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Abstract: 

Elman Networks is a one of the dynamic recurrent neural networks. In this research it is used for the prediction of surface 
roughness in Electrical Discharge Machining (EDM). Training of the models was performed with data from series of EDM 
experiments on SKD 11 (AISI D2)  Tool steel; in the development of predictive models, machining parameters of discharge 
current, pulse duration and duty cycle were considered as model variables with a constant voltage 50 volt. For this reason, 
extensive experiments were carried out in order to collect surface roughness dataset. The developed model is validated with 
a new set of experimental data, and predictive behavior of models is analyzed. The reported results indicate that the proposed 
model can satisfactorily predict the surface roughness in EDM. And can be considered as valuable tools for the process 
planning for EDMachining. 
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1. Introduction  

Due to capability of manufacturing components of any 
hardness and shape on wide range of conductive 
engineering materials, electro discharge machining (EDM) 
is one of the well-established manufacturing methods in 
modern manufacturing field. In this manufacturing 
technique, material removal is caused by repetitive minute 
electric discharges within the electrode-workpiece-die 
electric interface. Each discharge, due to high energy 
concentration, removes from the workpiece surface a small 
quantity of material in form of molten metal drops and 
even vapors, meanwhile the discharge location on the 
workpiece surface is in part stochastic and in part 
dependent on surface micro relief. The outcome of such a 
unit-event is the characteristic crater. The mechanism of 
the crater formation is a complex phenomenon involving 
several disciplines of science and branches of engineering. 
The theories revolving around the formation of plasma 
channel between the tool and the workpiece, 
thermodynamics of the repetitive spark causing melting 
and evaporating the electrodes, micro-structural changes, 
and metallurgical transformations of material, are still not 
clearly understood. However, it is widely accepted that the 
mechanism of material erosion is due to intense local 
heating of the workpiece causing melting and evaporation 

of workpiece. Therefore, it is hard to establish a model that 
can accurately predict the performance by correlating the 
process parameter. 

Surface roughness (Ra) is a significant upshot in the 
manufacturing process and it materializes a major part in 
the manufacturing system. Therefore, characterization, 
prediction, and modeling of quality of EDMed component 
surface roughness play a vital role. The component, having 
good surface, improves the fatigue strength, wear 
resistance and corrosion résistance of the surface. Ra 
depends on different machining parameters and its 
prediction and control is a query to the researchers.  

Artificial neural networks are simplified models of the 
central nervous system. They are networks of highly 
interconnected neural computing elements. In the recent 
past, neural networks have been shown to be the highly 
flexible modeling tools surely due to their well-known 
characteristics of adaptability and non-linear universal 
mapping approximations. It has the capability to handle 
problems such as modeling, estimating, prediction, 
optimization, diagnosis and adaptive control in complex 
non-linear systems. It is observed that the neural network 
applications play a very important role in predicting 
surface roughness in EDM. Recurrent neural networks are 
useful for storing information about time and particularly 
suitable for time series prediction [1]. Tsai and Wang [2] 
applied various neural network architectures for the 
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prediction of the Ra and MRR in EDM and agreed to the 
predictions based upon the models. Indurkhya and 
Rajurkar [3] attempted to model a 9-9-2 size back 
propagation neural network for the prediction of Ra and 
MRR., where the 9 different machining parameters, such 
as machining depth, tool radius, orbital radius, radial step, 
vertical step, offset depth, pulse on time, pulse off time 
and discharge current are selected as input parameters are 
used to determine the two outputs Ra and MRR. The 
model predictions are compared with estimates obtained 
via multiple regression analysis, and found more accurate 
and also less sensitive to noise induced in the experimental 
data than that of multiple regressions model. Panda and 
Bhoi [4] developed an artificial feed forward neural 
network to predict MRR of SKD 11 grade steel. This 
model performs well under the stochastic environment of 
actual machining conditions without understanding the 
complex physical phenomena exhibited in EDM, and 
provides faster and more accurate results. They found that 
the 3-4-3-1 neural architecture has the highest correlation 
coefficient and used it for the analysis. Wang et al. [5] 
combined the capabilities of Artificial Neural Network 
(ANN) and genetic algorithm to find an integrated solution 
to the existing problem of modeling and optimization of 
EDM processes. Markopoulos et al. [6] proposed ANN 
models for the prediction of Ra of EDMed surfaces. The 
experiments were conducted on five steel grades, namely a 
mild steel, a carbon steel, and three alloyed steels, were 
tested while pulse current (Ip) and the pulse duration (Ton) 
varied over a wide range. Results reveled that proposed 
ANNs models can satisfactorily predict the response. 
Pradhan and Biswas [7] presented a neuro-fuzzy model to 
predict MRR of AISI D2 tool steel with different process 
parameter such as Ip, Ton and duty cycle (τ), and the 
model predictions were found to be in good agreement 
with the experimental results. Pradhan et al. [8] applied the 
neural network models namely back-propagation and 
radial basis function for the prediction of Ra. Using Ip, 
Ton and τ as input parameters, experiments are conducted 
on D2 steel. It is reported that former shows slightly better 
performance than the latter, however latter model is faster. 
Portillo [9;10] used recurrent neural network approach to 
detect in advance the degradation of the cutting process 
due to the memorization capability and the dynamic 
character of the Elman architecture.  

