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Abstract 

In the present work, we study the primary responses of Euler-Bernoulli beam with initial imperfection/rise. The nonlocal 

elasticity theory was used to derive the mathematical model to account for the scale effect of the considered beam. One type 

of beams was considered in the analysis; simply supported beam. The multi-mode approach was used to obtain the reduced 

nonlinear temporal equations of motion that contain quadratic and cubic nonlinear terms. The method of multiple-scales was 

applied to obtain approximate analytical solutions for the nonlinear natural frequencies in addition to the primary and 

resonance responses. The obtained results were presented over a selected range of physical parameters for the two types of 

beams such as; beam initial rise/imperfection, scale effect parameter and excitation level. 
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1. Introduction 

Microelectromechanical systems and 

nanoelectromechanical systems have gained remarkable 

consideration due to their significant role in different 

engineering and modern technology fields, such as 

aerospace, communications, composites, electronics. 

These structures have more superior mechanical, electrical, 

and thermal properties as compared to other structures at 

the normal length scale. These properties make them ideal 

for the use in highly sensitive and high frequency devices 

for different applications [1]. 

In order to design a realistic model of a micro or a 

nanostructure and to well understand, optimize, and 

improve their performance, the small-scale effects and the 

atomic forces must be taken into consideration. In objects 

at the micro and nano scales, the dimensions, wavelengths, 

and sizes of these structures are no longer considered 

much larger than the characteristic dimensions of the 

microstructure. In these cases, the internal length scales of 

the material are comparable with the structure size. 

Moreover, the particles affect each other by long range 

cohesive forces in addition to the contact forces and heat 

diffusion. Consequently, the internal length scale should 

be considered as a material parameter, called nonlocal 

parameter, in the constitutive and governing equations and 

relations.  

Although the experimental and atomistic simulations 

and models are both capable of showing the effects of the 

small-scale on the mechanical properties of the 

micro/nanostructures, these methods are expensive and 

restricted by computational capacity. It is well known that 

the local continuum theories for beams (Euler and 

Timoshenko) and plates (Kirchhoff and Mindlin) are scale 

free; therefore they are not able to capture the small scale 

effect on the mechanical, electrical, and thermal properties 

for very small beam and plate like structures. This makes 

them inadequate in describing the dynamical behavior for 

these structures [2]. In order to apply the continuum 

mechanics approach in the analysis of the micro and 

nanostructures, logical and reasonable modifications that 

take into consideration the scale effect, should be 

proposed. For this purpose, several theoretical models 

have been suggested. Among these, the strain gradient 

theory, the modified coupled stress theory, and the 

nonlocal elasticity theory which will be utilized in this 

article to analyze the free vibration problem of nonlocal 

annular and circular Mindlin plates. 

The nonlocal elasticity theory was introduced by 

Eringen [3] accounts for the small-scale effects arising at 

the nanoscale level. He assumed that the stress at a point is 

a function of the strains at all points in the domain. Many 

researchers applied the nonlocal elasticity theory to study 

the free vibration, buckling, deflection, and dynamic 

problems of micro and nanostructures. For example, 

Reddy [4] obtained analytical solutions for the bending, 
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buckling, and vibration problems for simply supported 

Euler, Timoshenko, Reddy, and Levinson beams using 

Eringen's nonlocal theory. Murmu and Adhikari [5] 

studied the nonlocal transverse in-phase and out-of-phase 

vibrations of double nanobeam systems, in which explicit 

closed form expressions for natural frequencies were 

derived. Shakouri et al. [6] applied the Galerkin approach 

to study the free vibration problem of nonlocal Kirchhoff 

plates with different boundary conditions. It was shown 

that the nonlocal parameter and Poisson's ratio have 

significant effects on the vibration. Wang et al. [2] applied 

the Hamilton's principle, Eringen's nonlocal elasticity 

theory, and Timoshenko beam theory to analyze the free 

vibration problem of micro/nanobeams. Their study 

concluded that the effects of small scale, rotary inertia, and 

transverse shear deformation are important on the 

vibration behavior of short and stubby micro/nanobeams.  

