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Abstract 

The magneto hydrodynamics (MHD) boundary layer flow and heat transfer of a nanofluid   with boundary slip condition for 

velocity second order, thermal slip, solutal slip, and suction, thermal radiation have been investigated numerically over a 

nonlinear stretching sheet with viscous dissipation. The profiles for the velocity, temperature and nanoparticle concentration 

depends on parameters viz. thermal radiation parameter R, suction parameter s, velocity first and second order slip 

parameters A and B, respectively, thermal slip parameter C, concentration slip parameter D, power-law parameter N, Prandtl 

number Pr, Lewis number Le, Brownian motion parameter Nb,  thermophoresis  parameter Nt, Eckert number Ec, and 

magnetic parameter M. Similarity transformation is used to convert the governing non-linear boundary-layer equations into 

coupled higher order non-linear ordinary differential  equations. These equations are numerically solved by using an implicit 

finite difference method known as Keller-Box method. An analysis has been carried out to reveal the effects of governing 

parameters corresponding to various physical conditions. Numerical results and Graphical representation are obtained for 

distributions of velocity, temperature and concentration, as well as, for the skin friction, local Nusselt number and local 

Sherwood number for several values of governing parameters. The result reveals that velocity decreases with increase of first 

and second order velocity slip, suction and increases with increase of power-law parameter. Temperature decreases with the 

increase of thermal slip, suction, concentration slip but increases with thermal radiation, second order velocity slip. 

Nanoprticle concentration decreases with increase of concentration slip, suction, thermal radiation, thermal slip but increase 

with increase of second order velocity slip.  A comparison with previous results available in the literature has been done and 

we found a good conformity with it. The numerical values of skin friction, Nusselt number and Sherwood number are 

presented in tables. 
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1. Introduction 

Boundary layer flow over a stretching surface with 

velocity slip, temperature-jump and solutal slip boundary 

conditions is an important type of flow and heat transfer 

occurring in several engineering applications. In these 

types of transport phenomena, the equations corresponding 

to continuum equations of momentum and energy are still 

governed by the Navier-Stokes equations, but the effects 

of the walls are taken into account by using appropriate 

boundary conditions. No-slip condition is inadequate for 

most non-Newtonian liquids, as some polymer melt often 

shows microscopic wall slip and that has a controlling 

influence by a nonlinear and monotone relation between 

the slip velocity and the traction. It is known that, a 

viscous fluid normally sticks to boundary and there is no 

slip of the fluid relative to the boundary. However, in some 

situations there may be a partial slip between the fluid and 

the boundary. For such fluid, the motion is still governed 

by the Navier Stokes equations, but the usual no-slip 

condition at the boundary is replaced by the slip condition. 

Partial velocity slip may occur on the stretching boundary 

when the fluid is particulate, such as emulsions, 

suspensions, foams and polymer solutions. In various 

industrial processes, slip effects can arise at the boundary 

of the pipes, walls, curved surfaces etc. A boundary layer 

slip flow problem arises in polishing of artificial heart 

valves and internal cavities. Recently many authors 

obtained analytical and numerical solutions for boundary 

layer flow and heat transfer due to a stretching sheet with 

slip boundary conditions. 

Some of the authors have considered second order slip 

boundary conditions to study the flow, heat and mass 

transfer by employing boundary layer approximations and 

seeking similarity solutions [1-5]. Khader [6] obtained 
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numerical solution by Laguerre collocation method to 

study the effect of viscous dissipation on the steady flow 

with heat transfer of Newtonian fluid towards a permeable 

stretching surface embedded in a porous medium with 

second order slip effect. Abdul Hakeem et al. [7] 

performed both numerical and analytical solution to study 

the effect of magnetic field on a steady two dimensional 

laminar radiative flow of an incompressible viscous water 

based nanofluid over a stretching/shrinking sheet with 

second order slip boundary condition. Very recently, 

Mabood and Mastroberardinob [8] considered the second 

order slip boundary conditions to investigate the effects of 

viscous dissipation and melting on MHD boundary layer 

flow of an incompressible, electrically conducting water-

based nanofluid over a stretching sheet. Hayat et al. [9] 

studied a steady three-dimensional boundary layer flow of 

water based nanofluid with copper as nanoparticle over a 

permeable stretching surface with second order velocity 

slip and homogeneous–heterogeneous reactions. Zhu et al. 

