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Abstract 

This paper presents a reasoned methodology for designing variable structure controllers (VSC), also known as sliding mode 
controllers (SMC), for Single- Input-Multi-output (SIMO) systems. The approach is explicitly based on the assessment of a 
system total energy, and the realization of a VSC that minimizes that energy. A relationship between controller gains and the 
slope of the sliding surface is explicitly formulated. The practical implementation of the proposed approach is exemplified on 
an inverted pendulum system where the system has two independent sliding surfaces representing the two system states. A 
VSC with hyper sliding surface is also introduced. Since the pendulum system has no dissipative viscous load to absorb 
energy, a VSC for pure inertial systems is proposed. 
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1. Introduction 

VSCs or SMCs are based on the theory of Variable 

Structure Systems (VSS) which first appeared in the late 

fifties in Russia as a special class of nonlinear systems [1- 

2]. A VSC is characterized by a discontinuous action 

whereby upon reaching a switching, or sliding, surface in 

the state space the structure of the controller changes to 

another which is a member of a set of possible continuous 

functions of the state [2]. This approach can result in a 

very robust control action that is superior to any of the 

members of the set of controller it is allowed to switch 

among taken alone. 

The realization of a VSC involves two distinct stages; 

1) the equation of the sliding surface or the manifold is 

designed to meet the desired dynamics of the sliding 

motion in accordance with some performance 

specifications, 2) the switching or discontinuous feedback 

control law is designed such that the locus of the system 

state would reach the manifold and that the sliding mode 

exists on this manifold. The design of linear sliding mode 

surfaces for linear systems was studied and developed 

extensively [3-9]. The design of the sliding surface for 

more general nonlinear systems remains largely an open 

problem [1]. This paper focuses exclusively on linear 

sliding mode surfaces.  

Design theory and procedures outlined in [3-9] and 

other literature dealing with VSCs and SMCs tend to be 

specific to a narrow class of plant structures. To overcome 

this drawback, methods developed in other publications 

[10- 13] involve integrating the classical theories used for 

designing the sliding mode surface and the switching 

control law with other computational intelligence-based 

systems such as Fuzzy Logic (FL), Neural Networks (NN), 

and Genetic Algorithms (GA). However, despite its 

simplicity of realization and advantages, the lack of a 

general systematic design approach that is mathematically 

lucid have hindered its widespread use. Since all the 

reported VSC design approaches are specific to the 

specific system under consideration and tend to exploit its 

characteristics, rather than being general, the need for such 

a methodology provided the motivation for this work. 

Furthermore, literature on the subject does not provide an 

understanding of the link between the control law 

parameters suitable for VSCs and the sliding surface 

parameters.  

This paper provides a mathematically clear link 

between the action of a VSC and the work and energy of 

the system. This link is used to tie the control law 

parameters to those of the sliding surface. The stability of 

a designed system using the proposed methodology is 

provided. The design methodology is suitable for Single-

Input-Single-Output (SISO) as well as Single-Input-

Multiple-Output (SIMO) control systems. An inverted 

pendulum system is selected to test the new design 

methodology is a SIMO system. The system is a special 

case of Multi-Input-Multi-output (MIMO) control systems 

and is acknowledged to be difficult one to control. In order 

to study the performance of the controller, different VSC 

schemes are proposed and applied to the pendulum system. 

Simulation results and comparisons between the designed 

controllers and classical ones are provided to show the 

performance of the proposed VSC schemes. 

2. VSCs and the Principle of Work and Energy 

A phase plane portrait of a system relates a system 

state to its derivative. For a physical system, the axes of 

the phase plane are typically the displacement and the 
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velocity. Consider a conservative spring-mass system 

subjected to a step input displacement. Upon release, the 

potential energy is gradually converted to kinetic energy as 

the body accelerates. The continual interchange between 

potential and kinetic energy cause the body to oscillate. 