It is observed that the neural network is widely used in 
EDM process for the prediction of responses and effect of 
the parameters on them. However recurrent neural network 
is not used yet for the prediction of Ra in EDM. Though 
this net has been efficient identification tool in many areas 
as they have dynamic memories. In this study, recurrent 
neural network approach, named Elman network [11], is 
used for the prediction of the center-line average surface 
roughness, Ra of electrical discharge machined surfaces is 
discussed. The proposed models use data for the training 
procedure from an extensive experimental research 
concerning surface integrity of EDMed D2 steels. Ip, Ton, 
and τ were considered as the input parameters of the 
models. The Ip, Ton, and  varied over a wide range, from 
roughing to near-finishing conditions. The proposed neural 
networks trained with the feed forward back propagation 
algorithm and were proven to be successful, resulting in 

reliable predictions, providing a possible way to avoid 
time and money-consuming experiments. 

2. Experimental Details 

Experiments were conducted on Electronica 
Electraplus PS 50ZNC die sinking machine. A cylindrical 
pure copper was used as a tool electrode (of positive 
polarity) with a diameter of 30 mm and workpiece 
materials used were AISI D2 tool steel square plates of 
dimensions 35 ×35 mm2 and thickness 4 mm. Commercial 
grade EDM oil (specific gravity = 0.763, freezing point= 
94◦C) was used as dielectric fluid. Lateral flushing with a 
pressure of 0.3 kg f /cm2 was used. Keeping the voltage 
constant at 50 V, number of experiments was conducted to 
investigate the effects of Ip, Ton and τ on Ra, where τ is 
defined as: 

100
Toff Ton 

Ton ×
+

=τ                              (1) 

The experimental conditions and the levels of the input 
parameters are shown in Table 1. Each treatment of the 
experiment was run for 15 minutes and the Ra was 
measured. 
Table 1. Experimental conditions 