[10] investigated the effects of the second-order velocity 

slip and temperature jump boundary conditions on the 

magnetohydrodynamic (MHD) flow and heat transfer of 

water-based nanofluids containing  and  in the 

presence of thermal radiation. Megahed [11] obtained 

numerical solution to study the boundary layer flow and 

heat transfer for an electrically conducting Casson fluid 

over a permeable stretching surface with second-order slip 

velocity model and thermal slip conditions in the presence 

of internal heat generation/absorption and thermal 

radiation.  

Heat transfer, influenced by  thermal radiation  has  

applications in many technological   processes, including 

nuclear power plants, gas turbines and various propulsion 

devices for aircraft, missiles, satellites and space vehicles. 

Various engineering processes, involve high temperature 

and essential to the study of radiation heat transfer in 

designing and manufacturing of equipments. Suspension 

of nano-solid particles in classical fluids has a known 

method for the improvement of thermal conductivity of 

heat transfer fluids. ‘Nanofluid’, introduced by Choi et al. 

[12], gives the fluid contains of nano-sized particles 

(diameter of 1 to 100 nm) that are suspended in a base 

fluid, like water, ethylene glycol, propylene glycol, etc. 

Addition of high thermally conductive metallic 

nanoparticles, like silver, copper, aluminium, silicon, 

improves thermal conductivity of such mixtures, thereby 

enhancing the overall energy transport capability. It has 

been found that nanofluids have a potential to increase the 

thermal conductivity as well as convective heat transfer 

performance of the base fluid. One of the possible 

mechanisms for anomalous increase in the thermal 

conductivity of nanofluids is the Brownian motion of the 

nanoparticles within the base fluids. This attractive 

characteristic of nanofluids creates an impressive for wide 

application [13], [14]. Nanofluids became the next-

generation heat transfer fluids and their superior heat 

transfer features are better than that of any other ordinary 

fluids.  Khan and Pop [15] studied the phenomenon of 

nanofluid over a stretching sheet for laminar boundary 

layer flow. The nanofluid flow over an exponentially 

stretching sheet was introduced by Nadeem and Lee [16]. 

The laminar boundary layer flow of a nanofluid over a 

nonlinear stretching sheet is extended by Rana and 

Bhargava [17]. Rahman and Eltayeb [18] extend the 

radiative heat transfer in a hydromagnetic nanofluid over a 

nonlinear stretching surface. Cortell et al. [19] explained 

the boundary layer flow and heat transfer of fluid under the 

consideration of thermal radiation and viscous dissipation 

over a nonlinear stretched sheet. The boundary layer flow 

over a permeable moving flat plate under the effect of 

viscous dissipation and thermal radiation by considering of 

few nanofluids is studied by Motsumi and Makinde [20]. 

Heat transfer over nonlinear stretching and shrinking 

sheets under the influence of magnetic field, thermal 

radiation and viscous dissipation by considering copper, 

alumina, and titanium oxide nanoparticles was examined 

by Pal et al. [21]. Later, Nandy and Pop [22] extended the 

study of MHD boundary layer stagnation flow and heat 

transfer over a shrinking sheet incorporating the two 

component model under the effect of radiation. Rashidi et 

al. [23] have also investigated the combined effect of 

magnetic field and thermal radiation over a vertical 

stretching sheet for two dimensional water based nanofluid 

flow. Mustafa et al. Studied [24] the boundary layer flow 

of a nanofluid over an exponentially stretching sheet to the 

case of a permeable shrinking sheet with the second order 

velocity slip in the presence of zero normal flux of the 

nanoparticles at the boundary. Several authors have 

studied the flow and heat transfer of a viscous (regular) 

fluid over an exponentially stretching surface ([25]; [26]; 

[27]; and [28]).  