Moreover, Murmu and Adhikari [7] applied the 

differential quadrature method and the nonlocal elasticity 

theory to study the free vibration of a rotating carbon 

nanotube modeled as an Euler-Bernoulli beam. It was 

shown that the vibration is significantly influenced by the 

angular velocity, preload, and the nonlocal parameter. Lu 

et al. [8] derived the dispersion relation for a harmonic 

flexural wave propagation in an Euler-Bernoulli beam, as 

well as the frequency equations and modal shape functions 

of the beam with different boundary conditions based on 

Eringen's nonlocal elasticity theory. Murmu and Pradhan 

[9] implemented the nonlocal elasticity theory to study the 

vibration response of single graphene sheets embedded in 

an elastic medium modeled as Winkler and Pasternak 

foundations. The differential quadrature method was 

employed in their analysis to solve the fundamental natural 

frequencies of plates with clamped and simply supported 

edges.  

In a similar manner, Murmu and Pradhan [1] applied 

the nonlocal elasticity theory to investigate the free 

vibration problem of nanoplates under uniaxially 

prestressed conditions. In their study the differential 

quadrature method was utilized to obtain the fundamental 

natural frequencies for simply supported and clamped 

nanoplates. Moreover, it was observed that buckling 

occurs at a smaller critical compressive load compared to 

the classical plate theory. Gürses et al. [10] studied the free 

vibration analysis of thin nano-sized annular sector plates, 

where Eringen's nonlocal elasticity theory was utilized to 

formulate the equation of motion. Additionally, the 

discrete singular convolution method was applied after 

transforming the irregular physical domain into a 

rectangular domain by using geometric coordinate 

transformation. It was shown that the effects of the 

nonlocal parameter are significant in the vibration analysis. 

Hashemi et al. [11] applied an exact analytical approach 

along with Eringen's theory to study the free vibration 

problem of thick circular and annular functionally graded 

Mindlin nanoplates with different combinations of 

boundary conditions. The effects of the plate radius, 

material properties which vary through the material 

according to a power-law distribution, and the nonlocal 

parameter on the natural frequencies were examined. In 

another study, Hashemi et al. [12] introduced potential 

functions and used the separation of variables method to 

obtain closed form solutions for nonlocal rectangular 

Mindlin plates with Levy-type boundary conditions. In 

their study, the effects of the nonlocal parameter, thickness 

to length ratio, and aspect ratio on the natural frequencies 

were investigated.  

Ansari and Arash [13] applied the generalized 

differential quadrature method, Eringen's nonlocal 

elasticity theory, and the molecular dynamics simulations. 

Their purpose was to carry out the vibration analysis of 

single layered graphene sheets modeled as rectangular 

Mindlin plates, and to evaluate the appropriate values of 

the nonlocal parameter appropriate to each boundary 

condition. Duan and Wang [14] obtained exact solutions 

for the axisymmetric bending of micro and nano circular 

plates under general loading using a nonlocal plate theory. 

It was concluded that nonlocal parameter has a significant 

effect on the deflections, moments, and bending stiffness.  

As stated by Ansari et al. [15], structures at the micro 

and nano scales are capable of undergoing large 

deformations within the elastic limit, which makes the 

nonlinear analysis obviously important.  In their study, the 

homotopy perturbation method was applied to study the 

nonlinear vibrations of multiwalled carbon nanotubes 

embedded in an elastic medium. They showed that 

changing the material of the elastic medium has an 

influence on the vibration characteristics.  

Fu et al. [16] investigated the nonlinear free vibration 

of embedded multiwalled carbon tubes using the 

incremental harmonic balanced method. It was shown that 

the surrounding elastic medium, van der Waals forces and 

aspect ratio of the multi-wall nanotubes have significant 

effects on the amplitude frequency response curves. It was 

noticed that in [15] and [16] the small scale effects were 

not taken into consideration; therefore, Ansari et al. [17] 

developed a nonlocal elastic beam model and adopted the 

incremental harmonic balance method to investigate the 

effects of the length scale, geometrical parameters, 

temperature rise and the elastic medium on the nonlinear 

frequency and displacement of embedded multiwalled 

carbon nanotubes. On the other hand, during the 

fabrication, manufacturing, assembling, and handling of 

such mechanical parts, structures with an initial deflection 

(slack) may be produced. As a result, this deflection will 

have an influence on the dynamics, vibration, and stability 

characteristics of the structure. 

