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Abstract 

Robotic manipulators used in heavy industries, such as the automotive industry, are generally bulky. Driving such 

manipulators requires large actuators. In many cases, manipulators hardly carry any significant load compared to their sizes, 

such as those used for performing spot welding. However, the manipulators are oversized to avoid vibrations caused by high 

input command profiles. Lighter flexible manipulators, on the other hand, are superior in terms of cost and energy 

consumption. However, size reduction comes at a price of slower performance in order to reduce inertia induced vibrations. 

In the present work, a command shaping strategy is developed to facilitate operating flexible manipulators at higher speeds 

while eliminating inertia excited vibrations. The strategy is based on input shaping techniques complemented with a multi-

mode frequency modulation control system. The performance of the proposed strategy is demonstrated on a thin beam model 

of a robotic arm, using numerical and finite element simulations. 
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1. Introduction 

In heavy industries, such as the automotive industry, 

robotic manipulators are generally heavy and bulky. Many 

of those manipulators perform tasks that do not involve 

carrying or moving large payloads. As a matter of fact, 

some manipulators do not carry any load. They just 

perform assembly tasks, such as robots used for welding, 

drilling, etc. Industrial robots are made bulky for one main 

purpose; to guarantee positioning accuracy of their end 

effectors. Geometrical oversizing of robotic manipulators 

boosts their stiffness and reduces vibrations that may 

compromise operations precision. As a result, industrial 

robots require large powerful actuators that consume 

excessive amounts of energy. 

Although energy efficient, the structural flexibility of 

light weight manipulator is a major drawback. Light 

weight manipulators operate at lower speeds, compared to 

their heavy counterparts, to avoid inertia excited 

vibrations. Structural flexibility of light manipulators 

compromises operations precision [1]. Bearing in mind 

that operations in many heavy industries are continuous all 

year long, the amount of energy savings through the use of 

light manipulators is substantial. The slow operation speed 

penalty can be elevated by implementing control systems 

that eliminate vibrations in light manipulators operating at 

high speeds comparable to those achievable by heavy 

manipulators. 

It is for such reasons that the dynamics and vibration 

control of beams have received large attention during the 

past few decades. Ample literature is published on the 

vibration and control of flexible structures [2, 3]. Many 

control strategies have been investigated for the control of 

flexible manipulators including optimal control, adaptive 

control, fuzzy logic control, neural networks, input 

shaping, and others [4-10]. Research included the 

implementation of dominant mode linear and nonlinear 

vibration control of flexible structures [6], and multimode 

simultaneous control for more flexible structures when the 

dominant mode approach is insufficient [7]. 

Open-loop control systems are ideal for the elimination 

of inertia excited vibrations. One of the most common and 

practical open-loop control systems is known as input 

shaping [11]. Inertia excited vibrations are eliminated by 

deriving command signals to actuators that mitigate their 

own excited vibration. Input shaping technique is based on 
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convolving a sequence of impulses with a general input 

command. The impulses are precisely timed so that the 

convolved command eliminates its own excited vibration 

at the conclusion of the command. Essential concepts of 

input shaping were published and patented by Gimpel and 

Calvert in 1952 and by Calvert and Gimpel in 1957 [12, 

13]. Because of its sensitivity to modeling uncertainty, 

input shaping was not widely used until it was made 

popular by the work of Singer and Seering [14] and Singer 

et al. [15] on robust input shaping methods. Since then, 

research on input shaping control surged to include 

different input shaping techniques for single mode and 

multimode flexible structures such as Zero-Vibration 

(ZV), Zero-Vibration-Derivative (ZVD), Zero Vibration 

Derivative (ZVDD), Specified Insensitivity (SI), and 

Extra-Insensitive (EI) input shapers [11, 16]. 