Based on the observations from the above cited work, 

the purpose of the present paper is to analyze the effect of 

second order velocity slip, temperature slip and solutal slip 

in the presence of thermal radiation with suction of a 

steady two-dimensional flow of a nanofluid over a 

nonlinear stretching sheet. Governing nonlinear ordinary 

differential equations obtained after the application of 

similarity transformations are solved numerically by 

means of Keller-Box method. The effects of different flow 

parameters on flow fields are elucidated through graphs 

and tables.  

2. Flow Analysis and Mathetatical Formulation 

 

 

Figure 1. Flow organization with coordinate system 

Consider a two dimensional, steady and incompressible 

viscous flow of a nanofluid past over a nonlinear 

stretching surface. The sheet is extended with velocity 
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( ) n

wu x ax
 with fixed origin location, where “n” is a 

nonlinear stretching parameter, ‘‘a’’ is a dimensional 

constant known as stretching rate and x is the coordinate 

measured along the stretching surface. The nanofluid   

flows at y = 0, where y is the coordinate normal to the 

surface. The fluid is electrically conducted due to an 

applied magnetic field B(x) normal to the stretching sheet. 

The magnetic Reynolds number is assumed small and so, 

the induced magnetic field can be considered to be 

negligible. The wall temperature Tw and the nanoparticle 

fraction Cw are assumed constant at the stretching surface. 

When y tends to infinity, the ambient values of 

temperature and nanoparticle fraction are denoted by T∞ 

and C∞, respectively.  The constant temperature and 

nanoparticle fraction of the stretching surface Tw and Cw 

are assumed to be greater than the ambient temperature 

and nanoparticle fraction T∞ ,C∞, respectively. T is the 

temperature and C is the rescaled nanoparticle volume 

fraction in the boundary layer. The coordinate system and 

the flow model are shown in Figure 1. The governing 

equations of continuity, momentum, thermal energy and 

nanoparticles equations can be written as: 

 
0 (1)

u v

x y

 
 

   

            
(2) 

        

        (3) 

 

      (4) 

 

The boundary conditions for the velocity, temperature 

and nanoparticle fraction are defined as: 

       

(5) 

     
(6)

 

Here, u and v are the velocity components along the x 

and y-axes, respectively. 

  
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c
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
 is the thermal diffusivity, σ is electrical 

conductivity, ν is the kinematic viscosity, ρf is the density 

of the base fluid, DB is the Brownian diffusion coefficient 

and DT is the thermophoresis diffusion coefficient. 

 

 
p

f

c

c





  is the ratio between the effective heat 

capacity of the nanoparticle material and heat capacity of 

the fluid, c is the volumetric volume coefficient, ρp is the 

density of the particles, and C is rescaled nanoparticle  

volume fraction. We assume that the variable magnetic 

field B(x) is of the form
( 1)

2
0( )

n

B x B x



.   is the 

slip velocity at the surface and it is negative due to 

stretching. Wu’s [29] slip velocity model used in this paper 

and is valid for arbitrary Knudsen numbers and is given as 

follows: 

1 2slip slip

T C
T k C k

y y

 
 

   

where   kn  is the Knudsen number, l = min (1/Kn, 1),  

is the momentum accommodation coefficient with 0    

1 and  is the molecular mean free path. Based on the 

definition of l, it is seen that for any given value of Kn, we 

have 0  l  l. Since the molecular mean free path  is 

always positive it results that B is a negative number. A, 

B are first and second order velocity slip factors, 

respectively, k1 is the thermal slip factor, k2 is the 

concentration slip factor. 

Using the Rosseland [30] approximation as in Cortell 

[19], the radiative heat flux is simplified as: 
* 4

*

4
................... (7)
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q
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We assume that the temperature differences within the 

flow region, namely, the term T4 can be expressed as a 

linear function of temperature.  The best linear 

approximation of T4 is obtained by expanding it in a 

Taylor series about T and neglecting higher order terms.  