The ordinate of the system phase portrait being velocity 

can be viewed as a proxy of the kinetic energy and the 

abscissa being displacement can be viewed as a proxy of 

the potential energy. With reference to Figure 1, the total 

energy, E, of the system is given by: 

 
2 21 1

2 2
E kx mx 

 (1) 

 

where m is the system mass and k is the spring 

constant. Rearranging Equation 1 and using 2 /a E k  

and 2 /b E m gives: 

 
2 2

2 2
1

x x

a b
 

 
(2) 

 

Equation 2 is that of an ellipse. Figure 1 (b) shows a 

scaled phase portrait of the system where the abscissa is 

scaled by 
2

1/ a  and the ordinate by 
2

1/b . The ellipses 

correspond to different initial levels iE
. The phase portrait 

in the figure shows that the system has no dissipative 

element since its energy level remains constant. A phase 

plane portrait that converge to the origin indicates a stable 

system with decreasing energy level and a phase portrait 

diverging to infinity indicates an unstable system with 

increasing energy level as shown in Figure 2 (a) and (b) 

respectively. 

 
Figure 1: Spring-mass system phase portrait. a) System b) Phase 

portrait. 

 

A dynamic system converges towards stability if its 

total energy decreases asymptotically with time to its 

minimum value at the equilibrium state. Lyapunov criteria 

exploits this fact by requiring the time derivative of the 

Lyapunov energy function, be it a true representation of 

the energy of the system or a proxy for it, to be negative 

definite. 

 
Figure 2: Phase portrait of linear systems. a) Stable b) Unstable. 

For a control system, a change in the set point is 

tantamount to shifting the stability state from 0 on the 

phase plane portrait to A as shown in Figure 3 (a). 0 now 

represents the minimum energy level of the system 

required for stability. It follows that the controller action 

will appear like it will have to dissipate energy equivalent 

to that between A and 0. 

The locus of the system state due to the controller 

action can not be strictly along the x-axis. While an 

infinite number of possible paths can lead the system from 

state A to 0, those that remain exclusively in the upper left 

quadrant, Figure 3 (a), correspond to overdamped 

responses and those that traverse the x -axis, Figure 3 (b), 

correspond to underdamped responses. 

 
Figure 3: Control system with possible phase plane portrait a) 
Overdamped phase portrait b) Underdamped phase portrait. 

 

A single structure conventional controller can be 

designed to allow energy to flow in one direction only 

resulting in an overdamped system. The system state in 

this case will remain in the second quadrant of the phase 

plane. Such a controller will not be optimal. Utkin [2] 

showed that a variable structure controller can be designed 

such that the phase plane portrait of the system will have a 

higher x yet remains entirely in the second quadrant. The 

energy based design methodology of such a controller is 

the subject of the next section. 

3. Work and Energy Based VSC Design Methodology 

With reference to Figure 4, the controller is required to 

move the system from (1) to (2) in the presence of a 

dissipative load. The work done by the controller   less 

than that consumed by the dissipative load  is related to the 

energy of the system as follows: 

 

1 1 1 2 2 2 (1 2)RT V U T V U       (3) 

 

where,  

1 1
,T V

 are the kinetic and potential energy at position (1). 

2 2
,T V  are the kinetic and potential energy at position (2). 

1 2
U

  is the work done by the controller between the two 

positions. 

(1 2)R
U

  is the work lost due to the viscous damper 

between the two positions. 
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Figure 4: Phase plane portrait showing VSC action. 
 

For a general system, Equation 3 becomes: 

 
2 2 2 2 2 21 1

2 1 2 1 2 2 1 1 2 12 2
( ) ( ) ( ) ( ) 0x x x x x x x x k x x          (5) 

 

  is the inertial energy storage element constant, 

  is the potential energy storage element constant, 

  is the linear dissipative element constant, 

k  is the controller gain. 