As flexible structures, robotic arm are multimode 

vibrating systems. Controlling these systems commands 

the use of multimode input shaping schemes. Multimode 

input shapers can be classified into two main groups; 

convolved shapers and simultaneous shapers. Convolved 

shapers involve convolving multiple sequences of 

impulses, each sequence targeting one vibration mode of a 

multimode system [17-20]. However, in some cases, the 

frequencies involved may be so high that convolved input 

shapers become practically inapplicable due to bandwidth 

limitations [18]. Simultaneous shapers may produce faster 

response, however, they generally exhibit lower robustness 

compared to convolved shapers [21-23]. Shapers may 

involve positive and negative impulses [24, 25]. Input 

shapers containing negative impulses have several 

advantages [26, 27]. 

Input shaping can be implemented as a standalone 

control strategy, or as a hybrid combination with other 

control strategies for improved robustness [4, 28]. 

Standalone multimode input shapers suffer an 

implementation drawback due to the large number of 

impulses involved in their designs. Depending on the 

control hardware used, mismatch between impulses and 

sampling rates may result in performance degradation [17, 

21, 22]. To overcome this drawback, hybrid combinations 

of single-mode input shaping with other control strategies 

are utilized including combining single-mode shapers with 

different types of filters, such as notch, low-pass, band-

stop, and time-delay filters [29-34]. An optimization 

technique taking into consideration hardware sampling 

rates was derived by Alghanim et al. [35] in an attempt to 

overcome this problem. 

Pre-shaped command techniques are used to overcome 

excessive impulses in an input command. Continuous 

smooth commands may reduce or eliminate impulses in 

shaped commands. Erkorkmaz and Altintas [36] used 

quintic spline trajectory generation algorithm to generate 

continuous position, velocity, and acceleration profiles for 

high speed CNC systems. Xie et al. [37] introduced a 

method to reduce vibration in flexible systems by 

smoothing the original command. Wave-form commands 

were also used to reduce the number of impulses and jerks 

in shaped input commands [38-41]. 

To reduce the number of impulses in multimode input 

shapers, Singh and Heppler [18] showed that a single-

mode shaper can eliminate vibrations at all frequencies 

that are odd-multiples of the design frequency of the 

single-mode shaper used. Their trials were based on 

finding a common frequency such that all modes of a 

multimode system are odd-multiples of this frequency. 

However, there were no guarantees that such a frequency 

existed in a multimode system. Later, single-mode pre-

shaped commands were implemented on an approximate 

model of a two-mode system for which such a common 

frequency exists [28]. Virtual feedback system was used to 

match the response of the exact model of the system to the 

approximate model. Another attempt, known as frequency-

modulation input shaping, was based on modifying the 

frequencies of a multimode system using model-based 

feedback to the point where such a common frequency 

exists [42, 43]. 

In the present study, a flexible Euler-Bernoulli hanging 

beam is used to model a robotic arm. Flexible beams 

exhibit broad spectrum of resonant frequencies. This wide 

spectrum makes the use of multimode impulse shapers 

impractical. This paper describes a multimode frequency-

modulation input shaping strategy used to shape 

acceleration commands to the base of the robot arm model. 

Model-based feedback is used to modulate the frequencies 

of the beam so that all higher mode frequencies become 

odd-integer multiples of the fundamental frequency of the 

feedback model. Single-mode input shaping techniques are 

implemented to eliminate vibrations in all modes of the 

model simultaneously. Input commands to the plant of the 

feedback system are used as inputs to the base of the 

physical model. The main advantage of the frequency-

modulation input shaping strategy is that only one single-

mode input shaper is needed to eliminate vibrations in all 

modes of the system. Numerical simulations and finite 

element simulations, using Abaqus-v6.12 FEA package, 

demonstrate the effectiveness of the proposed strategy. 

2. Single-Mode Input Shaping 

Input shaping is a technique used to eliminate inertia 

excited vibrations in dynamic systems. A general 

command signal is convoluted with a sequence of impulses 

to produce a shaped command that results in zero residual 

vibrations. Although input shapers have been developed 

earlier for multimode systems, they are hard to implement 

due to the large number of fast input impulses involved. 