That is: 
4 3 44 3 ................... (8)T T T T  

  

Using equation (8) into equation (7) the modified 

equation of (3) is: 

    

(9) 

 

  

(10) 

Using the following   transformations: 

           (11) 

where ψ represent the stream function and is defined 

as: 
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u and v
y x

  
  
   

so that Eq.(1) is satisfied identically.  

The governing equations (2), (10) and (4) are reduced 

by using equation (11) as follows: 

            (12) 

      

(13) 

              

(14) 

 

The transformed boundary conditions are: 

   

(15) 

where the prime denote differentiation with respect to 

. The involved physical parameters are defined as 

follows: 

   

(16) 

Here N is the Power-law parameter, Pr is the Prandtl 

number, R is Thermal radiation, Nb is Brownian motion 

parameter, Nt is Thermophoresis parameter, Ec is Eckert 

number, M is Magnetic parameter, Le is Lewis number, s 

is mass transfer parameter, i.e., suction for  (vw  0), 

injection for (vw  0), A is First order velocity slip 

parameter, B is second order velocity slip parameter, E is 

Thermal slip parameter, D is Concentration slip parameter.      

Now equations (12) to (14) together with the boundary 

conditions (15) to have similarity solutions, the quantities 

A, B, E and D must be constant and not a function of ‘x’ as 

in equation (16). This condition can be realized if the mean 

free path of the nanoparticles   is proportional to:  

 1

2

n

cx
 

  

We therefore assume: 

   

(17) 

 

C, k1, k2 are proportionality constants. With the 

introduction of (17) into equation (16) of velocity, thermal, 

concentration slip parameters, we have: 

        

 (18) 

With A, B, E and D defined by equation (18), the 

solutions of equations (12) to (14) yield the similarity 

solutions. However, with A, B, E and D defined by 

relations (17), the solutions generated are the local 

similarity solutions. The quantities of practical interest, in 

the present study, are the local skin friction Cfx, Nusselt 

number Nux and the Sherwood number Shx which are 

defined as: 

     (19) 

where  w is shear stress at wall, qw is the heat flux and 

qm is the mass flux at the surface which are given below: 

  
(20) 

Substituting equation (10) into equations (19), (20), we 

obtain: 

    (21) 

3. Numerical Methods 

The ordinary differential equations (12), (13), (14) with 

the boundary conditions of equation (15) are solved 

numerically by using of Keller-Box method, as revealed 

by [31], the following few steps are involved to achieve 

Numerical solutions: 

 Reduce the above mentioned higher order ordinary 

differential equations into a system of first order 

ordinary differential equations;  

 Write the finite differences for the first order equations; 

 Linearize the algebraic equations by Newton’s method, 

and write them in matrix–vector form; and 

 Solve the linear system by the block tri-diagonal 

elimination technique. 
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 To get the accuracy of this method the appropriate 

initial guesses have been chosen.  The following initial 

guesses are chosen: 

 

The choices of the above initial guesses depend on the 

convergence criteria and the transformed boundary 

conditions of equation (15). The step size 0.01 is used to 

obtain the numerical solution with four decimal place 

accuracy as the criterion of convergence.  

4. Results and Discussion 

The magneto hydrodynamics (MHD) boundary layer 

flow [32] and heat transfer [33] of a nanofluid with 

velocity second order slip, temperature jump, solutal 

boundary slip condition, suction and thermal radiation has 

been investigated numerically over a nonlinear stretching 

sheet with viscous dissipation. The numerical solutions are 

obtained for velocity, temperature and concentration 

profiles for different values of governing parameters. The 

obtained results are displayed through Figures 2 to 20 for 

velocity, temperature and concentration profiles, 

respectively. In the simulation the default values of the 

parameters are considered as M=1, Nb=Nt=0.5, Le=5, 

Pr=6.8, s=0.5, Ec=0.2, A=1, B=-1, E=1, D=1, R=0.1, 

N=1.5, unless otherwise specified. 

