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Abstract 

Most of the research on the balancing of shaking force and shaking moment generated by planar linkages was limited to 
mechanisms with low degree of complexity. This paper attempts for complete shaking force and shaking moment balancing 
of planar mechanisms with high degree of complexity. Shaking force is balanced by the method of redistribution of mass and 
shaking moment by adding gear inertia counterweights. The method is illustrated for Stephenson‟s linkage (Mechanism with 
high degree of complexity) and Atkinson engine mechanism and also for Self-balanced slider-crank mechanical systems. The 
conditions for shaking moment balancing are formulated by using the copying properties of the pantograph linkage and the 
method of dynamic substitution of distributed masses by concentrated point masses. These mechanical systems find a 
successful application in engines, agricultural machines and in various automatic machines. 
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1. Introduction 

Mechanisms particularly those that run at high speeds 

generate variable forces on their foundations. These forces 

cause noise,vibration,and unnecessary wear and fatigue. 

The balancing of a linkage would eliminate these 

undesirable qualities and maintains a peaceful and 

productive environment. Therefore the problems of 

shaking force and shaking moment balancing have 

attracted the attention of machine and mechanism 

designers for a long time.  

One of the most effective methods for the reduction of 

these vibrations is the mass balancing of moving links of 

mechanism by Lowen and Berkof [1]. The effective 

method for balancing slider-crank mechanism was the 

method of duplicating mechanism [2, 3] by adding to the 

initial mechanism an identical mechanism which is a 

revolved mirror reflection of the initial mechanism. The 

disadvantages of such an approach are a partial balancing 

due to the shaking moment of inertia forces of the slider, 

as well as the greater friction losses due to the additional 

sliding pair. The method of adding idler loops can be used 

to entirely eliminate forces and moments of 4-bar 6-bar 

linkages [4].Kamenski [5] first used the cam mechanism 

for balancing of linkages. P.Nehemiah and 

Dr.B.S.K.Sundara Siva Rao[6]used a method to balance 

shaking moment  by mounting gear inertia counterweights 

on the frame ,the planetary gear trains mounted on the 

links that are not connected directly to the frame in earlier  

methods are mounted on base by kinematically linking the 

gears with the corresponding links by a link of known 

mass and center of mass and moment of inertia .A more 

referred method in the literature is the method of linearly 

independent vectors[7],which makes total center of mass 

of the mechanism stationary. I.S.Kochev[8] presented a 

general method using ordinary vector algebra instead of 

the complex number representation of the vector for full 

force balance of planar linkages.Elliott and 

Tesar[9]developed a theory of torque,shak ing force,and 

shaking moment  balancing by extending the method of 

linearly independent vectors.R.S.Berkof[10] proposed a 

method to balance shaking moment by inertia 

counterweight and physical pendulum.      

I.Esat,H.Bahai[11];Z.YE,M.R.Smith[12];V.H.Arakelia

n and M.R.Smith[13] achieved complete moment 

balancing by geared inertia counterweights.More 

information on complete shaking moment balancing can 

be obtained in a critical review by I.S.Kochev[14],and 

Arakelian and Smith[15].D.Ilia,A.Cammarata,and 

R.Sinatra [16] proposed the kinematics and dynamics  of a 

five-bar linkage using a novel and simplified approach 

where the dynamic balancing of mechanism is formulated 

and solved  as an optimization problem under equality 

constraints.H.Chaudhary ,S.K.Saha[17] used the  

equimomental  systems for balancing of shaking forces 

and shaking moments of planar 

mechanisms.BrianMoore,Josef,and Gosselin[18] presented 

a new method to determine the complete set of force and 

moment balanced planar four-bar linkages using complex 

variables  to model the kinematics of the linkage,the force 
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and moment balancing constraints are written as algebraic 

equations over complex variables and joint angular 

velocities.Using polynomial  divison,necessary and 

sufficient conditions for  the balancing of planar four-bar 

are derived. The present work deals with the balancing of 

mechanisms with high degree of complexity,Atkinson 

engine mechanism  and self-balanced slider-crank 

mechanical systems. The present work  can  be the 

extension of work contributed by V.H.Arakelian and 

M.R.Smitht[13],where  they did for single slider-crank 

mechanism ,mechanism with low degree of complexity.In 

the present work Two identical slider-crank 

mechanism,mechanism with high degree of 

complexity,Atkinson engine mechanism ,where slider-

crank mechanism is an integral part of it are balanced. 