As an example, consider a mechanical system given by the 

classical differential form: 

 

smx bx k x u    

 
Where m, b, and ks are the mass, damping coefficient, and 

spring constant respectively. u is the controller force. The 

work done by the controller between (1) and (2) is given 

by: 

 
2 2 2 2

1 1 1 1
smx dx bx dx k x dx u dx      (6) 

 

Substituting / ,x xdx dx u kx   and integrating 

gives: 

 
2 2 2 2 2 21 1 1

2 1 2 1 2 2 1 1 2 12 2 2
( ) ( ) ( ) ( )

s
m x x k x x b x x x x k x x       (7) 

 

Comparing equation 4 and 7 shows that: 

, ,sm k   and  b   

The energy balance at any point along the trajectory of the 

VSC phase portrait is given by: 

 
2 2 21 1

2 2
0x x xx kx                                       (8) 

 

For the linear sliding surface shown in Figure 4, 

/ ,x x    substituting for x into equation 8 gives:  

2

2 2 2 21 1 1 1

2 2
x x x kx 

                                   (9) 

 
Equation 9 relates the controller gain to the slope of the 

sliding surface as follows: 
21

2
( )k                                                        (10) 

 
Equation 10 can be used for SISO control systems. An 

extended design methodology can be achieved to include 

SIMO control systems. If a four-state-variables system 

with a single input is considered, two sliding surfaces can 

be designed as follows: 

 

1 1 1 2
s x x                                                              (11) 

 

2 2 3 4
s x x                                           (12) 

where 
1 2 3
, , ,x x x  and 

4
x  are the states of the system and 

2 1,x x  and 
4 3.x x  

The input control signal is a relay type signal and is given 

by: 

1 1 2 2
u k x k x             (13) 

where 

1 1

1

1 1

, 0

, 0

sx
k

sx





 


 





                           (14) 

and 

2 3

2

2 3

, 0

, 0

sx
k

sx





 


 





                                            (15) 

 

1 2,  are the slopes of the sliding surfaces 

1 2,k k are the controller gains, 

1 2
,  are the magnitudes of the controller gains. 

Equation 10 can be used to find the magnitudes of the 

controller gains as well as the sliding surfaces slopes as 

follows: 

 
21

1 1 1 1 1 12
( )k                                (16) 

21
2 2 2 2 2 22

( )k                                (17) 

 

The same methodology used before for finding the 

coefficient , ,   and  for both 
1

k  and 
2

k  is used as it 

will be shown later. Equations 16 and 17 show that the 

ranges of the VSC parameters 
1 2 1 2

( , , , )k k   are very 

wide such that additional constraints have to be imposed 

on the choice of the parameters. Sensitivity analysis [14] is 

introduced to find such constraints as it will be shown in 

the coming sections. 

4. Inverted Pendulum System and VSCSCHEMES 

Figure 5 shows an inverted pendulum system. Such 

systems are popular test cases and examples in many 

control literature because of the many practical 

applications they can model, particularly in the field of 

robotics and rockets [15]. The system is also found to be 

very informative for performance evaluation and 

comparison for various types of controllers. The goal for 

this system is to keep the pendulum always upright by 

controlling the input force applied to the cart. 
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Figure 5: Inverted pendulum system. 

 

With reference to Figure 5, the system has one input, 

the force u, and two outputs, the pendulum angle  and the 

cart position x. The state space representation of the 

system dynamics, subject to the assumptions that the 

pendulum angular displacement is small and the angular 

velocity is negligible, is given as follows [16]: 

 

1 1

2 2

3 3

4 4

0 1 0 0 0

1
0 0 0

0 0 0 1 0

0 0 0

x xm
g

x xM M
u

x x

x xM m m
g

MI MI

   
      
      
       
      
      

          
      

 

(18) 

 

4.1. Controller Design Using Decoupled Sliding Surfaces: 

 

The controller is designed such that motion along the 

sliding surfaces occurs independently as mention in 

Section 3. To bring the system back to stability at  after a 

disturbance is difficult since only one control input is 

available. However, to guarantee this control task, two 

different sliding mode surfaces corresponding to the two 

desired system outputs   and   are used with one control 

signal u. Equations 11-17 can be used where  and   s are 

the sliding surfaces 

In order to find the coefficients  and   for both  and   

the methodology introduced in Section 3 is used, i.e., 

comparing Equations 16 and 17 to the system dynamics 

given by Equation 18 gives: 