5. Velocity Profiles 

The velocity profile f (0) for different values of the 

magnetic field parameter M, mass suction parameter s, 

power-law parameter N and velocity first and second order 

slip parameter A, B are shown in Figures 2 to 6, 

respectively. 

Figure 2 reveals the influences of magnetic field on the 

flow field. The presence of transverse magnetic field, the 

fluid induces Lorentz force, which opposes the flow. This 

resistive force tends to slow down the flow, which results 

in the decreasing of velocity field. As The values of 

magnetic parameter M increase, the retarding force 

increases and consequently the velocity decreases. The 

graph also reveals that the boundary layer thickness 

reduces as magnetic parameter M increases. 

Figure 2. Velocity graph for different values of magnetic 

parameter M

  

The effect of suction/injection parameter ‘s’ on the 

velocity profile for a nonlinear stretching surface is 

presented in Figure 3 in presence of surface slip. It is 

observed from the figure that velocity distribution across 

the boundary layer decreases with an increase in suction 

parameter s. Thus, the suction reduces the thickness of 

hydrodynamic boundary layer; the effect is reverse in the 

case of injection. 

Figure 3. Velocity graph for different values of  Suction 

parameter s.  

On observing from Figure 4, as the power-law 

parameter increases, the velocity profile decreases.  Figure 

5 illustrates the variation of the dimensionless velocity 

component f () for various values of the first order slip 

parameter A. From the figure, it is clear that the velocity of 

the fluid near the boundary layer region decreases by 

increasing slip parameter. If the slip parameter increases, 

the slip at the surface wall is also increases. As a result it 

reaches to a smaller amount of diffusion due to the 

stretching surface into the fluid. In the case of no slip 

condition, the value of A approaches to zero so the 

velocity slip at the wall is equal to zero, i.e., us = 0, 

consequently the fluid velocity adjacent to the wall is 

equal to the velocity of the stretching surface uw, then f  

(0) = 1. Figure 6 shows that the dimensionless velocity 

component   f  () decreases with the decreasing values of 

second order velocity slip parameter B. 

Figure 4. Velocity graph for different values of Power-law 

parameter N 
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Figure 5. Velocity graph for different values of first order 

velocity slip parameter A 
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Figure  6. Velocity graph for different values of second order 

velocity slip parameter 

6. Temperature Profiles 

Figures 7 to 14 present the variation of temperature 

with respect to the governing parameters, viz. Prandtl 

number Pr, thermal slip parameter E, radiation parameter 

R, Eckert number Ec, suction parameter s, thermophoresis 

parameter Nt, Brownian motion parameter Nb and 

magnetic parameter M, respectively. 

The effect of Prandtl number Pr on the heat transfer 

process is shown by the Figure 7. The Prandtl number is a 

material property, it varies from fluid to fluid. The Figure 

7 reveals that as an increase in Prandtl number Pr, the 

temperature field decreases. An increase in the values of Pr 

reduces the thermal diffusivity, because Prandtl number is 

a dimensionless number which is defined as the ratio of 

momentum diffusivity to thermal diffusivity, that is Pr = 

/ . Increasing the values of Pr implies that momentum 

diffusivity is higher than thermal diffusivity. Therefore 

thermal boundary layer thickness is a decreasing function 

of Pr. In general the Prandtl number is used in heat transfer 

problems to reduce the relative thickening of the 

momentum and the thermal boundary layers. 

The influence of thermal slip on the temperature 

profiles is shown in Figure 8 which describes that the fluid 

temperature decreases on increasing thermal slip parameter 

E in the boundary layer region and, as a consequence, 

thickness of the thermal boundary layer decreases. 