Single mode input shapers are easier to implement. Several 

single input shaping techniques have been developed over 

the past two decades. The most practical input shapers in 

the literature are the Zero-Vibration (ZV) input shaping, 

Fig. 1(a), and the robust Zero-Vibration-Derivative (ZVD) 

input shaping [16], Fig. 1(b). This is due to the reduced 

number of impulses involved. 
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Figure 1. (a) Zero-Vibration (ZV) input shaping and (b) Zero-Vibration-Derivative (ZVD) input shaping. 

Zero-Vibration input shaping is based on convoluting a 

general input command with a sequence of two impulses, 

where the response to the second impulse mitigates the 

vibration excited by the first impulse. The impulses are 

separated by half the vibration period of the system. The 

ZV input shaping matrix is 

ZV = [
𝐴𝑖
𝑡𝑖
] = [

1

𝐾+1

𝐾

𝐾+1

0
𝜏𝑑

2

]                                        (1) 

where 𝐴𝑖 and 𝑡𝑖 are the 𝑖𝑡ℎ impulse amplitude and impulse 

time, respectively, τd is the damped period of the system, 

and 

𝐾 = 𝑒−𝜁𝜋/√1−𝜁
2
                                                  (2) 

where ζ is the damping ratio. 

The ZVD input shaper includes three timed impulses 

separated by half the vibration period of the system. The 

ZVD matrix is 

ZVD = [
𝐴𝑖
𝑡𝑖
] = [

1

1+2𝐾+𝐾2

2𝐾

1+2𝐾+𝐾2

𝐾2

1+2𝐾+𝐾2

0
𝜏𝑑

2
𝜏𝑑

]      (3) 

The ZV input shaper is a non-robust shaper, but it is the 

shortest in terms of its time duration. The ZVD input 

shaper is a robust shaper. The robustness of the ZVD 

shaper comes at a price of longer shaper duration. It is 

important here to emphasize that the aim of the proposed 

FM input shaping strategy is to be able to eliminate all 

modes of vibration of the system using one single-mode 

shaper. It is not a goal of the proposed FM input shaping 

strategy to enhance robustness nor is it a goal to increase 

the speed of the shaping technique used. 

3. Multimode Frequency-Modulation Input Shaping 

In multimode systems, a shaped command signal that 

eliminates vibrations of the first mode can eliminate 

vibrations in other modes provided that the frequencies of 

those modes are odd-integer multiples of the frequency of 

the first mode. Frequency-modulation [42, 43] can be used 

to modulate the frequencies of the system model to the 

point where the above odd-integer multiples condition is 

satisfied. In the present work, this task will be performed 

using model-based feedback strategy. Once the odd-

integer multiple frequency condition is satisfied, virtually, 

any single-mode input shaping technique can be used to 

produce a shaped motion command for the multimode 

system. The command signal to the plant of the feedback 

system is used to drive the multimode system, Fig. 2.  

 

Figure 2. Schematic block diagram of frequency-modulation 

input shaping. 

The FM input shaper, consists of two sequential stages; 

frequency-modulation, then input shaping. In the 

frequency-modulation stage, model-based feedback is used 

to satisfy the odd-multiple frequencies condition. The 

resonant frequencies of model-based feedback system are 

modulated to the point where all higher modes frequencies 

become odd-multiples of the first mode frequency. The 

single-mode input shaper used will be designed using the 

primary resonant frequency of the feedback model. 

The main advantage of the Frequency-Modulation 

(FM) input shaping strategy is that only one single-mode 

input shaper is needed to eliminate vibrations in all modes 

of the system. This reduces the number of impulses 

involved in shaping process. 

