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Abstract 

Spur gear systems are widely used in power transmission systems in the industry. One of the common defects of the gears 

is tooth crack. Tooth crack increases the vibration and also generates noise. Previous studies have shown that tooth stiffness 

will decrease due to any crack and it is important to estimate the magnitude of reduction of tooth stiffness. This research 

suggests a new analytical approach for crack modeling and determining the reduction of time-varying gear mesh stiffness by 

Elastic Spring Method (ESM). Based on this approach, two or more cracks can be considered in one tooth. However, 

previous studies have primarily concentrated on one crack. In addition, it should be voted that each crack is replaced by one 

linear and one torsional spring in the present study. The results that were obtained from this method are validated through a 

comparison with Limit Line Method (LLM) and Finite Element Method (FEM). 
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1. Introduction 

Like other components in the industry, gears which are 

made of teeth are subject to certain damages. Tooth crack 

is an unwanted phenomenon, and can cause serious and 

costly damages. Time-varying mesh stiffness is the main 

reason of vibration in gears [1]. There exist some studies 

on assessing mesh stiffness. The FEM [2, 3] and 

Analytical Method (AM) have been and are being applied 

for computing mesh stiffness. Wang and Howard [4] 

applied FEM to compute the torsional stiffness of a spur 

gear pair.  Weber [5] and Cornell [6] applied AM to 

calculate the gear mesh stiffness, while Kasuba and Evans 

[7] computed the same through a digitization approach. 

Yang and Lin [8] calculated the mesh stiffness of spur 

gears through the potential energy method by considering 

bending, axial compressive and Hertzian energy.  

The existence of the cracks in the gear teeth is 

considered as stiffness reduction. The most common 

method applied in reducing modulus of elasticity at crack 

location [9]. The effect of the crack propagation size on 

the mesh stiffness is studied by Tian [10]. Wu et al. [11] 

assessed this effect on the dynamic response of a gearbox. 

Pandya and Parey [12, 13] assessed the effect of the crack 

path on mesh stiffness subject to different gear parameters, 

such as pressure angle, fillet radius, contact ratio, and 

backup ratio.  

An analytical approach is presented by Chaari [14] to 

evaluate reduction in total gear mesh stiffness due to crack 

propagation, and a FEM model is used to verify the results 

obtained in an analytic manner. A modified mathematical 

model is proposed by Zhou [15] on crack growth in the 

tooth root. Two additional scenarios of (a constant crack 

depth with a varying crack length and a constant crack 

length with a varying crack depth) for cracks are presented 

by Chen & Shao [16]. An analytical approach to calculate 

the mesh stiffness and model the crack propagation with a 

non-uniform parabolic path depth is proposed by 

Mohammad [17]. 

Liming and Yimin [18] studied the effect of tooth root 

crack on the mesh stiffness and dynamic response of spur 

gear pair considering a half-sinusoidal function for crack 

propagation path based on the real crack profile. Zaigang 

et al. [19] assessed the effect of crack on the fillet-

foundation stiffness of gear and by comparison with FEM 

result proved that the load carrying zone depends on the 

tooth root crack depth in calculating the fillet-foundation 

stiffness. Wu et al. [20] studied the effect of tooth root 

crack on the mesh stiffness and dynamic response of spur 

gear system by LLM and FEM and compared their results 

with the experimental signals. 

In the most available studies, the LLM is applied to 

reduce tooth thickness and calculating the total mesh 

stiffness, where considering two or more cracks in one 

tooth is impossible. In the method presented here, by 

defining torsional and linear springs instead of the cracks, 

two or more cracks with constant or variable crack depths 

through the whole tooth width or any length at any 

location of the tooth can be modeled. 

2. Mathematical Model 

This section contains two subsections, the first is the 

mesh stiffness analytical calculation and the latter is a new 

approach for the crack modeling in the mesh stiffness. 
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2.1. Analytical Calculation of Mesh stiffness 

The mesh stiffness analytical calculation is the most 

known and repeatedly explained method, but it is 

necessary to mention it here before proposing the new 

crack modeling approach. Mesh stiffness is a parameter 

subject to gear parameters such as module, number of 

teeth, pressure angle, face width, hub bore radius and 

material properties. The stiffness of a pair of teeth (single 

mesh) is obtained by calculating bending (𝑘𝑏), shear (𝑘𝑠), 

axial (𝑘𝑎), fillet-foundation stiffness (𝑘𝑓) of each tooth 

and contact stiffness (𝑘ℎ) of the teeth as Eqs. (1) to (5) 

[21]: 
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where, ℎ, 𝛼𝑚, 𝑥, 𝑑𝑥 and 𝑑 are defined in Fig. 1;  𝐸, 𝐺, 

and υ are the Young's modulus, shear modulus and 

Poisson's ratio of gear material respectively. L is the gear 

face width; 𝐴𝑥 is the tooth section area at point 𝑥 measured 

from 𝐴𝑥 = (2ℎ𝑥)𝐿; and 𝐼𝑥 is the moment inertia of tooth 

section area at point 𝑥 measured through 𝐼𝑥 =
1

12
(2ℎ𝑥)3𝐿 =

2

3
ℎ𝑥

3𝐿 ; the definition of 𝑢𝑓 and 𝑆𝑓 , 𝐿∗,𝑀∗, 

𝑃∗ and 𝑄∗ are presented in [22]. 