 
21

1 12
k M               (19) 

 
21 1

2 22 2
( )k MI M m g              (20) 

 

Equations 19 and 20 show that choosing the values of 

the slopes and hence the corresponding control switching 

gains is difficult especially with the existence of cross 

coupling between the dynamics of the cart and that of the 

pendulum. The equations also show that for each of the 

two parts the value of one of the parameters
1
 or 

1
k has to 

be assumed. The ranges of the VSC variables are very 

wide as mentioned in Section 3. The system sensitivity to 

parameters variations is introduced to find parameter 

limitations. The condition 0s   is necessary to keep the 

system state on the sliding surface. Combining the system 

sensitivity with 
1 0s   and 

2 0s   for both sliding 

surfaces result in the following cases: 

 

Case I: Sliding surface of the cart: 

 

Since 
1 1 ,s x x  the rate of change of sliding 

surface equation 
1s is given by:  

 

1 0x x                      (21) 

 

Substituting for u and x from Equations 13 and 18 into 

Equation 21 respectively results in the following: 

 

1 1 2
1 1( ) 0

mg
M M M

x k x k                     (22) 

 

The change in the angular position   of the inverted 

pendulum system, and hence its stability, to changes in the 

cart velocity x  is obtained from the partial derivative of 

  with respect to x as follows: 

 

1

2

M

x k mg


 

                                 (23) 

 

For the pendulum position   to be rendered 

insensitive to the cart velocity x , the magnitude of the 

denominator of Equation 23 must be much larger than that 

of the numerator. This implies 
1 2( ) /k mg M   .  

Substituting for 
1

   and then for 
2

k from Equations 

19 and 20 respectively into Equation 23 gives the 

following two 

 
2

2

1

( )

2

k mg
k

M


             (24) 

21

1 22

1
( )

2
l M m g

M
               (25) 

 

Case II: Sliding surface of the cart: 

 

Since   22s  and the rate of change of sliding 

surface equation 
2s is given by: 

 

02                                         (26) 

 

Substituting Equations 13 and 18 into Equation 26 for u  

and    gives: 

 

2 1
2

( )
0

M m g k k
x

MI MI MI
  

 
    
 

             (27) 

 

It can be seen that Equation 27 provides no significant 

information. Also, it is not possible to carry out the 

sensitivity analysis since the equation does not include the 

cart velocity. 
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4.1.1. Simulation Results and Comparisons: 

 

In this section, a proportional controller and a VSC 

based on the new design methodology are applied to the 

inverted pendulum system for comparison. Table 1 shows 

the values of the system parameters used. 

 

Table 1: Inverted pendulum numerical values. 

m 0.1 kg 

M 2 kg 

I 0,5 m 

g 9.81 m/sec2 

 

Substituting the parameters of Table 1 into Equations 

19 and 20 gives: 

 
2

1 1k                (28) 

 
21

2 22
10.3k                (29) 

 

With reference to Figure 5, in order to find the optimal 

limits of Equations 28 and 29, the pendulum is disturbed 

by applying an initial input angle. The pendulum at this 

inclination has a maximum potential energy Q that must be 

compensated for by the kinetic energy H in order to keep 

the system at that inclination stable, hence; 

 

Q H              (30) 

 
21

2
( )mgl M m x   

 

For a maximum initial disturbance angle 

0.1 (5.73 )rad   and the parameters of Table 1, 

Equation 30 results in 0.683 / secx m ; consequently, 

1.366 / secrad   and the slope of the sliding surface 

becomes: 

 

1

2

1.336
13.66sec

0.1






             (31) 

 

Equations 28 and 29 are used with the constraints 

found from the sensitivity analysis to design the VSC. The 

slope of the cart sliding surface 
1
   must satisfy the 

condition of Equation 25. For 

1 1

2 1
13.66sec , 51.3sec 

 
  , 

1
  is selected to be 

0.7 and result in the corresponding controller gains 

1 0.49k  and 
2 103.6k  . These values do satisfy 

the constraint set forth by Equation 24. The responses of 

the pendulum and cart with respect to time for this design 

case are shown in Figures 6 and 8 respectively. The 

corresponding phase portraits are shown in Figures 7 and 9 

respectively.  