4. Illustrative Example 

The performance of the FM input shaper is 

demonstrated on a thin hanging beam model of a robotic 

manipulator, Fig. 3. This type of manipulators is 

commonly used for pick and place maneuvers. A thin 

rectangular cross-section is used to magnify the vibration 

problem. The material of the beam is stainless steel. The 

material properties and geometric dimensions of the beam 

are; material density 𝜌 = 8030 kg/m3, Young's modulus 

of elasticity 𝐸 = 193 GPa, beam length 𝑙 = 1 m, thickness 

ℎ = 0.65 mm, and width 𝑤 = 26 mm. The slenderness 

ratio is 𝑠 = 5330. Both numerical and finite-element 

simulations are used. 
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4.1. Mathematical Model 

Consider a uniform flexible hanging beam, mounted on 

a horizontally sliding base. To derive the equation of 

motion for the lateral vibrations of the beam, the kinetic 

energy is assumed to be entirely due to translation. The 

governing partial differential equation of motion is [44-

46]. 

 

Figure 3. Hanging beam model. 

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+𝑚

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
− 

𝑚𝑔
𝜕

𝜕𝑥
[(𝑙 − 𝑥)

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
] = −𝑚

𝑑2𝑢(𝑡)

𝑑𝑡2
                        (4) 

where E is the Young's modulus of elasticity, I is the area 

moment of inertia of the beam's cross-section, m is the 

mass per unit length, l is the beam length, and g is the 

gravitational acceleration. The boundary conditions 

associated with the given beam support are [47] 

𝑤(𝑥, 𝑡) = 0
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
= 0

} 𝑥 = 0 (5) 

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
= 0

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
= 0}

 

 
𝑥 = 𝑙 (6) 

There is no closed-form solution to the differential 

equation of motion, Eqs. (4) – (6). However, the given 

system is a conservation self-adjoint system. We propose 

to derive an approximate solution in conjunction with 

Rayleigh-Ritz method. To this end, we assume a separable 

solution in x and t as 

𝑤(𝑥, 𝑡) =∑𝜙𝑖(𝑥)𝑞𝑖(𝑡)

𝑛

𝑖=1

= 𝚽𝑇(𝑥) 𝐪(𝑡) (7) 

in which 𝚽(𝑥) = [𝜙1(𝑥),  𝜙2(𝑥), … ,  𝜙𝑛(𝑥)] is an n-

vector of comparison functions of a complete set and 

𝐪(𝑡) = [𝑞1(𝑡),  𝑞2(𝑡), … ,  𝑞𝑛(𝑡)] is an n-vector of 

generalized coordinates. We propose to use the 

eigenfunctions of a cantilever beam in free vibration as 

comparison functions in this analysis since they satisfy all 

the boundary conditions in Eqs. (5) and (6). Those 

eigenfunctions are 

𝜙𝑖(𝑥)
= cosh(𝛽𝑖𝑥) − cos(𝛽𝑖𝑥)

−
cosh(𝛽𝑖𝑙) + cos(𝛽𝑖𝑙)

sinh(𝛽𝑖𝑙) + sin(𝛽𝑖𝑙)
[sinh(𝛽𝑖𝑥)

− sin(𝛽𝑖𝑥)] 

(8) 

The values of 𝛽𝑖  are determined by the characteristic 

equation 

cos(𝛽𝑖𝑙) cosh(𝛽𝑖𝑙) = −1 (9) 

Substituting Eq. (7) into the equation of motion Eq. (4), 

pre-multiplying by 𝚽(𝑥), and integrating over the whole 

length of the beam, we obtain the spatially discretized 

equations of motion 

𝑀q̈(𝑡) + 𝐾q(𝑡) = f 𝑢̈(𝑡) (10) 

where 

𝑀 = ∫ 𝑚𝚽𝚽𝑇
𝑙

0

𝑑𝑥 

𝐾 = ∫ 𝚽𝐿𝚽𝑇𝑙

0
𝑑𝑥                                                   (11) 

𝐟 = −∫ 𝑚𝚽
𝑙

0

𝑑𝑥 

are the mass and stiffness matrices, L is the stiffness 

operator, and f is the generalized force vector. 