After calculating the stiffness for pinion and gear, total 

single stiffness (𝐾𝑒) is calculated as Eq.(6) [21]: 

where the first four terms relate to pinion and the last 

four terms related to gear. 

 
Figure 1. Tooth parameters 

2.2. Analytical Crack Model 

The issue of crack in the tooth root is the focus of many 

studies. The crack originates from freedom circle and 

extends to the center of the tooth on the root and then 

extends to other side of the tooth in a symmetric manner. 

In general, the types of cracks in the root are of two 

categories (Fig. 2): 

1. Overall crack with constant depth 

2. Non-overall crack with varying depth 

 
Figure 2. Cracked tooth (a) Overall crack with constant depth (b) 
Non-overall crack with varying depth 

For modeling and calculating stiffness reduction of the 

cracked tooth, equivalent springs are applied. In this 

application the subject tooth is divided into two parts at the 

crack location, and the crack is replaced by linear and 

torsional springs, Fig. 3, subjected to a specified force and 

torque respectively. The stiffness of the springs are related 

to the depth of the crack and the thickness of the tooth in 

the crack region. In this model, the linear spring undergoes 

the shear force and torsional spring becomes subject to 

flexural torque. To assemble the linear and torsional 

springs, it is necessary to convert the angular deflection of 

the torsional spring to linear deflection by multiply it in the 

corresponding arm. After calculating the deflection due to 

rotation of torsional spring (𝛿𝑡) and the deflection of linear 

spring (𝛿𝑙) by Eqs. (7) and (8), their stiffness can be 

calculated as Eq. (9): 
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where, ℎ, 𝑢 and 𝐹 are defined in Fig. 3; 𝑘𝑙 and 𝑘𝑡 are 

the linear and torsional spring stiffness respectively, ℎ𝑐 is 

the width of the tooth; 𝐴𝑐 and 𝐼𝑐 are area and area moment 

of inertia in the crack section respectively. 

 𝑞𝑡(𝜆) and 𝑞𝑙(𝜆) are the functions related to the crack 

depth ratio that for the tooth with a rectangular section are 

expressed by Eq.(10) and (11) [23]: 
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where, 𝜆 is the crack depth ratio and calculated by 

Eq.(12): 
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  (12) 

After calculating 𝑘𝑙 and 𝑘𝑡 the total mesh stiffness is 

expressed by Eq(13): 
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where, 𝑘𝑡𝑝 and 𝑘𝑙𝑝 are the stiffness of the equivalent 

springs on the pinion. 

 
Figure 3. Cracked tooth model with torsional and linear spring 

2.2.1. Tooth with two cracks 

A tooth with two cracks is modeled in Fig. 4 where the 

mentioned springs are applied. The first crack is in tooth 

root, and the other is in pitch circle. At pitch location, 

when load position is below the crack location, no stiffness 

reduction takes place, while, when load position is above 

the crack location, the tooth is divided into three slices and 

the same calculation for stiffness reduction is made. After 

calculating 𝐾𝑡 and 𝐾𝑙  for the first and second cracks using 

Eqs. (14) and (15), the total mesh stiffness is calculated 

through Eq. (16): 
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Figure 2. Modeling of the tooth with two cracks 

2.2.2. Tooth with varying crack depths 

A tooth with one crack that its depth (𝑞(𝑧)) follows a 

parabolic function along the tooth width shown in Fig. 5. 

When the crack length is less than the whole tooth width 

the following holds true (Eq.(17)) [21]: 

{
𝑞(𝑧) = 𝑞0√

𝑤𝑐 − 𝑧

𝑤𝑐

                     0 < 𝑧 < 𝑤𝑐

𝑞(𝑧) = 0                                           𝑧 ≥ 𝑤𝑐

 (17) 

where, 𝑤 is the tooth width, 𝑤𝑐  is the crack length, and 

𝑞0 is the maximum crack depth (Fig. 5). When the crack 

length extends through the tooth width the following holds 

true (Eq. (18)): 

𝑞(𝑧) = √
𝑞0

2 − 𝑞2
2

𝐿
𝑧 + 𝑞2

2 (18) 

To obtain the stiffness reduction for tooth with varying 

crack depths, the tooth face is divided into many slices and 

the previous equation are applied to calculate the crack 

depth in each slice. Then, the equivalent springs are 

modeled in each slice and whole stiffness of springs in all 

slices is obtained by adding all of them. 