 

1.1. Definition: Mechanisms with Low and High degree of 

complexity: 

 

In complex mechanisms some radii of curvatures, 

required for the computation of normal acceleration 

components are not readily available and consequently, 

indirect or special methods of solution must be used. 

In a complex mechanism if only one radius of path 

curvature of one motion transfer point is not known such a 

mechanism is called a mechanism with low degree of 

complexity.In the mechanism shown in fig.1 the radius of 

curvature of motion transfer point  B is not known ,so it is 

a mechanism with low degree of complexity. 

Figure 1: Mechanism with low degree of complexity. 

 
Figure 2: Mechanism with high degree of complexity. 

 

In a complex mechanism if more than one radii of path 

curvature of motion transfer points are not known such a 

mechanism is called a mechanism with high degree of 

complexity. In the mechanism shown in  fig.2 the radii of 

curvature of motion transfer points  B and C  are not 

known ,so it is a mechanism with high degree of 

complexity. 

2. Complete Shaking Force and Shaking Moment 

Balancing of Sub Linkages 

2.1. Articulation dyad:   

 

An open kinematic chain of two binary links and one 

joint is called a dyad. 

 
Figure 3: Complete shaking force and shaking moment balancing 
of an articulation dyad. 

 
Figure 4: Complete shaking force and shaking moment balancing 

of an articulation dyad by gear nertia counterweights mounted on 
the base. 

 

To link 2 is added a counterweight which permits the 

displacement of the center of mass of link 2 to joint A. 

then, by means of a counterweight with mass 
1cwm [fig.3] 

a complete balancing of shaking force is achieved. A 

complete shaking moment balance is realized through four 

gear inertia counter weights 3-6, one of them being of the 

planetary type and mounted on link 2 (Gao 

Feng,1990[19]). 

The scheme used in the present paper [fig.4] is 

distinguished from the earlier scheme by the fact that gear 
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3 is mounted on the base and is linked kinematically with 

link2 through link1 .Let us consider the complete shaking 

force and shaking moment balancing of the articulation 

dyad with the mass and inertia of link 1  taken into 

account. For this purpose initially, we shall statically 

replace mass 1m of link 1  by two point masses Bm and 

cm  at the centers of the hinges B and C 
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where, BCl   is the length of link 1, 
1CSl and 

1SBl   are the 

distances between the centers of joints C and B and the 

center of mass 1S   of link 1  , respectively. After such an 

arrangement of masses the moment of inertia of link  1  
will be equal to  
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SCSBSS llmII    (2) 

 

where, 
1SI  is the moment of inertia of link 1 about the 

center of mass 1S   of the link. 

Thus we obtain a new dynamic model of the system where 

the link 1  is represented by two point masses CB mm ,  

and has a moment of inertia  .*

1SI 
  

This fact allows for an 

easy determination of the parameters of the balancing 

elements as follows: 

 

222
)( 2 CWABBASCW rlmlmm   (3) 

 

where, 2m  is the mass of link 2, ABl  is the distance 

between the centers of the hinges A and B,
2ASl  is the 

distance of the center of hinge A from the center mass of 

2S  of link 2,  
2CWr is the rotation radius of the center of 

mass of the counter weight with respect to A ,and  
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where,  1m  is the mass of link 1,  
1OSl  is the distance of 

the joint center O from the center of mass 1S  of link 1. 

Also,    

 

33 CWOCCCW rlmm   (5) 

 

where,     ABOC ll  ,  
3CWr  is the rotation radius of the 

center of mass of the counter weight. 

 

2.2. Asymmetric link with three rotational pairs: 

 

In previous work relating to balancing of linkages with 

a dynamic substitution of the masses of the link  by three 

rotational pairs(see fig.5) two replacement points A and B 

are considered . This results in the need to increase the 

mass of the counter weight. However, such a solution may 

be avoided by considering the problem of dynamic 

substitution of dynamic substitution of link masses by 

three point masses. Usually the center of mass of such an 

asymmetric link is located inside a triangle formed by 

these points. 

 
Figure 5: Dynamic substitution of the masses of the link by three 
rotational pairs. 

 

The conditions for dynamic substitution of masses are 

the following: 
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where, 
BA mm ,

  
and mc  are point masses, BA ll ,  and 

Cl   are the moduli of radius vectors of corresponding 

points, BA  ,   and C  are angular positions  of  radius 

vectors; im  is the mass of  link, 
iSI  is the moment of 

inertia  of the link about an axis through 
iS  (axial moment 

of inertia of  link).From this system of equations the 

masses are obtained  

 

iCCiBBiAA DDmDDmDDm  ;;  (8) 

 

where, 
CBA DDD ,,    and   

iD   are determinants of the 

third order obtained from the above system of equations. 
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3. Application of the Method for Complete Shaking 

Force and Shaking Moment Balancing of Multiple 

Linkages. 