 
Figure 6: Pendulum response for VSC. 

 

The system state crosses the sliding surface at 

relatively high speed such that it leaves the sliding surface 

as shown in Figure 7. Since the structure of the controller 

is unable to brake the system, the system circles around the 

origin and intercepts the sliding surface in the lower right 

quadrant. In Figure 6, this is manifested by the oscillations 

of the pendulum around the set point. With reference to the 

cart, when the pendulum is disturbed by the initial input 

angle, the cart tries to compensate by moving in the same 

direction of the input angle as shown in Figure 9. 

 
Figure 7: Pendulum phase portrait for the VSC. 

 
Figure 8: Cart response for the VSC. 
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Figure 9: Cart phase portrait for the VSC. 

 

While returning back to its original position, the cart 

oscillates around the origin in response to the oscillatory 

behavior of the pendulum in order to keep it stable upright 

as shown in Figure 8. This is manifested on the phase 

diagram whereby its response leaves the sliding surface of 

the cart while stabilizing the pendulum and returning back 

to the original position represented by the origin of the 

plot.  

Reducing the slopes of the cart and the pendulum 

sliding surfaces to    respectively results in the responses 

and the phase portraits shown in the Figures 10-13. In this 

case, the response of the pendulum is marginally 

underdamped, and the pendulum will keep oscillating with 

a small magnitude around the equilibrium point. The 

response of the cart in this case is overdamped. Reducing 

the slopes implies reducing the kinetic energy when the 

system state intercept the sliding surfaces for the pendulum 

and the cart. The system state do not leave the sliding 

surface as shown in Figures 11 and 13. 

 
Figure 10: Pendulum response for the VSC. 

 
Figure 11: Pendulum phase portrait. 

 
Figure 12: Cart response for the VSC. 

 

 
Figure 13: Cart portrait for the VSC. 
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Since the system is a single-input-two-output, a 

possible proportional control law can be constructed as 

follows: 

 

1 2
u k x k                    (32) 

 

where 
1

k and 
2

k are the controller gains. 

 

If the proportional controller gains are selected to be 

where 
1

0.49k  and 
2

103.6k  are the responses of the 

pendulum and the cart for the same step input used earlier 

are shown in Figures 14 and 16 respectively. The 

corresponding phase portraits are shown in Figures 15 and 

17 respectively. The figures show critically stable 

undamped responses. The performance of the VSC and the 

proportional controller based on the simulation results 

clearly show how the energy is absorbed by VSC as it 

asymptotically brings the system to stability, while it is not 

the case when the proportional controller is used. 
 

 
Figure 14: Pendulum response for the P-controller. 

 
Figure 15: Pendulum phase portrait for the P-controller. 
 

 
Figure 16: Cart response for the P-controller. 

 

 
Figure 17: Cart phase portrait for the P-controller. 

 

4.2. Controller Design Using Hyper Sliding Surface: 

 

The sliding mode controller in this section is designed 

such that the sliding surfaces of the pendulum and the cart 

are coupled together to form a hyper sliding surface. The 

hyper sliding surface has the following form: 

 

1 2
s s s                    (33) 

 

where 
1

s and 
2

s are the sliding surfaces of the pendulum 

and the cart respectively. Substituting Equations 11 and 12 

for 
1

s and 
2

s in to Equation 33 gives: 

 

1 2
s x x                       (34) 

 

The input force applied to the cart u is a relay type signal 

and is given by: 

 

, 0

, 0

v s
u

v s

 


 





                 (35) 

 

where the values of v   and  v  are chosen based on 

the system capability. 
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4.2.1. Simulation Results and Comparisons: 

 

If a DC motor is used to provide the desired input 

force u to the cart, the selection of the values and is based 

on the motor torque limits. The rated torque of the motor 

can be chosen to be 0.28 N.m. [16] and a gear ration of 

1:16. If the cart wheel connected to the motor has a radius 

of 5cm, the controller force will have switching gains ±90. 