Al-Qaisia and Hamdan [18] presented an analytical 

study of  nonlinear frequency veering of an elastic Euler-

Bernoulli, hinged-hinged with one torsional spring at one 

end, resting on a Winkler elastic foundation and subjected 

to a static lateral load with an initial 1/4 sine shape rise due 

a constant differential edge settlement. A combined 

numerical-analytical procedure which accounts for the 

nonlinear interdependence between the lateral deflection 

and induced axial force due to mid-plane stretching was 

used to determine the beam static deflection. The assumed 

single mode approach was used to obtain the nonlinear 

temporal equation which contains quadratic and cubic 

nonlinear terms. The harmonic balance method was used 

to solve the nonlinear free vibration frequency about the 

static equilibrium deflection. The results of simulation 

indicate that the vibration amplitude, depending on 

location of the veering point, has a significant effect on the 

frequency loci behavior.  Also, they extended these 

analyses to primary resonance response and its stability 
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under vertical uniformly distributed excitation comprised 

of a large static part and a harmonically time varying part 

[19]. The obtained results indicate that the coefficients of 

the quadratic and cubic nonlinear terms, can vary widely 

depending on system parameters, and in particular, these 

coefficients can take positive and negative values, which 

affect the number of equilibrium positions, while the 

behavior of the system whether it is of hardening or 

softening type. 

Lacarbonara et al. [20] studied the nonlinear response 

and stability of a hinged–hinged uniform moderately 

curved beam with a torsional spring at one end. It was 

shown that varying the initial rise of the beam has an effect 

on the one-to one auto parametric resonance and on the 

experienced Hopf and homoclinic bifurcations. 

Additionally, Ouakad and Younis [21] used a 2D nonlinear 

curved beam model which was derived by applying a 

multimode Galerkin approach to study the coupled in-

plane and out-of-plane displacements of a carbon nano 

tube with curvature. They showed that the natural 

frequencies, mode shapes, mode crossings and mode 

veering are affected by the variation of the level of 

slackness and the DC load.  

Mayoof and Hawwa [22] studied the nonlinear 

vibration of a clamped-clamped single wall carbon 

nanotube with waviness (deflection). The elastic 

continuum mechanics theory, along with Hamilton's 

principle, was applied to formulate the problem and derive 

the equation of motion which involved quadratic and cubic 

nonlinearities. The dynamics response of the system was 

investigated, and phase portrait, Poincaré section, and time 

history diagrams were generated. The results revealed that 

the nanotube underwent period-doubling bifurcations that 

were turned into chaos.  

Garcia-Sanchez et al. [23] detected the bending-mode 

vibrations of multi and single-wall carbon nanotubes using 

a scanning force microscopy method. For multiwalled 

nanotubes, it was found that the resonance frequency is 

consistent with the elastic beam theory, whereas it is 

significantly reduced for single-wall nanotubes due to 

slack generated from fabrication processes. Üstünel et al. 

[24] studied the vibrations of nanotubes modeled as 

clamped-clamped suspended one-dimensional elastic 

systems with a slack and downward external forces; it was 

found that the frequencies are highly affected by the slack. 

Al-Qaisia and Hamdan [25], extended the two previous 

studies [18, 19] on frequency veering by studying the 

effect of an initial geometric imperfection wavelength, 

amplitude and degree of localization on the in-plane 

nonlinear natural frequencies veering  and mode 

localization of an elastic Euler-Bernoulli beam resting on a 

Winkler elastic foundation. Results were presented for the 

nonlinear natural frequencies of the first three modes of 

vibration, for a selected range of physical parameters like; 

torsional spring constant, elastic foundation stiffness and 

amplitude and wavelength of a localized and non-localized 

initial slack. 

The present work extends the previous studies in [18, 

19 and 25] on beam like-structures with initial 

imperfections to include the small scale effect on the 

primary and sub harmonic responses, using the nonlocal 

elasticity theory to derive the mathematical model.  

The present study is organized as follows: First, the 

governing partial differential equation for the local beam is 

presented. Then, by applying Eringen’s nonlocal theory, 

the partial equation of motion for the nonlocal beam is 

derived. Furthermore, the Galerkin method is applied to 

obtain the reduced order model, using the multi-mode 

approach. The method of multiple scales is utilized to 

determine the nonlinear natural frequencies and the 

frequency response curves for the primary resonance at 

selected values of parameters for simply supported beams. 