Sparking voltage in V 50 

Current (Ip), in A 1 5 10 20 30 50 

Pulse on Time (Ton), in 
μs 

5 10 20 30 50 100 150 200 500 
750 

Duty Cycle (τ) in % 50  85 92 

Dielectric used Commercial grade EDM oil 

Dielectric flushing Side flushing with pressure 

Work material SKD 11 tool steel 

Electrode material Electrolytic pure Copper 

Electrode polarity Positive 

Work material polarity Negative 

3. Surface Roughness Measurement 

The Ra is used to portray the technical surface quality 
of an engineering component. It has a very significant 
influence on the manufacturing outlay of a product. A 
good quality surface enhances the fatigue strength, 
corrosion, and wear-resistance of the workpiece. There is a 
number of ways by which surface roughness of a 
component is described, such as roughness average (Ra), 
root-mean-square (rms) roughness (Rq) and maximum 
peak-to-valley roughness (Ry or Rmax), etc. In this work, 
Ra is used, which is measured using Talysurf (Taylor 
Hobson, Surtronic 3+). The profilometer was set to a cut-
off length of 0.8 mm, filter 2CR, traverse speed 1 
mm/second and 4 mm evaluation length. Roughness 
measurements, in the transverse direction, on the 
workpieces were repeated four times and average of four 
measurements of surface roughness parameter values was 
recorded. The measured profile was digitized and 
processed through the dedicated advanced surface finish 
analysis software Talyprofile for assessment of the 
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roughness parameters. Ra can be defined as the arithmetic 
value of the profile from centerline along the sampling 
length. It can be express as  

∫= dxxy
L

Ra )(1
                                                          (2) 

Where L is the sampling length, y is the profile curve 
and x is the profile direction. The average Ra is measured 
within L = 0.8 mm. Centre-line average Ra measurements 
of electro-discharge machined surfaces were taken to 
provide quantitative evaluation of the effect of EDM 
parameters on surface finish. 

4. Predictive Models for Surface Roughness 

Recurrent networks are a special type of the dynamic 
neural nets. The Elman neural network is a simple 
recurrent neural network. This network is similar to an 
architecture proposed by Jordan [12].   Eleman network 
reveals a rich structure that permits them to be highly 
context-dependent, and also states generalizations across 
classes of items. Yet, to have a real-time (online) learning 
ability, standard back propagation (BP) training for 
Eleman network, known as Elman BP [13]. This 
architecture is standard feedforward architecture with 
layers of inputs, hidden units, and output units. It is a 
single hidden layer feedforward neural network. All 
neurons in one layer are connected with all neurons in the 
next layer. The outputs of the hidden layer are allowed to 
feed back to the context layer, and to augment additional 
units at the input level. Therefore, the input layer is 
constituted by the input nodes plus these context nodes. 
The context unit is fully connected with all the hidden 
units in a forward manner. The neurons in the context 
layer hold a copy of the output of the hidden neurons. The 
output of each hidden neuron is copied into a specific 
neuron in the context layer. The value of the context 
neuron is used as an extra input for all the neurons in the 
hidden layer one-time step later. Therefore, the Elman 
network has an explicit memory of one time lag. 

In Elman network, both the input units and context 
units activate the hidden units. Since the context units are 
in the initial state, only the input units contribute to the 
activation of the hidden units at 1−t . The hidden units 
are then fed forward to activate the output units and, at the 
same time, fed back to activate the context units on the 
second step at the time t . Now, the context units contain 
the exact values of those of the hidden units. The 
information in the context units and input units receive the 
new input vector to activate the hidden units at time 1+t . 
The hidden units then activate the output units, as well as 
the context units at time 2+t . The above process is 
repeated at the next time step. Thus, these context units 
provide the network with information that is recurrent in 
time. 

Figure 1. Architecture of the Elman Network. 

The structure of an Elman recurrent neural network is 
illustrated in Fig. 1. Here, I , H , O  and 1−z  are input 
layer vector, hidden layer vector, context layer vector, 
output layer vector and unit delay element, respectively. 
The weight matrix between input layer and hidden layer is 

1W , the weight matrix between context layer and hidden 
layer is 2W  and the weight matrix between hidden layer 
and output layer is 3W . 