Figure 9 demonstrates the variation of temperature with 

respect to radiation parameter R. When the Rosseland 

radiative absorptivity k* decreases, the divergence of the 

radiative heat flux ∂qr / ∂y increases, which leads to 

increases the rate of radiative heat transfer  to the fluid at 

the surface, i.e., it provides more heat to the fluid which 

causes the fluid temperature to increase. Hence, the 

temperature profile as well as thermal boundary layer 

thickness increases as the value of thermal radiation 

increases. 

Figure 10 illustrates the power of Eckert number Ec on 

temperature in the boundary layer. On observing the 

temperature graph, the wall temperature of the sheet 

increases as the values of Ec increase. As the irreversible 

process by means of which the work done by a fluid on 

adjacent layers due to the action of shear forces is 

transformed into heat influenced by viscous dissipation. It 

is also noticed that the reversal flow happened because of 

the temperature enhancement occurs as heat energy is 

stored in the fluid due to frictional heating. Also, due to 

the fact that, decrease of rate of heat transfer at the surface, 

the thermal boundary layer thickness increases, when the 

values of Ec increases.  

In Figure 11 the influence of the suction/injection 

parameter ‘s’ on the temperature profiles is depicted. It 

can, easily, be seen from the figure that the temperature 

distribution across the boundary layer decreases with 

increasing the values of s > 0 in the presence of thermal 

slip and hence the thickness of the thermal boundary layer 

decreases whereas opposite effect occurs for s < 0. 

Figures 12 and 13 show the influence of the change of 

Brownian motion parameter Nb and thermophoresis 

parameter Nt on temperature profile. It is noticed that as 

thermophoesis parameter and Brownian motion parameter 

Increases the temperature increases in the boundary layer. 

As the thermophoretic effect increases, nanoparticles are 

migrated from the hot surface to cold ambient fluid, as a 

result the temperature will enhances in the boundary layer. 

This will help in the thickening of the thermal boundary 

layer.  Figure 14 shows the influence of magnetic field 

parameter M on the thermal field. Transverse magnetic 

field has increased the thermal boundary layer thickness, 

so it causes the temperature increment in the boundary 

layer when it increases. 

Figure 7. Temperature graph for different values Prandtl number 
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Figure  8.  Temperature graph for different values Thermal slip 

parameter E 

Figure  9. Temperature graph for different values Thermal 

radiation R 

Figure 10. Temperature graph for different values Eckert number 

Ec 
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Figure 11. Temperature graph for different values suction 

parameter s 
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Figure 12. Temperature graph for different values thermophoresis 

parameter Nt 
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Figure 13. Temperature graph for different values Brownian 

motion parameter Nb  
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Figure 14. Temperature graph for different values magnetic 

parameter M 

7. Nanoparticle Concentration Profiles 

Figures 15 to 20 demonstrate the variation of 

nanoparticle concentration with respect to the change in 

governing parameters, viz. Lewis number Le, Brownian 

motion parameter Nb, thermophoresis parameter Nt, 

concentration slip parameter D, suction s and radiation 

parameter R. 

Figure 15 shows the impact of Lewis number Le on 

concentration profile. Actually, a higher value of Lewis 

number Le =DB represents a lower nanoparticle 

diffusivity (Brownian motion) and a higher thermal 

diffusivity. If Le > 1 the thermal diffusion rate exceeds the 

Brownian diffusion rate. Lower Brownian diffusion leads 

to less mass transfer rate, as a result, the nanoparticle 

volume fraction (concentration) graph and the 

concentration boundary layer thickness decreases.  

Figure16 reveals the variation of concentration profile. As 

the larger thermophoresis parameter Nt values gives the 

larger temperature gradient. The concentration field is 

motivated by the temperature gradient. As the temperature 

is an increasing function of Nt, an increase in Nt parameter 

increases the concentration and its boundary layer 

thickness. The nanoparticle concentration and 

concentration boundary layer thickness will increases as 

increase in Nt. We can see from the Figure 17 that the 

concentration profile is decreasing function of Nb. This 

may be due to the fact that as Brownian motion parameter 

decreases the mass transfer of a nanofluid.   