𝐿 = 𝐸𝐼
𝑑4

𝑑𝑥4
−𝑚𝑔

𝑑

𝑑𝑥
[(𝑙 − 𝑥)

𝑑

𝑑𝑥
] (12) 

The natural frequencies can be obtained by solving the 

eigenvalue problem 

𝐾𝐩𝑖 = 𝜆𝑖𝑀𝐩𝑖 
 

(13) 

where 𝜆𝑖 = 𝜔𝑖
2 and 𝐩𝑖 are the eigenvectors (𝑖 = 1, 2,… , 𝑛). 

The eigenvectors are orthogonal with respect to M and K 

and are normalized to satisfy 

𝐩𝑗
𝑇𝑀𝐩𝑖 = 𝛿𝑖𝑗  ,     𝐩𝑗

𝑇𝐾𝐩𝑖 = 𝜆𝑖𝛿𝑖𝑗  ,      

𝑖, 𝑗 = 1, 2, … , 𝑛 
(14) 

The discretized system of equations of motion Eq. (10) 

can further be decoupled. We consider a solution in the 

form 

𝐪(𝑡) = 𝑃𝛈(𝑡) (15) 

in which 𝑃 = [𝐩1, 𝐩2, … , 𝐩𝑛, ] is a eigenvectors matrix and 

𝛈(𝑡) is a vector of modal coordinates. Introducing Eq. 

(15), pre-multiplying by PT and using the orthonormality 

relations, Eq. (14), we obtain the modal equation 

𝛈̈(𝑡) + Λ𝛈(𝑡) = 𝐛𝑢̈(𝑡) (16) 

where Λ = diag(𝜆1, 𝜆2, ⋯ , 𝜆𝑛) and 

𝐛 = 𝑃𝑇𝐟 (17) 

is the modal force vector. Equation (16) represents a 

system of n-number of independent equations of motion.  
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4.2. Frequency Modulation 

The resonant frequencies of the model-based feedback 

system in Fig.2 are modulated to the point where all higher 

modes frequencies become odd-multiples of the first mode 

frequency as 

𝜔̃𝑖 = 𝑟𝑖𝜔1 𝑟𝑖 = 2, 3, … , 𝑛 𝑟𝑖 ∈ (2𝑁 + 1) (18) 

Either one of the discretized models of the hanging 

beam in Eqs. (10) and (16) can be used as a model in the 

feedback system. However, The model in Eq. (10) requires 

a feedback of the generalized coordinates 𝐪(𝑡). The 

response of any generalized coordinate may include 

components in all resonant frequencies of the hanging 

beam. Using such feedback may be undesirable due to its 

wideband of frequency content. Therefore, we will choose 

to work with the decoupled discretized model in Eq. (16) 

since this model gives us control over the frequency 

content in the feedback signal. Based on the hanging beam 

model in Eq. (16), a feedback law in the following form is 

used: 

𝑢̈(𝑡) = ∑𝑎𝑖

𝑛

𝑖=1

𝜂̈𝑖(𝑡) = 𝒂
𝑇𝛈̈(𝑡) (19) 

where 𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑛−1, 0]
T is the feedback gains 

vector. Note that the highest frequency mode is not 

included to minimize high frequency content in the 

feedback signal. Substituting Eq. (19) into Eq. (16) as 

𝛈̈(𝑡) + Λ𝛈(𝑡) = 𝐛𝒂𝑇𝛈̈(𝑡) (20) 

the eigenvalue problem becomes 

|Λ − 𝜆(𝐼 − 𝐛𝒂𝑇)| = 0 (21) 

where I is the (𝑛 × 𝑛) identity matrix. The modulated 

frequencies 𝜔̃𝑖 must satisfy the characteristic equation 

(𝜆 − 𝜔̃1
2)∏(𝜆 − 𝑟𝑖

2𝜔̃𝑖
2)

𝑛

𝑖=2

= 0 (22) 

where 𝑟𝑖 are the odd-integer frequency ratios. Initial 

selection of the targeted frequency ratios are determined 

by rounding the exact frequency ratios of the hanging 

beam model to the nearest odd-integers as 

𝑟𝑖 = 2 round [
1

2
(
𝜔𝑖
𝜔1

− 1)] + 1  (23) 

𝑖 = 2, 3, … , 𝑛  where 𝑟1 = 1.   