For the same sliding surfaces used in Section 3.1,  , 

Figures 18 and 19 show the responses of the pendulum and 

cart respectively. The performance of this controller is 

much better than those of the previous controller. The 

pendulum response is faster than the one shown in Section 

4.1 and is marginally underdamped (around the critical 

damping state). The cart response shows an underdamped 

response with a small overshoot; however, it is faster than 

the one of Section 4.1. 

 
Figure 18: Pendulum response for the Hyper VSC. 

 
Figure 19: Cart response for the Hyper VSC. 
 

4.3. Controller Design of Pure Inertial System: 

 

The inverted pendulum system has no dissipative 

viscous load to absorb energy. This can be seen in the 

dynamic equations of the system. The controller design 

used in Section 3 also does not include any damping terms 

in the control law to compensate for the lack of damping. 

Hence, adding a damping terms in the control law is 

advisable. This can be accomplished by modifying the 

control law of Equation 13 as follows: 

1 2 3 4
u k x k k x k                         (36) 

 

where k1 and k2 are the same controller gains given by 

Equations 14 and 15. k3 and k4 are the damping controller 

gains, and chosen to be always positive. In order to select 

suitable values for k3 and k4 the system sensitivity analysis 

is carried out as follows: 

 

3 31 4
1 0

k k mgk k
x x

M M m M
  

 
     

 
        (37) 

 

Taking the partial derivative of the pendulum angle 

with respect to the cart velocity in Equation 37 gives: 

 

1 3

2

M k

x k mg

 


 

               (38) 

 

Case I: Sliding surface of the pendulum: 

 

Substituting Equations 18 and 36 into Equation 26 for 

  and u respectively gives: 

   

31 2 4
2

( )
0

kk M m g k k
x x

Ml Ml Ml M
  

   
      

 

        (39) 

 

Taking the partial derivative of the pendulum angle 

with respect to the cart velocity in Equation 39 gives: 

 

3

2 ( )

k

x k M m g




  

           (40) 

 

In order for the system to be rendered insensitive to the 

cart velocity, the magnitude of the denominators of 

Equations 38 and 40 must be much larger than that of the 

numerators, hence: 

 

3 2 1k k mg M               (41) 

 

3 2 ( )k k M m g              (42) 

 

If the partial derivative of the pendulum angular 

velocity is taken with respect to the cart velocity in 

Equations 37 and 39, the following can be achieved: 

 

1 3

4

M k

x k

 




            (43) 

 

3

3 1

k

x k Ml








 

            (44) 

 

With reference to Figure 5, the following equation is also 

valid: 

 

1

x l





             (45) 

 

Equating Equation 43 and 44 to Equation 45 respectively 

gives 

 

4 3 1( )k lk Ml              (46) 
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4 3 2k lk Ml              (47) 

 

Equation 46 can be ignored since k4 is chosen to be always 

positive. 

4.3.1. Simulation Results and Comparisons: 

 

In order to use the control law of Equation 36, the 

controller gains k1, k2, k3, and k4 must be selected based 

on the sensitivity analysis of the system. With reference to 

Section 4.1, the slope of the cart sliding surface must 

satisfy the condition of Equation 25.. Substituting   and   

into Equations 28 and 29 result in the corresponding 

controller gains k1 = ±4 and k2 = ±103.6 respectively. The 

damping controller gains k3 and k4 must satisfy the 

conditions of Equations 41, 42, and 47. Since k3 << 82.7, 

k3 is selected to be 9. Substituting the parameters in Table 

1 into Equation 47 with k3 = 9 results in k4 = 18.16. 

Figures 20 and 21 show the responses of the pendulum and 

the cart respectively. The response of the cart is 

overdamped and the response of the pendulum is 

marginally underdamped. 

 
Figure 20: Pendulum response for the modified VSC of pure 

inertial systems. 

 
Figure 21: Cart response for modified VSC of pure inertial 

systems. 