Problem Formulation 

Mathematical Model 

The governing nonlinear equation of motion of 

moderately large amplitude vibration of an Euler-Bernoulli 

beam with initial deflection, and subjected to a harmonic 

force is given by: 
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where ŵ  is the transverse deflection, 0ŵ  initial 

deflection “initial rise”, l  is the beam length, A and I are 

beam’s area and principal moment of inertia of the cross 

section I respectively, m  is the mass per unit length, E is 

the Young’s modulus of Elasticity, 0F  is the excitation 

level, ĉ  is the coefficient of damping, t̂ is the time, and 

̂  is the frequency of excitation. The prime denotes the 

derivative with respect to the spatial coordinate x̂ , while 

the dot denotes the derivative with respect to time t̂ . 

The bending moment  txM ˆ,ˆ  is given as 

   txwEItxM ˆ,ˆˆ ˆ,ˆ                                  
(2) 

In light of Eq. (2),  txM ˆ,ˆ  is given by 
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   (3) 

Nonlocal Theory 

In local elasticity theory, the stress at a reference point 

in a body depends on the strain at the same point. On the 

other hand, In the nonlocal elasticity theory pioneered by 

Eringen, the stress at a point in a linear, homogeneous, 

http://pubs.acs.org/action/doSearch?action=search&author=%C3%9Cst%C3%BCnel%2C+H&qsSearchArea=author
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isotropic, and elastic domain is related to the stress field at 

all points in the domain. Eringen's theory is based on the 

atomic theory of lattice dynamics and experimental results 

on phonon scattering and dispersion [3, 10]. 

For nonlocal linear elastic solids, the stress tensor tij is 

defined as: 

     xdVxxxt ij

V

ij
                          (4) 

where x is a reference point in the elastic domain, 

 xx   is the non-local kernel attenuation function. 

It introduces the nonlocal effects at the reference point x 

produced by the local stress ij  at any point x', and 

xx ' is the  distance in Euclidean form.  

Eringen introduced a linear differential operator ς, 

defined by  ς=   22

01  le , in which 0e  is a material 

constant estimated by experiments or other models and 

theories [3]. The nonlocal theory relations could result in 

approximate solutions to those obtained by atomic theory. 

The value of 0e  was taken to be 0.39 in Eringen's 

analysis. Moreover, the constant l represents the internal 

characteristic length which is of the same order of the 

external length.  

According to Eringen's theory, the integral constitutive 

relation of Eq. (4) could be simplified and have the 

following form: 

   ijijtle    1 22

0                                 (5) 

Due to its simple form, Eq. (5) has been extensively 

employed by many researchers in applying the nonlocal 

theory to study and analyze the vibration and mechanics of 

micro and nanostructures.  According to Eringen’s 

nonlocal elasticity theory, the stresses at a point in the 

body not only depend on the strain at that point, but also 

on the strains at all other points of the body [3]. Thus, the 

nonlocal constitutive relation for the moment   is given as: 
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where a  is an internal characteristic length (e.g. lattice 

parameter, granular distance, and distance between C-C 

bonds) [24]. 

Inserting Eq. (3) into Eq. (6), we obtain: 
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Substituting Eq. (7) into Eq. (6), the equation of the 

transverse motion of the nonlocal Euler- Bernoulli beam 

with initial deflection can be written as: 
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To simplify Eq. (8), the following non-dimensional 

variables and parameters with respect to the cross sectional 

area radius of gyration AIr  , are introduced: 
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After substituting the above parameters, Eq. (1) in its 

simplest form is given as: 
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The nonlinear integral-partial differential equation (9) 

can be discretized using the Galerkin’s approach by 

assuming [26, 27]: 
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where N is the number of retained modes,   xn  are 

the mode shapes of the linear, undamped, and unforced 

beam, and  tqn are the generalized coordinates. 

Substituting Eq. (10) into Eq. (9), multiplying by  xn  

and integrating over the beam’s span, yields the set of the 

nonlinear ordinary equations: 
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where: 
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where fm is the projection of the force F onto the mth 

mode. 

