
JJMIE 
Volume 6, Number 2, April  2012 

ISSN 1995-6665 

Pages 193 - 198 

Jordan Journal of Mechanical and Industrial Engineering  

A Sharp-Interface Fluid-Structure Interaction Algorithm for Modeling 

Red Blood Cells 

T. D. AlMomani*
,a
, S. C. Vigmostad

b
 and L. A. Alzube

a
 

aBiomedical Engineering Department, The Hashemite University, P.O. Box 150459, Zarqa  13115, Jordan 
 bBiomedical Engineering Department, The University of Lowa, Iowa city, IA, USA 52242

                                                           
* Corresponding author. e-mail: thakir2000@hu.edu.jo 

 

Abstract 

RBC deformation is thought to play a major role in both RBC dynamics and functionality. Due to the difficulty of 
experiments on real RBCs, researchers tend to perform computational simulations that can cover RBC dynamics and blood 
rheology. However, modeling of RBC with physiological conditions is still not completely well established. The current work 
utilized the immersed interface method and implements the fluid structure interaction technique to propose a new 
computational model of RBC as a biconcave fluid-filled cell. RBC is presented by a two dimensional hyperelastic massless 
membrane that surrounded by plasma and enclosed hemoglobin. The physiological viscosity ratio for the hemoglobin to that 
of plasma and their interactions with the cell membrane is considered. Pressure and velocity jump conditions are applied at 
the membrane, so that the influence of extracellular fluid can be transferred to the intracellular fluid. The model was applied 
to study the deformation of a single RBC as it flows in straight channels with geometries similar to that could find in 
capillaries with low Reynolds numbers that vary from 0.001 to 0.01. As Reynolds number increases, RBC shows higher 
levels of deformation. Flow fields through the cell membrane are appeared to be different and jumps in both velocity and 
pressure can be clearly seen. 
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1. Introduction 

The primary function of red blood cells (RBCs) or 

erythrocytes is delivering oxygen to different body organs 

and tissues. RBCs can be defined as nucleus-free 

deformable liquid capsules enclosed by a biological 

membrane that is nearly incompressible and exhibits a 

viscoelastic response to shearing and bending deformation 

[7]. Many researchers have described RBC as a capsule 

that consists of an elastic membrane that encloses a 

concentrated solution of hemoglobin [6]. RBCs are 

produced from bone marrow at a rate of 2 – 3 million cells 

per second, and have a lifespan of roughly 120 days. Adult 

humans have about 2–3 × 1013 red blood cells that 

circulate around their cardiovascular system. Hematocrit is 

defined as the volume percentage of RBCs in the whole 

blood; it’s about 47% for adult men, and 43% for the adult 

women. RBCs have a distinctive biconcave shape, with 

8μm diameter and 2 μm thickness. This shape gives RBCs 

a larger surface area, about 47% higher than a sphere of 

the same volume [3]. Additionally, this shape gives RBC 

the ability to exhibit high levels of deformation as it 

exposed to blood forces or flow in small diameter 

capillaries. Secomb 2003 has reported that RBCs can be 

folded and flow through a capillary with a diameter as 

small as 2.8 μm [17].  

To date, many studies (both experimental and 

numerical) have been accomplished on RBC dynamics and 

their interaction with blood plasma, other blood 

constituents, vessel walls, and medical implants. The 

motivation of these studies would be among one of the 

following main reasons: 

 

 At the microcirculatory level, the particulate nature of 

the RBC becomes important in determining blood 

properties and behavior, such as viscosity and non-

Newtonian nature of the blood.  

 Studying the biconcave shape of healthy RBCs helps 

in assessing cell membrane stress state . 

 RBCs are proposed to have a major role in many 

cardiovascular diseases such as thrombosis (platelet 

activation) and atherosclerosis.  

 

The small size, and high sensitivity to external 

conditions makes it difficult to perform in vivo 

experimentations on RBCs and other blood particles. 

Consequently, researchers tend to design experiments with 

single RBCs and employed simplified flow conditions 

[11]. Also due to these challenges, researchers took 

advantage of various numerical techniques to study the 

behavior of RBCs under different flow conditions and 

circumstances.  They used different numerical methods 

such as finite element, immersed boundary, and boundary 

element techniques which can capture the deformation of 
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RBCs in different flow environments [11]. However, these 

numerical simulations have invoked significant 

assumptions in modeling the RBCs that are not 

physiologically correct [6].  

Over the past few decades efforts to describe the 

micromechanics of the RBCs have led to several 

mathematical and computational models, the most popular 

RBC models are: 

 

 Modeling RBCs as elliptical non-deformable particles 

[1]. 

 Modeling RBCs as elliptical deformable particles [10, 

17]. 

 Modeling RBCs as fluid bubbles that resist flow by 

surface tension [25]. 