From Figure 18 we can observe the variation of 

concentration with respect to solutal slip parameter D. As 

it can be seen from the graph, increasing in the 

concentration slip parameter D, the concentration profile is 

decreasing. The suction parameter ‘s’ has a strong 

influence on the concentration profile as it is shown in 

Figure 19. As the values of suction parameter s increase, 

concentration graph decreases and the concentration 

boundary layer thickness decreases.  Figure 20 reflects the 

variation of radiation on concentration graph. The 

influences of radiation parameter on concentration is not 

this much significant. As the values of radiation parameter 

R increase, the concentration boundary layer thickness is 

not changing much, almost it is constant. 
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Figure 15. Temperature graph for different values Lewis number 
Le 
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Figure 16. Temperature graph for different values Brownian 

motion parameter Nb 
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Figure 17. Temperature graph for different values thermophoresis 
parameter Nt
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Figure 18. Temperature graph for different values concentration 

slip parameter D 
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Figure 19. Temperature graph for different values suction 

parameter s
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Figure 20. Temperature graph for different values thermal 

radiation R 

Finally, a comparison is done with previous results as it 

is shown in Table 1, for the numerical values of the skin 

friction coefficient –f  (0), local Nusselt number –G (0) 

and Sherwood number -H  (0) when slip parameters A, B, 

E, D radiation parameter R and suction parameter s are 

absent. And it is in excellent agreement with the result 

published in F. Mabood et al. 2015. Table 2 presents the 

variation of the skin friction coefficient in relation to 

magnetic field M, suction s, power-law parameter N and 

velocity first and second order slip parameters A, B. On 

observing this table, as the values of magnetic field, 

suction and power-law parameters increase, the values of 

skin friction coefficient increase. However, the skin 

friction coefficient decreases as both the values of velocity 

slip parameters A and B increase. Table 3 shows the local 

Nusselt number –G  (0) and Sherwood number –H  (0) 

for different values of Prandtl number Pr, thermal radiation 

R, Eckert number Ec, thermal slip parameter E and 

concentration parameter D. It is possible to see that as the 

values of Prandtl number increase, the heat transfer rate 

(local Nusselt number) is increased, but when other values 

as indicated in Table 3 increases, the local Nusselt number 

decreases. Also we can observe the variation of the mass 

transfer rate i.e., Sherwood number from this Table. Table 

4 represents the variation of both the heat transfer rate –G  

(0) and mass transfer rate –H  (0) for different values of 

the parameters M, s, Nt, Nb and Le when other parameters 

are fixed. 
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Table 1. Comparison of Skin friction coefficient, Nusselt and Sherwood numbers when A = B = E = D = R = s = 0 

Ec M 

- f  (0) 

(F.Mabood et 

al, 2015) 

- f  (0) 

(Present) 

- G  (0) 

(F.Mabood et 

al, 2015) 

- G  (0) 

(Present) 

- H  (0) 

(F.Mabood et 

al, 2015) 

- H  (0) 

(Present) 

0 0 1.10102 1.1010 1.06719 1.0672 1.07719 1.0772 

0.1    0.88199 0.8892 1.22345 1.2234 

0.2    0.70998 0.7100 1.37078 1.3708 

0.3    0.52953 0.5295 1.51919 1.5192 

0.5    0.16484 0.1648 1.81933 1.8194 

0 0.5 1.3098 1.3099 1.04365 1.0473 1.01090 1.0109 

0.1    0.81055 0.8106 1.20605 1.2060 

0.2    0.57564 0.5757 1.40279 1.4028 

0.3    0.33889 0.3389 1.60115 1.6012 

0.5    0.14022 0.1402 2.00282 2.0028 

0 1 1.48912 1.4891 1.02337 1.0234 0.95495 0.9549 

0.1    0.74058 0.7406 1.19496 1.1950 

0.2    0.45543 0.4554 1.43706 1.4371 

0.3    0.16789 0.1679 1.68128 1.6813 

0.5    0.41451 0.4145 2.17623 2.1763 

 

Table 2.  Calculation of skin friction coefficient for various values of M, s, A, B, N. 