3.1. Stephenson’s link motion (Mechanism with high 

degree of complexity): 

 

The method has been applied to a mechanism with high 

degree of complexity shown in fig.6. 

 

 
Figure 6: Mechanism with high degree of complexity 

(Stephenson‟s link motion). 

 

 
Figure 7: Balanced mechanism with high degree of complexity 
(stephenson‟s link motion). 

3.1.1. Shaking force balancing of the mechanism: 

 

Link 5 has been replaced by dynamic substitution of 

link masses by three point masses    and  .Link 6 has been 

dynamically replaced by two point masses   and   and 

attached a counterweight  . For link 6 to be dynamically 

replaced by two point masses the condition to be satisfied 

is  ,where,   is the radius of gyration of link 6 about its 

center of mass,   is arbitrarily fixed and   is obtained from 

the above condition. Similarly other links can be 

dynamically replaced and force counterweights can be 

added to balance shaking force. 

3.1.2. Shaking moment balancing of the mechanism: 

 

The shaking moment of the mechanism is determined by 

the sum 
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3.2. Atkinson engine mechanism: 

 

 
Figure 8: Atkinson engine mechanism. 

 

 
Figure 9: Balanced Atkinson engine mechanism. 

 

To the mechanism an articulation dyad CFE is 

connected, which forms a pantograph with the initial 

mechanism OBCD. By selecting, for constructional 

reasons, the similarity factor of formed pantograph 
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The length of the articulation dyad is determined as: 

 

ECF ll   0B  0 44
l   

BDBCEHFH kllll  EFl   

3.2.1. Shaking force balance: 

 

Link 3 is dynamically replaced by 3 point 

masses 3 , 3 , 3 CBA mmm . Link 4 is dynamically 

replaced by two point masses  , 4 , 4 EB mm and a force 

counterweight  , 4CWm  is added to balance the shaking 

force.Link 5 is statically replaced by two point masses 

55
& , DC mm    .An articulation dyad CFE is added.Now 

link 4 ( Emm  &  B ) is to be balanced about point 04. 

Link 7 ( Fmm  &  C ) about point G. Finally the masses 
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HD mmm &m , 6 ,G  about point 04.The necessary 

conditions are as follows: 
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where 
4000 444

l  and  l , SEBl  are the distances of joint 

centers  B, E and of the center of mass S4 of the link 4 

from the point O4.  l , FGCGl are the distances of the 

centers of the joints C, F from the working point G of the 

pantograph. 

 
7CSl is the distance of the center of the joint C from 

the center of mass S7 of  

Link 7.  lBC ,BDl are the distances of the centers of the 

joints D, C from the center of  

joint B.  lFH ,FEl are the distances of the centers of the 

joints E, H from the center of  

joint F., m7 is the mass of link 7,  mE ,Fm are point 

masses obtained after dynamic substitution.,  
g

m is the 

mass of link 8,  
8FSl is the distance of the center of the 

joint F from the center of mass S8 of  

link 8. ,  
8SI is the axial moment of inertia of link 8.  

The desired parameters are obtained as follows: 
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Where 
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Thus, a dynamic model of the mechanism fully 

equivalent to the real mechanism involving the rotating 

link 4 and 7 [The parameters of link 8 are selected so that 

the center of mass of link 7, with the point masses mC, mF 

taken into account, coincides with the working point G of 

the pantograph, due to which the motion of this link is 

represented as a translational rectilinear motion of its 

center of mass and a rotary motion relative to point G] and 

four point masses m6 + mD, mF, mH and mG three of which 

perform a translational rectilinear motion in horizontal 

sense is obtained. As may be seen from this equivalent 

model, a complete shaking force balancing of the movable 

links of the mechanism has been achieved:  
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where 
intF (i, = C, D, F, G, H, 4, 6) – inertia forces from 

corresponding mosses). 

3.2.2. Shaking moment: 

 

The shaking moment of the mechanism is determined 

by the sum 
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where 
int

4M  and int
7M  are the shaking moments of the 

rotating links 4 and 7 with the inertia of the replaced point 

masses taken into account. 
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Where 4Is and 
7Is  are the axial moments of inertia of 

links 4 and 7, 
74    is the angular acceleration of 

links 4 and 7,  int
4 iFMo  is the moment resulting from the 

force of inertia of the masses and Hm  performing a 

transactional rectilinear motion relative to pivot 

40 .
G6 m ,Dmm   

The moments of rotating links may be balanced by 

means of the gears mounted on the base of the mechanism. 