 Modeling RBCs as biconcave, assuming that the 

membrane is an elastic material that resists shearing, 

bending, or both [16]. 

 Modeling RBCs as biconcave, assuming that the 

membrane is a viscoelastic material that resists 

shearing and bending [4, 5]. 

 

The current work proposes a new model of the RBC as 

a biconcave, fluid-filled cell. This model considers a 

physiologically realistic viscosity ratio for the RBC 

intracellular fluid (primarily hemoglobin) to that of outer 

cellular fluid (or blood plasma) and the interactions with 

the cell membrane. Furthermore, RBCs  are treated using 

an immersed interface approach similar to the one 

described in Lai and Li 2001 and Vigmostad et al. 2009 

[12, 23].  

The RBC membrane was modeled as a hyperelastic, 

massless membrane that separate two fluids, blood plasma 

outside and hemoglobin inside [2]. Membrane deformation 

was computed based on fluid forces on both sides of the 

membrane, where velocity and pressure jump conditions 

are imposed on the fluid based on the calculated 

membrane stresses. 

2. Computational Approach 

2.1. Governing Equation: 

 

Continuity and momentum equations of incompressible 

flow with constant density were solved. The non-

dimensionlized forms of these equations are given by: 

 

0 u  (1) 
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Where  D00Re U , denotes the Reynolds number, F 

is a term that represent a singular force at the RBC 

membrane (this term will discuss later in details). The 

following variables are used as non-dimensionalzing 

groups: 
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Where, u is the dimensional velocity field, U0 is the 

average axial velocity at the inlet, r0 and m are the density 

and viscosity, and P* is the dimensional pressure. The inlet 

gap width is denoted by D0, and the characteristic pressure 

is r0U0
2. 

 

2.2. Flow solver and implicit representation of RBC: 

 

The governing equations are discretized using a cell-

centered collocated-variable semi-implicit approach. The 

solution is then advanced in time using the two-step 

fractional step method [24]. The embedded RBC is 

presented in the flow solver by using a sharp-interface 

method as used before in AlMomani et al 2008, Marella 

2005, Marella and Udaykumar 2004 [1, 13, 14].  RBCs are 

represented implicitly on the mesh using a level-set 

approach [18, 19, 20]. The level-set (representing an 

embedded boundary – here an RBC) is represented by a 

scalar field denoted by l, where l represents the lth 

embedded interface or RBC. The normal distance from the 

lth embedded interface at any point is representative of the 

value of l. Values of l less than zero (l <0) represent the 

inside of the RBC, values of l greater than zero (l > 0) 

represent the outside of the RBC, the boundary (the 

membrane) of the RBC is presented by the zero l values 

(i.e. l = 0). Motion and deformation of the interface is 

computed based on the flow field and tracked using 

Lagrangian points describing the interface boundary, and 

employed to compute the RBC deformation.  

 

2.3. Fluid structure interaction: 

 

Fluid structure interaction (FSI) technique involves 

solving flow interacting with immersed structures. 

Generally, there are two FSI approaches that can be 

employed by the flow solver currently in use: The first 

approach is that  in which the embedded object is treated 

as an immersed interface as described in Lai and Li 2001 

and further outlined in Vigmostad et al. 2009 [12, 23]. 

Here, the assumption is that the surrounding is a massless 

membrane interface contributes singular stress fields [23]. 

In this approach the viscosity inside and outside of the 

membrane can be different, as is appropriate in the case of 

an RBC. The second approach is that which the embedded 

object is treated as a solid object that deforms as a result of 

the surrounding fluid forces. In this case, no-slip and no-

penetration are used as boundary conditions on the solid 

surface [22]. The current work will utilize the first 

approach or FSI approach 1 to propose a new model of 

RBC as it expose to fluid forces. 

2.3.1. Modeling of RBC using of FSI approach: 

 

Here RBC is modeled as a hyperelastic massless 

membrane that separate two fluids, blood plasma outside 

and hemoglobin inside. The displacement and the 

deformation of this membrane are computed based on the 

fluid forces acting on this membrane as shown in Figure 1. 
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Figure 1: Force balance represented by a fluid-fluid 

interface separated by a membrane. 

2.3.2. Approach to jump conditions using delta function: 

 

Initially the singular force at the interface is presented 

by a delta function f, such that [12]: 

 

( , ) ( , , ) ( ( , , ))t r s t r s t drds


 f x F x X  
(3) 

 

Where ( , )tf x is the force density exerted by the 

membrane, and the membrane  is represented by 

( , , )r s tX  where r, s are parameters of a reference 

configuration where 0 rr L   and 0 ss L  . The 

Dirac delta function is three-dimensional, and the 

membrane force, ( , , )r s tF is a function of its 

configuration, where ( , , ) ( ( , , ), )r s t r s t tF S X . 