M S A B N -f  (0) 

0 0.5 1 -1 1,5 0.3170 

0.5     0.4161 

1.0     0.4914 

1.5     0.5547 

2.0     0.6105 

1.0 0    0.4005 

 0.2    0.4348 

 0.7    0.5325 

 1.0    0.5988 

 0.5 1   0.4914 

  1.2   0.4572 

  1.3   0.4418 

  1 -1  0.4914 

   -2  0.3572 

   -3  0.2801 

   -1 -0.5 0.4314 

    0.5 0.4624 

    1.5 0.4914 
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Table 3.  Calculation of Nussult and Sherwood numbers for various values of Pr, R, Ec, E, D. 

 Pr R Ec E D - G (0) - H (0) 

1 0.1 0.2 1 1 0.2086 1.2676 

5     0.4451 1.0703 

7     0.4712 1.0505 

10     0.4764 1.0508 

6.8 0.5    0.4367 1.0771 

 0.7    0.4188 1.0918 

 1.0    0.3931 1.1131 

 0.1 1   0.2470 1.2656 

  2   0.0424 1.5440 

  3   0.3457 1.8356 

  0.2 0  0.6850 0.8984 

   1  0.4677 1.0515 

   2  0.3411 1.1538 

   3  0.2610 1.2195 

   1 0 0.1623 -2.7794 

    1 0.4697 -1.0515 

    2 0.6383 -0.4101 

    3 0.7382 0.0740 

 

Table  4.  Calculation of Nussult and Sherwood numbers for various values of M, s, Le, Nb, Nt. 

M S Le Nb Nt -G  (0) -H  (0) 

0.1 0.5 5 0.5 0.5 0.4927 1.0677 

0.2     0.4897 1.0648 

0.3     0.4869 1.0623 

0.4     0.4842 1.0601 

1.0 -0.3    0.0378 0.0639 

 -0.2    0.0180 0.1433 

 -0.1    -0.0238 0.2541 

 0.1    -0.1461 0.5105 

 0.2    -0.2205 0.6428 

 0.3    -0.3002 0.7771 

 0.5 5   0.4697 1.0515 

  10   0.3349 2.4995 

  15   0.2861 3.8315 

  20   0.2610 5.1277 

  5 0.1  0.7194 1.3103 

   0.2  0.6351 1.2183 

   0.3  0.5676 1.1489 

   0.4  0.5133 1.0951 

   0.5 0.1 2.7662 11.8889 

    0.2 1.1371 1.1609 

    0.3 0.7582 -0.3290 

    0.4 0.5792 -0.8239 
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8. Conclusions 

A numerical study was investigated for the radiative 

boundary layer flow and heat transfer of nanofluids over a 

nonlinear stretching sheet with slip conditions, suction 

with the help of an implicit finite difference method 

known as Keller-Box method. A parametric study is 

performed to explore the effects of various governing 

parameters on the fluid flow and heat transfer 

characteristic.  

The following conclusions give a brief account of the 

results of the present study: 

1.  Both first and second order velocity slip parameter A 

and B reduces the thickness of momentum boundary 

layer and hence decrease the velocity. N decreases the 

velocity profile. 

2. Velocity profile decrease with increase in suction 

parameter s, magnetic parameter M. 

3. Prandtl number Pr, thermal slip parameter E, suction 

parameter s reduces the temperature profile. 

4. The temperature increases with an increase in radiation 

parameter R, magnetic parameter M, thermophorosis 

parameter Nt, Brownian motion parameter Nb, Eckert 

number Ec. 

5. Concentration profile decreases with an increase in 

Lewis number Le, Brownian motion parameter Nb, 

concentration slip parameter D, suction s and radiation 

R but increases with an increase in thermophorosis 

parameter Nt. 
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