The initial deflection for the simply supported beam is 

given as:  

   x qtxw 00 sin,                                   (16) 

It is worth mentioning that the initial deflection has a 

value of 0q  at the midsection of the beam, rather than it 

satisfies the boundary conditions.  

The mode shapes for a simply supported beam are 

given as: 

   xnxn  sin                                        (17) 

The boundary conditions for the simply supported 

beam are given as:  
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                    (18) 

The boundary conditions for the non-local and local 

(classical) beams are the same when both ends of the beam 

are fixed as the scale effect gets nullified. In the present 

study, the dynamic behavior of beams under consideration 

will be analyzed for primary resonance using the first five 

modes. 

 

Perturbation Analysis 

Free Vibrations 

In the present study, the non-dimensional nonlinear 

natural frequencies of the nonlinear beam given in Eq. (4) 

can be obtained by using the Method of Multiple Scales 

(MMS). The second order approximation of the free un-

damped nonlinear natural frequency NL  is expressed as 

a function of the vibration amplitude a  and the 

parameters of the nonlocal simply supported beams, and 

given by the expression: 











 2eff1 a

n

nNL



                              (19) 

where eff is the effective nonlinearity to be defined 

later, and a is the amplitude  (the initial condition for the 

displacement) of the beam. 

Primary Resonance 

In case the beam is subjected to primary resonance of 

the nth mode, we assume that the contribution of the nth 

mode is of lower order that the contributions of other 

modes. Therefore, we assume  tqn  and  tqm  to be in 

the form of [28]: 
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  (20)  

where in these equations,   is considered as a small 

and dimensionless parameter, and the two time scales 0T  

and 2T  are introduced as tT 0

0   and tT 2

2  . In 

order to apply the multiple scales method, the effects of 

the damping and the excitation terms are scaled to balance 

the effect of the nonlinearity. Hence, c and pn are scaled as 

c2  and np3 . Applying the method of multiple scales 

yields the frequency-response curve as:   
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where    is a detuning parameter introduced such that 

 2 n
                                           (22) 

and eff is the effective nonlinearity given by: 
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Eq. (22) shows the nearness of the excitation frequency 

to the nth natural frequency,  

Eq. (23) is substituted into Eq. (19) to obtain the 

nonlinear natural frequencies [28]. 

In this section, the excitation frequency Ω is very close 

to the nth linear frequency n . Hence, other modes not 

being directly or indirectly excited will decay to zero with 

time due to the presence of damping.  

 The details of the MMS are omitted for brevity, 

and interested readers can refer to Emam’s thesis [28]. 

Results and Discussion 

The multi-mode approach (assumed mode method) is 

applied in the present article, where five modes were 

retained to obtain the reduced order model. In this section, 

dynamic behavior and the characteristics of the nonlocal 

beams considered herein were analyzed by examining the 

effective nonlinearity of the simply supported beam given 

in Eq. (23). The value of eff  as a function of the beam 

rise 0q  and the scale parameter   was calculated and 

presented in 3-D surface plots as shown in Figures (1-2). 

These Figures show that the value of eff  may increase 

or decrease depending on the combination of the 

parameters 0q  and . It is known that the behavior of the 

nonlinear beam is either of hardening (the frequency 

increases with the amplitude) or softening type (the 

frequency decreases with the amplitude), depending on the 

value of the parameter eff . It is known that for

0eff , the nonlinear beam given in Eq. (11) exhibits 

a hardening type behavior and a softening type otherwise. 

Moreover, when the value of 0eff , the effects of the 

quadratic and cubic nonlinearities cancel each other and 

consequently the response resonance curve resembles that 

of the corresponding linear beam, which implies that the 

frequency of the beam does not depend on the amplitude. 

The variation of the fundamental nonlinear frequency 

with the amplitude of the first mode of a simply supported 

SS beam with 20q0 .  at different values of the 

dimensionless nonlocal parameter μ is presented in Figure 

2. It is observed that the nonlinear frequency decreases by 

increasing the nonlocal parameter due to the decrease in 

the stiffness of the beam. In Eringen nonlocal elasticity 

theory, it may be viewed that atoms are bonded by elastic 

springs with finite value, while the classical local model 

assumes that the stiffness of springs have a value of 

infinity [2, 10]. Further, as 0eff  at 20q0 . , the 

frequency increases by increasing the vibration amplitude. 