4.3.  Numerical Simulations 

To validate the performance of the FM input shaping 

strategy, simulations are performed using a 0.6 m 

maneuver with the maximum velocity set to 0.3 m/s and a 

maximum unshaped acceleration of 0.9 m/s2. Time-

Optimal Rigid-Body (TORB) acceleration command is 

used as a basic unshaped input command to the FM input 

shaper. Simulations are performed using both; ZV and 

ZVD primary input shapers. 

Since the energy and mode participation of higher 

modes is minimal, a three-mode discretized model of the 

beam is used, which is a common practice in simulating 

transverse vibrations of beams. Given the beam properties 

described above, the inertia and stiffness matrices, M and 

K are 

𝑀 = [
0.1357 0 0
0 0.1357 0
0 0 0.1357

] 

𝐾 = [
3.510 −0.5620 −1.427
−0.5620 67.26 2.515
−1.427 2.515 470.3

] 

The natural frequencies of the first three modes of the 

hanging beam, using Eq. (13) are 

𝜔1 = 5.079 rad/s 
𝜔2 = 22.26 rad/s 
𝜔3 = 58.87 rad/s 

(24) 

The associated modal matrix is 

𝑃 = [
1.000 −0.008677 −0.003064

0.008696 1.000 0.006244
0.003009 −0.006271 1.000

] (25) 

According to Eq. (16), the three decoupled modal 

equations of motion of the beam are 

𝛈̈ + [
25.80 0 0
0 495.6 0
0 0 3466

] 𝛈

= [
−0.7875
−0.4255
−0.2546

] 𝑢̈(𝑡) 

(26) 

Based on the feedback control law of the frequency-

modulation stage, Eq. (19), the feedback control law for 

the three-modes discrete model of the beam is 

𝑢̈(𝑡) = 𝑎1𝜂̈1 + 𝑎2𝜂̈2 (27) 

Given the model frequencies Eq. (24), the frequency 

ratios are 𝜔2/𝜔1 = 4.383 and 𝜔3/𝜔1 = 11.59. According 

to the rounding scheme in Eq. (23), the target modulated 

frequency ratios are 𝑟2 = 5 and 𝑟3 = 11. Substituting the 

control law, Eq. (27), into the characteristic equation (21), 

and substituting the frequency ratios 𝑟𝑖 into the 

characteristic equation of the modulated system Eq. (22), 

and solving both equations simultaneously, the first mode 

modulated frequency and the feedback gains are 

𝜔̃1 = 5.352 rad/s 
𝑎1 = −0.1283 

𝑎2 = −0.6479 

(28) 

Input shapers are designed for the first mode of the 

modulated feedback system 𝜔̃1. Assuming undamped 

dynamic response, the ZV and ZVD input shapers, Eqs. (1) 

and (3) are 

ZV = [
0.5 0.5
0 0.5870

] (29) 

ZVD = [
0.25 0.5 0.25
0 0.5870 1.174

] (30) 

Modal response of the discrete model in Figs. 4(b) and 

5(b) demonstrate successful elimination of vibrations in all 
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modes of the discrete model using both ZV and ZVD 

primary input shapers. However, due to the fact that the 

modulated second-mode frequency is five-times faster than 

the first-mode, high frequency content is included in the 

command signal of Eq. (27). This is reflected on the 

acceleration commands in the form of high command 

fluctuations in Figs. 4(a) and 5(a). 