In other words, at any time, t, a region on the surface of 

the membrane is mapped onto a patch with area 

r sL L and all calculations are performed in this 

reference space [22]. 

These calculations could also be performed in the 

current space, with ( , )tF instead of mapping it back to 

a reference configuration. In this way, the above equation 

would change to: 

 

( , ) ( , , ) ( ( , ))t l m t t dldm


  f x F x X  
(4) 

 

Where l, m are parameterized curves acting in the two 

local tangent directions, 1 2,  . Consequently, by 

introducing the force f as a source term to the momentum 

equation, the governing equations of the fluid became as: 
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A summary of the jumps in pressure and velocities, and 

their derivatives, in the normal and two tangential 

directions are shown below: 
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Finally the FSI algorithm in approach 1 can be 

summarized in the following main steps: 

 

For any new time step (n+1): 

 

A. Compute the intermediate velocity, 
1* n

f
u
  

B. Iterate until pressure and stress are converged, 

iteration (k+1): 

 

 Solve for 1,1  knp  

 Correct velocity, such that 1,1  kn
fu


 

 move interface, 
1,11,1 


kn

f
kn

s uu


 

 compute interface stresses 1,1  kn  

3. Computational Results 

The above algorithm has been applied to investigate the 

deformation of a single RBC as it flows in a microchannel 

with flow conditions similar to what can be found in 

capillaries. A straight tube with diameter of 12 m 

(equivalent to 1.5 RBC major diameters) and length of 120 

m was used. Reynolds numbers of 0.001, 0.002, 0.004, 

and 0.01 were used in the current computations. Initially, 

the two dimensional (2D) unstressed biconcave shape of 

RBC, shown in Figure 2, is assumed. This shape is 

described by the following parametric equations [15]: 

 

sin

,cos)sin123.1sin003.2207.0(
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42
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ay
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(10) 

 

Where, a is the equivalent cell radius and equal to 2.8 

m,    = 1.38581894 is the ratio between the maximum 

radius of the biconcave disk (b in Figure 2), and the 

equivalent radius a, and finally, the parameter   ranges 

from -/2 to /2. 
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Figure 2: Biconcave shape of RBC. 
 

3.1. Boundary and initial conditions: 

 

At the inlet, the following parabolic velocity profile 

was used, 

 
22

max /)(4)( ii dyydy  uu  (11) 

 

Where u(y) is the velocity at y-location, umax is the 

maximum inlet velocity, and di is the inlet diameter of the 

geometry. At the outlet, the velocities were linearly 

extrapolated and corrected to be consistent with global 

mass conservation and a Neumann condition was applied 

on the pressure [13, 14]. Finally, a no-slip (or wall) 

boundary condition was applied on the top and the bottom 

of the geometry. 

 

3.2. Physiological assumptions: 

 

In the current computations, the plasma (the external 

fluid) is assumed to behave as a Newtonian homogenous 

fluid, with a viscosity coefficient of 1.2 cP and the internal 

fluid is hemoglobin which was treated as a homogenous 

Newtonian fluid, as well, with a viscosity coefficient that 

is equivalent to five times the plasma viscosity (i.e. 6 cP).  

It is also assumed that only viscous and inertial forces 

affect the deformation of the RBC membrane and the 

effect of gravity is neglected. RBC is initially arranged in a 

vertical position in which the major axis of the RBC is 

parallel to the y-axis (90 degrees). The computations were 

performed for enough time so steady state of RBC 

deformation is reached as show in the result section. 

 

3.3. Deformation of single RBC: 

 

The biconcave shape of the RBC is initially assumed as 

stress free shape; i.e. the membrane is initially constructed 

such that no stresses and no strains can be found in this 

membrane. The fluid and membrane are fully coupled, so 

that the stress in the membrane affects the fluid as well as 

the fluid motion and forces affect the membrane behavior 

and deformation. Since the membrane moves with the 

fluid velocity, then no-slip is enforced at the interface 

implicitly. Membrane stress is computed assuming a 

hyperelastic material model as: 

 

 = μ (FFT −  I) (12) 

 

Where, F is the deformation gradient,  is the Cauchy 

stress, and  is the Neo-Hookean elastic modulus, in the 

current computation a value of 0.005 dyn/cm is used [21]. 

The deformation profiles of a single RBC for Reynolds 

number values of 0.001, 0.002, 0.004, and 0.01 are 

presented in figure 3. The short axis of the RBC was 

coincided along the central axis of the capillary (or the 

straight tube). In all cases, RBC undergoes different levels 

of deformations. For Re = 0.001 (figure 3.a), RBC showed 

slight deformation and reached a steady state shape 

(starting at x = 5) allowing the deformed shape to be 

maintained as the RBC moves through the channel. Higher 

deformation levels are observed by increasing the 

Reynolds number (Figure 3: b, c, and d). 