The moment of inertia of such a gear is given by the 

following equation: 
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In most constructions of the mechanisms the moment 

 int
04 iFm  is very small that in many balancing problems 

this moment may be neglected.  

To balance this shaking moment gears 9 and 10 are 

mounted on the pivot point 04. 

Link 2 is dynamically replaced by the point masses 

2Am and 
2Fm  and a counterweight 

2CWm  is added to 

balance shaking force  
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Shaking moment: The shaking moment at point 02 is 

determined by the sum.  
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To balance this shaking moment gears 11 and 12 are 

mounted on the point 02.  
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3.3. Self-balanced slider- crank mechanism: 

 

In the two identical slider-crank mechanism shown in 

fig.10 shaking forces are balanced by two similar but 

opposite movements. 

 
Figure 10: Self balanced slider – crank system. 

 

 
Figure 11: Self-balanced slider-crank system with an imagined 

articulation dyad EDB  . 
 

Fig.11 shows a self-balanced slider-crank system with an 

imagined articulation dyad  EDB  ,which forms a 

pantograph with the initial system.The similarty factor of 

the formed pantograph is 

ABl
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By substituting dynamically the mass m3 of the 

connecting coupler 3 by point masses at the 

centers BB , and C and using following condition 
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where  
,3BSl , 

33
, SBCS ll   are the distances of joint centers 

B, C and from the centers of masses 
3S  of the link 3 ; 

3SI  is the axial moment of inertia of link 3,we determine 

the value of  the point masses

                                    

 

3
3

3 /;;/ DDm
D

D
mDDm BB

C
CBB    

(17) 

 

where 
CBB DDDD ,,, 3 are determinants of the third 

order obtained from the system of equations. 

 

We now require imagined link DB  to be balanced about 

point G of the pantograph, i.e, 
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The concentrated point masses 
ECG mmm ,,

 to be 

balanced about center A,     i.e, 

 
  DEBCCBBGE llmlmm / 

 

 

where BCBB ll ,  are the distances of joint centers CB ,  

from the joint center B, DEl  is the distance of joint center 

D from the joint center E, 
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Finally the concentrated point masses DB mm , are also to 

be balanced about center A,i.e., 
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Thus we obtain the values of three concentrated point 

masses EDD mmm ,,  which allow the determination of 

the mass and inertia parameters of the connecting coupler 

4; 
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Where 
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Shaking moment balancing: 
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Total Shaking moment generated by the mechanism: 
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The shaking moment generated by the mechanism is 

balanced by addition of gear inertia counter weights 9 and 

10.                   
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4. Numerical Example 

The parameters of the self-balanced slider-crank system 

are the following: 
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Figure 12 shows the variations of the shaking moment 

of the initial mechanical system (curve “a“). For 

cancellation of the shaking moment it is necessary to 

redistribute the masses of the second connecting 

coupler.By dynamically substituting the mass  of the 

connecting coupler 3 by point masses at centres B,B‟ , C 

and taking into account conditions  , we calculate the mass 

and inertia parameters of the connecting coupler4. Fig.12 

illustrates the obtained results.so by optimal redistribution 

of the masses of the connecting coupler 4, the shaking 

moment is cancelled (curve „b). 

 
Figure 12: Shaking moment Vs Time. 

5. Conclusions 

The advantage of the schemes presented here is the fact 

that all the gear inertia counterweights needed for 

balancing shaking moment of mechanism with high degree 

of complexity   are mounted on the frame of the 

mechanism, which is constructively more efficient. The 

method can be applied to any complex planar mechanism. 

The paper also presents a solution for improving the 

balancing of double slider-crank mechanical systems.In 

these systems the shaking force balancing is achieved by 

two identical slider-crank mechanisms,which execute 

similar but opposite movements.however the shaking 

moments are not balanced and can be a source of 

vibrations. By modifying the parameters of the second 

connecting coupler of the system the complete shaking 

moment balancing is achieved.The conditions for shaking 

moment balancing are formulated by using the copying 

properties of the pantograph linkage and the method of 

dynamic substitution of connecting rod mass by the 

concentrated point masses.A numerical example illustrates 

the application of the suggested solution.The method can 

be applied to any complex mechanism. 
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