To overcome this problem, the modulated second mode 

frequency is brought closer to the modulated first mode 

frequency by setting the second-mode frequency ratio to 

𝑟2 = 3. The first mode modulated frequency and the 

control law gains become 

𝜔̃1 = 5.352 rad/s 
𝑎1 = −0.1198 

𝑎2 = 1.940 

(31) 

As expected, maintaining a fixed frequency ratio 

between the highest and the lowest modes of the system, in 

this case 𝑟3 = 11, regardless of the intermediate frequency 

ratio, 𝑟2, the modulated first mode frequency remains the 

same. Only the feedback gains of the control law change. 

Therefore, input shapers Eqs. (29) and (30) are applicable. 

The frequency content and fluctuations in the 

acceleration commands in Figs. 6(a) and 7(a) dropdown 

significantly as a result of the lower frequency feedback 

command signal. To investigate further possible 

improvement in the command profile, the second mode 

frequency is set equal to the first mode frequency by 

setting the second-mode frequency ratio to 𝑟2 = 1. The 

first mode modulated frequency and the control law gains 

become. 

𝜔̃1 = 5.352 rad/s 
𝑎1 = −0.01323 

𝑎2 = 34.29 

(32) 

Setting the second-mode frequency ratio to 𝑟2 = 1 

means that the feedback will have single frequency 

content, which is the lowest frequency of the modulated 

system. The effect of this frequency reduction is observed 

clearly in the much smoother acceleration commands in 

Figs. 8(a) and 9(a). However, this also means that the 

modulated system exhibits a double-root at the lowest 

frequency. The ZV input shaping technique fails in this 

case, Fig. 8. However, the ZVD input shaping technique 

continues to perform successfully due to its reduced 

sensitivity to double-roots in the system, Fig. 9. 

 

 

 

 

 

 
Figure 4. (a) Shaped acceleration and (b) modal response using a ZV primary shaper and a modulated second mode ratio of 𝑟2 = 5. 

 

  
Figure 5. (a) Shaped acceleration and (b) modal response using a ZVD primary shaper and a modulated second mode ratio of 𝑟2 = 5. 
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Figure 6. (a) Shaped acceleration and (b) modal response using a ZV primary shaper and a modulated second mode ratio of 𝑟2 = 3. 

 

  
Figure 7. (a) Shaped acceleration and (b) modal response using a ZVD primary shaper and a modulated second mode ratio of 𝑟2 = 3. 

 

  
Figure 8. (a) Shaped acceleration and (b) modal response using a ZV primary shaper and a modulated second mode ratio of 𝑟2 = 1 

 

  
Figure 9. (a) Shaped acceleration and (b) modal response using a ZVD primary shaper and a modulated second mode ratio of 𝑟2 = 1. 

 

 

4.4. Finite Element Simulations 

The finite element analysis simulations are performed 

using the commercial FEA software Abaqus, version 6.12. 

The analysis consists of two steps. In the first step, a linear 

perturbation procedure is performed to calculate the 

natural frequencies and corresponding mode shapes. In the 

second step, a transient modal dynamic linear perturbation 

analysis that utilizes modal superposition is conducted. 

Abaqus/Standard implicit integration technique is used in 

this work. The reason for choosing Abaqus/Standard 

instead of Abaqus/Explicit is due to its ability to model 

low speed dynamic events with high accuracy at 

reasonable computational cost. On the other hand, 
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Abaqus/Explicit is particularly suitable for high speed 

dynamic events and applications where severe contact 

exists such as crash tests. 

Two node planar beam elements that use linear 

interpolation with lumped mass formulation are utilized. 

The first three modes obtained are in Fig. 10. These 

elements use Timoshenko beam theory that allows for 

transverse shear deformation. A mesh convergence study 

is performed to ensure accurate results with a mesh that is 

sufficiently dense yet not overly computational expensive. 