Finally, and for all Reynolds numbers, the RBC 

appeared to fold (with different degrees) in response to the 

fluid forces and reach the steady state shape while it moves 

with the fluid across the channel. As the Reynolds number 

increases (i.e. higher inertia forces), RBC folds more. In 

the case of Re =0.01, the steady state deformed shape of 

the RBC was more like a parachute shape. 

 

3.4. Flow fields: 

 

Figures 3 shows the velocity contours of flow at 

different time step for a Re = 0.001, Re = 0.002, Re = 

0.004, and Re =0.01 respectively. This figure is also 

showing different deformation profiles of a single RBC as 

it exposed to a channel flow conditions, with flow values 

close enough or similar to the flow conditions that could 

find in the capillaries. RBC appeared to have major 

influence on both velocity and pressure fields. As can be 

observed in figure 4, that represent the pressure and 

velocity contours for deformed RBC with Re = 0.001, both 

velocity and pressure contours seem to jump at the area of 

the RBC membrane, also the pressure and velocity 

contours inside the RBC seem to be different form those 

out of the RBC. However, no discontinuity is observed 

between the two flow fields. This agrees with the idea of 

jump conditions which aims at transferring the influence of 

the outer fluid to the inner fluid through the RBC 

membrane without discontinuity. On the other hand, the 

differences between the two flow fields can be explained 

by the fact that these two fields have two different fluids 

with different viscosity values, which means that fluid 

forces are expected to be different in these two regions. 

Furthermore, the membrane of the RBC is expected to 

have a major contribution in the flow field through the 

membrane forces (or tension) that are applied to the fluids 

through the membrane forces or F term that imposed in the 

momentum equation. 
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Figure 3: Velocity contours and the deformation profile of a single RBC as it flows through a straight channel with: a) Re = 0.001, b) Re = 
0.002, c) Re = 0.004, d) Re = 0.01. 

 

 
Figure 4: Pressure, axial velocity, and transverse velocity contours in the focused in the region surrounding a single RBC. Applied Reynolds 

number = 0.001. 

4. Discussion and Conclusion 

A fluid-structure interaction (FSI) algorithm has been 

developed and used to study the behavior of deformable 

RBC as it flow in a microchannel with dimensions similar 

to that could find in capillaries. In this algorithm, RBC was 

presented as a biconcave, hyperelastic, massless membrane 

that enclosed a Newtonian fluid (representing 

hemoglobin). Two-dimensional simulations are used to 

study the effect of intracellular and extracellular fluids on 

the cell membrane. Physiological viscosity values of 

plasma (or extracellular fluid) and hemoglobin 

(intracellular fluid) are used in the current computations. 

The membrane was modeled as a Neo-hookean elastic 

material that deform as a result of net fluid forces acting 

on the membrane from both inner and outer sides. Pressure 

and velocity jump conditions are applied to transfer the 

influence of the external fluid through the membrane to the 

internal fluid.  

Reynolds number was defined based on the average 

axial flow velocity and using the diameter of the 

microchannel. At low Reynolds number of 0.001, RBC 

showed negligible deformation and it kept its un-deformed 

biconcave shape (Figure 3.a). This behavior changed as the 

Reynolds number increased resulting in higher levels of 

deformation. In all cases, RBC appeared to take a butterfly 

shape and fold more as the fluid inertia forces increases 

(higher Reynolds number) (Figure 3.b, c, and d). 

Furthermore, velocity and pressure contours were plotted 

to inspect the influence of the used jump conditions on 

both the extracellular and intracellular flows (Figure 4). 

Pressure and velocity contours seemed to change critically 

across the cell membrane. This change can be observed 

through the changes in the contour levels and gradients. 

Still, no discontinuity was observed between both sides of 

the membrane, which can be explained due to the use of 

proper pressure and velocity jump conditions. As 

mentioned earlier, the objective of using jump conditions 

is to transfer the influence and changes happening in the 

extracellular flow to the intercellular flow through the 

interaction and the deformation of the cell membrane. In 



 © 2012 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 6, Number 2  (ISSN 1995-6665) 

 

198 

the current approach, this goal has been achieved through 

the application of the membrane forces as a source term in 

the Navier-Stokes equations. This source term reflects the 

interaction between the elastic nature of the membrane 

itself and both intracellular and extracellular flow regimes. 

In conclusion, this work proposed a new technique to 

simulate physiological behavior of RBC using simplified 

flow condition. The agreement between the results of the 

current study and those found in the previous experimental 

and numerical studies improve that the new approach can 

be easily expanded to more realistic physiological flow 

conditions. Computations handle larger numbers of RBCs 

in the same domain as well as higher Reynold’s numbers 

are being currently investigated. These computations will 

include the interaction of deformable RBCs with other 

blood cells, artificial walls, and vessel walls. Furthermore, 

the current computations will be extended to involve 3D 

simulations of single and multi RBCs. 
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