for 

Scenario II 
18 - 

- 
Minimum value of objective function 

to stop NN training 
0.001 - 

Table 2. System and NN parameters for both scenarios in 

simulation study. 

Parameter Description Value Unit 

η NN learning rate 0.04 - 

T2 NN training time 8 sec 

- 
Maximum epochs to stop NN 

training 
4000 - 

kp
(x)

 Proportional PID gain 250 N/m 

kd
(x)

 Derivative PID gain 0 N.s/m 

kI
(x)

 Integral PID gain 155 N/(m.s) 

Scenario II: The simulated human force which is 

applied to the master robot in this scenario is illustrated in 

Figure 7(a). The results for this scenario are shown in 

Figures 7(b) to 7(d). 

It can be inferred from Figures 7(b) to 7(d) that not 

only the results of Scenario I are valid for more complex 

motions, but also using a NN in the system enables it to 

predict new motions if the amplitude and frequency are not 

too far from those of the trained motion. In other words, 

the NN can correctly predict newly intended motions of 

the operator which had been unknown to the system before 

their first appearance, particularly in the first phase. As can 

be seen in Figure 7(b), The NN has performed a good 

prediction of the master robot position during the whole 

operation. Therefore, in spite of large amount of time 

delay in the system, Figures 7(c) and 7(d) show that the 

slave robot has successfully tracked the master robot 

position in advance and the system is stable and highly 

transparent. 

5.2. Experimental results 

In this section, the end effector of Phantom Omni 

moves only in x-direction with respect to the reference 

Cartesian coordinates (Figure 4). Hence, three controllers 

should be designed for the joints 𝑞1, 𝑞2 and 𝑞3. 

The online NN training is carried out by incremental-

mode method through Fast Artificial Neural Network 

(FANN) library for C++. A constant time delay τ is 

considered for the system. The system and NN parameters 

for these scenarios are summarized in Table 3. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Simulation of Scenario II. (a) Human force. (b) Master 

position and predicted master position. Note that prediction occurs 

after T2 (second dash-dot line). (c) Master and slave positions. (d) 
Position error. Note that during the whole operation, including 

T1+T2, the definition for e^(x) is depicted. 
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Table 3. System and NN parameters for both scenarios in 

experimental test. 

Parameter Description Value Unit 

η NN learning rate 0.7 - 

T2 NN training time 4 sec 

- 
Maximum epochs to stop 
NN training 

2000 - 

kp,1
(q)

 
Proportional PID gain for 

q1 
4 N.m/rad 

kd,1
(q)

 
Derivative PID gain for 
q1 

0.15 N.m.s/rad 

kI,1
(q)

 Integral PID gain for q1 0.4 N.m/(rad.s) 

kp,2
(q)

 
Proportional PID gain for 

q2 
2.2 N.m/rad 

kd,2
(q)

 
Derivative PID gain for 

q2 
0.01 N.m.s/rad 

kI,2
(q)

 Integral PID gain for q2 0.06 N.m/(rad.s) 

kp,3
(q)

 
Proportional PID gain for 

q3 
2.2 N.m/rad 

kd,3
(q)

 
Derivative PID gain for 

q3 
0.01 N.m.s/rad 

kI,3
(q)

 Integral PID gain for q3 0.06 N.m/(rad.s) 

 

Scenario I: The results for this scenario are illustrated 

in Figures 8(a) to 8(c). 

Consistent with the simulation results, Figure 8(a) 

shows that the motion of the master robot is well predicted 

by the NN and the slave robot has tracked the master 

position ahead, which is further demonstrated by Figure 

8(b) in which the master and slave robots are shown to be 

moving simultaneously. High transparency of the system 

can also be deduced by comparing pre- and post-training 

intervals in Figures 8(b) and 8(c). Also, to quantitatively 

prove the stated facts, the root-mean-square error (RMSE) 

and the normalized root-mean-square error (NRMSE) 

during the prediction period for this scenario are obtained 

to be 7.42 mm and 5.57%, respectively. The NRMSE is 

defined by (5.1), where 𝑚𝑎𝑥{𝑥𝑚} and 𝑚𝑖𝑛{𝑥𝑚} denote the 

maximum and minimum position of the master robot, 

respectively, during the prediction period. 

(5.1) NRMSE ∶= 
RMSE

𝑚𝑎𝑥{𝑥𝑚} − 𝑚𝑖𝑛{𝑥𝑚}
 

Meanwhile, as mentioned earlier in section 5-1, the 

time 𝑇2 in experimental test is seen to be smaller because 

NN is trained much faster by FANN than in MATLAB 

environment. 

Scenario II: The results for this scenario are depicted 

in Figures 9(a) to 9(c). 

Again, the results in Figures 9(a) to 9(c) show high 

transparency of the system. Consistent with the results 

obtained through simulation, Figure 9(a) indicates that the 

system is capable of predicting both trained and untrained 

motions of the master robot, despite having a large amount 

of time delay in the system. Furthermore, online tracking 

capability of the slave robot can be seen in Figures 9(b) 

and 9(c), especially by comparing pre- and post-training 

time intervals. To further prove these facts quantitatively, 

the RMSE and the NRMSE (as defined by (5.1)) during 

the prediction period for this scenario are obtained to be 

11.71 mm and 7.04%, respectively. 

Of course, looking more closely at Figure 9(b), the 

slave robot is observed not to precisely track the master 

robot position at some points, around t = 28 s for instance. 

This is because the NN is trained by a small amount of 

data in comparison with the applied motions after the 

training. In other words, unlike Scenario I, the slave robot 

does not have much information about what motion the 

human operator is going to apply next. Consequently, it 

may fail to accurately predict the operator motion at 

sometimes. 

However, figure 9 (b) shows that the variable 

amplitude and frequency of the applied motion is well 

predicted despite almost merely one period of input 

training data to the NN. If more accurate 

prediction is desired, obviously more input data should 

be presented to the NN which, in turn, takes more time and 

may seem a negative point to the operator.  

Simulation and experimental results presented in this 

section also show that both batch-mode and incremental-

mode trainings have yielded reliable results.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Experiment of Scenario I. (a) Master position and 

predicted master position. Note that prediction occurs after T2 
(second dash-dot line). (b) Master and slave positions. (c) Position 

error. Note that during the whole operation, including T1+T2, the 

definition for e^(x) is depicted. 
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(a) 

 
(b) 

 
(c) 

Figure 9. Experiment of Scenario II. (a) Master position and 

predicted master position. Note that prediction occurs after T2 

(second dash-dot line). (b) Master and slave positions. (c) Position 
error. Note that during the whole operation, including T1+T2, the 

definition for e^(x) is depicted. 

 

6. Conclusion and future works 

In this paper, a neural network was incorporated on 

master side in a unilateral teleoperation system in order to 

predict the future position of the operator's hand online. 

The discussion on the superiority of the presented method 

in comparison with previously proposed methods in the 

literature was provided, too. 

The simulation and experimental results indicated that 

the teleoperation system performs with high transparency, 

which means the slave robot can well track the master 

robot motions without delay. Meanwhile, the NN predictor 

can predict not only the trained motion, but also untrained 

motions. 

Possible future directions include considering 

stochastic time delay in communication channel, taking 

environment force into account and reducing the time of 

motion halt during training phase. 
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