At tth iteration,  

( ) niItxi ,,1, =∈  

( ) lkOtzk ,,1, =∈  

( ) ( ) mjCtcHty jj ,,1, =∈∈  

where i and k are the number of nodes of input layer 
and output layer respectively and j is the number of nodes 
of hidden layer and context layer. Considering the 
activation function ( )•f  for jth hidden node, the outputs 
of the neurons in the hidden layer and output layer for time 
t are can be given by 

, 

and 

where 22,11 WwWw ijij ∈∈  and 33 Ww jk ∈  

For initial step, ( ) 00 =jy . The context layer input at 
1=t  leads to ( ) 01 =ic . The weights are updated 

according to  

where η  is the learning rate.  

That minimizes the approximation error E in the output 
layer is given by 

( ) ( )
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where ( )tTk  is the target value at t th iteration and p  is the 
length of the training sequence.  

Weight coefficient matrix 1W  and 3W  can be 
updated using any of the back-propagation algorithms as 
done in feedforward neural network. But weight 
coefficient matrix 2W  can be adjusted using derivative 
chain rule [14]. 

 
Figure 2 .Errors_ Epochs_ Nodes at hidden layer. 

Figure 3: 489 iteration in the Elman's learning process 
 
RNN is observed separately with results obtained by 

experiments and the average error obtained for the 
networks. The test result accuracy measured in terms of 
mean absolute error (MAE) for 9 test data are found to be 
0.31355. The experimental results and predicted results of 
‘Ra’ by the RNN were plotted, as shown in Fig 4. 

Figure 4. Comparison between experimental and predicted data 
for Ra. 

The variations of prediction error (calculated as the 
difference between the experimental findings and 
predicted values) plotted against run for training and 
validation sets for Eleman’s model is shown also in the 
figure 5.  Except for an outlier, the validation set exhibits 
very accurate prediction. The error for the model, 
calculated as the difference between the experimental 
findings and predicted values and the pattern of the 
residual plot, is scattered, which does not shows any 
pattern/trend that indicates that the model is certainly 
adequate. A good model fitting this plot should show a 
random scatter and have no pattern [12]. However, the 
absolute percentage prediction error is tabulated in 
Table.2. 

Figure 5.Residual plot vs. Run. 

Figure 5 shows the scatter plot of predicted Ra using 
Elman’s network and Experimental Ra, respectively. The 
correlation coefficients (r) between Experimental and 
predicted value of Ra is 0.999,  from a statistical judgment, 
the closer this number is to 1, the more powerful the 
network in correlating the input space to the output space. 
The plot of Experimental and predicted output is presented 
in Fig. 6. Since all the points on plot come close to form a 
straight line, it implies that the data are normal. Therefore, 
the Elman’s network can be used to attain a function that 
maps input parameters to the desired process outputs in 
EDM. The predicted values are quite close for most of the 
data points.  
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Figure 6.  Correlation between experimental data and neural 
network output. 

Table 2. Results from production data sets for surface roughness 
model 

.S. 
no 

Experimental 

Ra 

Eleman’s  

predicted Ra 

% error 

1 7.06 7.22 2.35 

2 6.64 6.88 3.76 

3 7.5 7.26 3.07 

4 11.56 11.87 2.72 

5 9.4 9.19 2.15 

6 8.84 8.60 2.67 

7 4.46 4.81 7.95 

8 16.2 16.95 4.66 

5. Conclusion  

Elman neural network is discussed in details by 
predicting Ra. The present study has demonstrated a new 
application of the Elman recurrent neural network to the 
prediction of Ra. The Elman network has performed 
satisfactorily in the prediction of Ra. Instead of conducting 
actual experiments in EDM for different values of 
machining parameters, a suitable intelligent system can be 
used to predict Ra. When a desired Ra is obtained, a 
confirmation test can then be conducted experimentally to 
verify the predicted Ra. By using this approach, lengthy 
and time-consuming experimentation in EDM can be 
reduced. From our work, the potential of using an 
intelligent learning system for prediction is evident. 
Therefore, we believe that ANNs can be used as a 
powerful tool in manufacturing system, as well as other 
areas in modern manufacturing industry, so that the 
development tasks can be performed rapidly and 

efficiently with an increase of productivity, consistency 
and quality.  
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