As a result, the beam is modeled using 200 two node 

planar beam elements. 

 
Figure 10. First three modes of the finite element model of a 

hanging beam 

The default eigenvalue extraction method used in 

Abaqus is the Lanczos method. In this method, a set of 

Lanczos runs are performed. Each run consists of a 

number of iterations called steps. In each run, the spectral 

transformation, which allows rapid convergence to the 

desired eigenvalues, is applied. Further details about the 

Lanczos algorithm are available in [48]. 

The first three frequencies of the FEA model are 

𝜔1 = 5.078 rad/s, 𝜔2 = 22.25 rad/s, and 𝜔3 =
58.85 rad/s. These values are in excellent agreement with 

those obtained using the discretized model Eq. (13). 

The simulation cases, performed using the discrete 

model of the hanging beam, are repeated using the finite 

element model of the beam. The beam-tip deflection in all 

cases is shown in Fig. 11. Results in Fig. 11 demonstrate 

excellent match between the discrete model and the finite 

element model simulations. The fact that the FM input 

shaper designed using a three-mode linear approximation 

of an Euler-Bernoulli beam retains its successful 

performance on a finite element Timoshenko model of the 

hanging beam demonstrates a strong robustness of the FM 

input shaping technique to modeling uncertainties. 

 

 

 
 

 
Figure 11. (a) Beam tip deflection of the finite element model (FEM) and the discrete model (DM) using frequency-modulation with (a) a 

primary ZV shaper and (b) a primary ZVD shaper for different modulated second mode frequency ratios. 
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5. Discussion and Conclusions 

Multimode frequency-modulation input shaping is a 

control strategy developed to overcome one major 

drawback of multimode input shaping techniques. 

Multimode convolved input shaping techniques are 

derived from the convolution of several single-mode input 

shapers, each targeting a specific frequency. Convolved 

input shapers intended for high frequencies tend to be 

impractical due to the high rate of impulses required and 

the bandwidth limitations on systems' actuators. Inherent 

time delays in most multimode systems further 

compromise the performance of those high-frequency 

input shapers. Simultaneous multimode input shapers tend 

to be slower, and require high number of shaping impulses 

depending on the order of the system. These impulses 

result in practically undesirable jerky input commands. 

Multimode FM input shaping strategy uses only one 

single-mode input shaper designed for the slower first 

mode frequency of the system. Using a single mode input 

shaper minimizes the number of impulses involved in the 

shaping process. Frequency-modulation facilitates 

eliminating all modes of vibrations of a multimode system 

simultaneously. 

In this frequency-modulation strategy, the selection of 

the design set of frequency ratios that satisfy the odd-

multiple frequencies condition is flexible. The ratios can 

be selected to meet certain design performance. In the case 

of the flexible manipulator presented, the design 

requirement was to reduce shaped input fluctuations, 

which is a desirable feature in most systems since 

smoother commands are easier to produce and follow. 

Smooth commands with minimum fluctuations can be 

achieved by imposing a double-root condition at the lowest 

frequency of the modulated system. However, it is 

imperative that a robust primary input shaping technique is 

used in conjunction with frequency-modulation.  

It is important here to emphasize that the multimode 

FM input shaping may be implemented using different 

primary input shapers, and is not limited to the ZV and 

ZVD input shaping techniques. The proposed strategy is 

not intended for enhancing performance of input shaping 

techniques, rather it is intended to reduce the number of 

input shapers required to eliminate all modes of vibration 

of the system.  

Simulation results show that the performance of the 

proposed strategy is as effective and as stable as the 

primary input shaping technique used in conjunction with 

the FM stage. Results show that the proposed multimode 

FM input shaping is not vulnerable to modeling 

uncertainties and omitted nonlinearities. This can be 

concluded by the excellent match between the simulation 

results using a linear Euler-Bernoulli model and the results 

obtained using a Timoshenko finite element model of a 

hanging beam. 
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