 

(a) 

 

(b) 

Figure 5. Modeling of gear tooth crack with non-uniform 
distribution. (a) Modeling of the cracked tooth, (b) crack depth 

distribution along the tooth width [21] 

3. Result and discussion 

To verify this proposed approach, a single stage 

gearbox is considered like that of [21]. The gear 

parameters are presented in Table 1, through which three 

examples are solved. 
Table 1. Gear parameters [21] 

gear pinion Parameters 

25 30 Number of teeth 

2 2 Module (mm) 

20 20 Tooth width (mm) 

1.63 1.63 Contact ratio 

20 20 Pressure angle (deg.) 

200 200 Young′s modulus (GPa) 

0.3 0.3 Poisson′s ratio 

The mesh stiffness results for different crack sizes that 

are mentioned in Table 2, drawn by Mohammed [21] are 

shown in Fig. 6-a, and the present results are shown in Fig. 

6-b. It is obvious that the change patterns in both diagrams 

are similar and the values are the same approximately. The 

maximum difference is in 1.8 mm crack size with about 3 

% difference. 
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(a) 

 
(b) 

Figure 3. Time-varying gear-mesh stiffness for crack with 

constant depth (a) obtained by Mohammed [21] and (b) obtained 

in this study 

Table 2. Data for crack with constant depth [21] 

Case 𝑞0 (𝑚𝑚) CL % 

𝛼𝑐 = 70° 

1 0 0 

2 0.3 8.06 

3 0.6 16.12 

4 0.9 24.19 

5 1.2 32.25 

6 1.5 40.32 

7 1.8 48.38 

In the second example, the results of the crack with 

non-uniform depth are compared with the results of 

Mohammed [24]. The result presented in Fig. 7 indicates a 

good agreement and validates the approach developed in 

this study. Crack properties of the driven gear are tabulated 

in Table 3. 

Table 3. Data for crack with non-uniform depth [24] 

Case 𝑞0 (𝑚𝑚) 𝑤𝑐 (𝑚𝑚) 𝑞2 (𝑚𝑚) 

𝛼𝑐 = 70° 

1 0 0 0 

2 0.2 5 0 

3 0.4 10 0 

4 0.6 15 0 

5 0.8 20 0 

6 1.0 20 0.45 

7 1.2 20 0.7 

8 1.4 20 0.925 

9 1.6 20 1.14 

 

 
(a) 

 
(b) 

Figure 7. Time-varying mesh stiffness for non-uniform depth 

cracks (a) LLM used by Mohammed [24] and (b) ESM 

In the third example, a tooth with two cracks as shown 

in Fig. 4 is of concern. The first crack is at tooth root and 

the second is at the pitch circle. Crack properties are 

tabulated in Table 4. The limit line method is unable to 

model two cracks in one tooth. So, the result of the 

proposed method is compared with the FEM. This 

example is modeled and simulated in Abaqus software by 

dynamic implicit solution method in plain stress condition 

and the cracks are modeled by the contour integral method. 

The element shapes and the meshing method that is used in 

the gears whole body is mesh quad free, except the cracks 

tip regions in the pinion tooth that mesh quad-dominated 

sweep is used. The numbers of elements in pinion and gear 

are 3211 and 5974 respectively. The element type was 

standard - Linear and contact defined as surface to surface 

with frictionless tangential behavior. The stress contour of 

modeled gears with only one tooth in contact is shown in 

Fig.8. 

 
Figure 8. FEM Model 
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When the contact point is below the second crack zone, 

no reduction takes place. When the crack length in tooth 

root increases, the influence of the second crack will be 

decreased, a careful observation of Fig. 9 will prove this 

claim. 

Table 4. data for two cracks 

Case 
Root Crack 

𝑞1 (𝑚𝑚) 

Pitch Crack 

𝑞2 (𝑚𝑚) 

𝛼𝑐 = 70° 
1 0 0 

2 0 1 

3 1.8 0 

4 1.8 1 

 

(a) 

 

(b) 

Figure 9. Single mesh stiffness for a tooth with two cracks (a) 
AM result (b) FEM result 

4. Conclusions 

The results of this investigation show that the modeling 

two cracks in one tooth are obtainable by this newly 

proposed approach (ESM). In contrast, it was impossible 

according to previous studies. When the cracked tooth is in 

mesh, the influence of the crack decreases the gear mesh 

stiffness. Furthermore, the effect of a tooth crack on its 

stiffness is modeled by adding torsional and linear springs 

at the crack location.  The recent approach results of single 

mesh stiffness in the case of two cracks in one tooth at the 

root and the pitch circles are compared with the FEM and 

showed the good agreement.The evidence from this study 

suggests that the obtained time-varying gear mesh stiffness 

can be applied in checking the dynamic behavior of the 

gear in the presence of the crack. 
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