Thus, the behavior of the SS beam is of hardening type 

regardless the value of scale factor  .  

The variation of the fundamental nonlinear frequency 

with the amplitude of the first mode of the SS beam with 

4.0  at different values of the beam rise parameter 

0q  is presented in Figure 3. The Figure reveals that the 

behavior of the beam switches from hardening to softening 

as the value of the beam rise 0q  increases.  It is 

worthwhile to mention that at a value of the initial rise 

between 0.4 and 0.6, the frequency is constant and 

independent of the amplitude (initial conditions). In this 

case, the beam exhibits a linear behavior. As the beam rise 

is further increased, the beam has a softening effect as

0eff . It can be seen that at a given value of the scale 

effect, the beam may have hardening, softening, or linear 

behavior depending on the value of the initial rise 0q . 

This observation may be useful in the design and analysis 

of industrial applications in which the dynamics of the 

micro/ nano beams are main part of them.  

The frequency response of the primary resonance of the 

nonlinear system given in Eq. (27), describing the forced 

vibration of the beam systems, were analyzed and 

presented for selected values of the beam rise 0q  and the 

scale parameter  .  In Figure 4, the frequency response 

curves are generated for the simply supported beam with 

5.0 ,05.0  fc , and 1.00 q  at different values 

of the scale parameter  . It is observed that as the scale 

parameter   increases, the beam’s behavior is switched 

from hardening to softening type. It is clear that the curves 

are bent to the right (hardening behavior); whereas at 
=0.8, the curve is bent to the left (softening behavior), and 

the hardening non- linearity at  =0.1 is stronger than that 

at  =0.5. Furthermore, as the scale parameter   

increases, the steady state amplitude of the first mode of 

the beam decreases.  

In a similar manner, the frequency response curves of 

primary resonance are generated and presented in Figures 

5 and 6 for the simply supported beam at 

5.0 ,05.0  fc , and 2.0  at different values 

of the beam rise 0q .  It is shown that the beam exhibits the 

hardening and softening type as the value of 0q  is 

increased. From Figure 5, it is observed that if the beam 

exhibits a hardening type, the steady state amplitude of the 

first mode of the beam increases when the initial rise 0q  

increases. On the other hand, Figure 6 shows that if the 

beam exhibits a softening type, the steady state amplitude 

of the first mode of the beam decreases when the initial 

rise 0q  increases. In these curves, the stable and unstable 

branches can be observed in addition to the jump 

phenomenon.  
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Figure 1: the parameter eff  of the SS beam versus rise q  and scale   

 

Figure 2: Variation of the fundamental nonlinear frequency of a simply supported beam with amplitude for 2.0q  

 

Figure 3: Variation of the fundamental nonlinear frequency of a simply supported beam with amplitude for 4.0  
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Figure 4: Frequency-response curves in the case of primary resonance of a simply supported beam for 

1.0 ,5.0 ,05.0 0  qfc  

Figure 5: Frequency-response curves in the case of primary resonance of a simply supported beam for 

2.0 ,5.0 ,05.0  fc  

Figure 6: Frequency-response curves in the case of primary resonance of a simply supported beam for 

2.0 ,5.0 ,05.0  fc  
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Conclusions 

The primary resonance of a simply supported Euler 

beam with initial deflection was investigated. Eringen's 

nonlocal elasticity theory was utilized and the Galerkin 

approach was applied to convert the partial differential 

governing equation into a set of nonlinear ordinary 

differential equations.  The method of multiple scales was 

carried out to determine the frequency response curves of 

the beam under consideration. It was shown that the scale 

parameter, beam's initial deflection, and excitation level 

have significant influence on the behavior of the beam. For 

the selected values of the scale parameter and the beam 

rise, it was shown that the simply supported beam switches 

its behavior from hardening to softening type.  

For future work, it is recommended to consider other 

effects that may influence the behavior of micro and nano 

dynamical systems, such as temperature changes, electro 

and magnetic fields effects.  Furthermore, analyzing such 

systems subjected to simultaneous resonances may be of 

high interest since these systems may exhibit mixed 

hardening and softening behavior.  
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