 

For comparison purposes, a Proportional-Derivative 

(PD) controller design that has the following form is used 

[16]: 

163.1 73.4 298.15 60.7 0u x x                   (48) 

 

The PD-controller gains of Equation 48 are chosen 

based on the pole placement tuning method where the 

closed loop pole locations are selected to meet a given 

desired performance specifications. The closed-loop pole 

locations are chosen to give a 2 sec settling time [16]. The 

responses of the pendulum and the cart when using this 

controllers are shown in Figures 22 and 23. The figures 

show that both responses are underdamped. The 2 sec 

settling time results in 0.5 damping ratio and 70% 

overshoot as shown in Figure 22. 

 
Figure 22: Pendulum response of PD-controller [16]. 

 

 
Figure 1: Cart response for the PD-controller [16]. 
 

A faster response of the pendulum alone ignoring 

completely the cart can be obtained if the choice of the 

PD-controller gains of the pendulum are selected based on 

Ziegler-Nichols method of tuning [16]. The control law in 

this case is given by: 

 

210 10.5u                    (49) 

 

Figure 24 shows the response of the pendulum in this 

case. Figure 25 shows the cart response to continually 



 © 2011  Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 5, Number 5  (ISSN 1995-6665) 416 

move away from the desired equilibrium state since there 

is no contribution of the cart state in the control law. If the 

control law (Equation 49) is modified to include the cart 

state, and the gains of these state are tuned using the 

MATLAB Control System Toolbox, the following control 

law is obtained: 

 

15 5 210 10.5u x x                     (50) 

 

Figure 24 also shows the pendulum response when 

using this modified PD-controller. The figure shows the 

response to be more oscillatory, however, with reference to 

Figure 25 the cart response is shown to be stable but 

slightly underdamped. When MATLAB Control System 

Toolbox is used to tune the PD-controller gains of both 

cart and pendulum together, the following control low 

results: 

 

80 100 550 82u x x                     (51) 

 

The response of the pendulum using the control law of 

Equation 51 is underdamped as shown in Figure 24. The 

cart response in this case however, is overdamped as 

shown in Figure 25. 

 
Figure 24: Pendulum response using different PD tuning. 

 

 
Figure 25: Cart responses using different tuning methods for PD- 
controllers. 

Comparing the responses of the different controllers 

used so far shows that the PD-controller of Equation 48 

has the fastest response for the cart; however, the response 

has an overshoot. The response of the system when using 

the VSC with the hyper sliding surface shows ideal 

performance for the pendulum where the response is 

almost at the critical damping state, and is faster than for 

all the other types of controllers. Comparing the responses 

of the cart and the pendulum for the original VSC of 

Equation 13 with that of the modified VSC of Equation 36 

shows that the modified VSC has a better performance and 

a faster response. The response of the cart for the modified 

VSC also shows a faster response and a better performance 

than that of the VSC with a hyper sliding surface. 

Among the four PD-controllers, that of Equation 49 

results in the best performance of the pendulum, least 

overshoot and the fastest response. Comparing this 

performance to that of the VSC with the hyper sliding 

surface shows that the latter is still the best among all 

controllers. The cart response when using the controller of 

Equation 51 is faster than those resulting from using other 

controllers, and has no overshoot. 

5. Conclusion 

This paper presents the derivation and the proof of the 

relationship between a system‟s work and energy and a 

VSC to control it. The relationship between the slope of 

the linear sliding surface and the controller gains is then 

used to develop a simple systematic design methodology 

suitable for SISO systems. This new design methodology 

is then extended to SIMO systems. An inverted pendulum 

system is used to test this new design methodology. The 

results show that the proposed approach produces a 

controller with very good performance. In order to 

enhance further the performance, a hyper VSC was 

applied; where the sliding surfaces of the pendulum and 

cart are coupled together. Since the pendulum systems is a 

pure inertial system, the control law was improved upon 

by introducing artificial damping terms. The VSC schemes 

simulation results were compared to those of a 

proportional and a PD-controller. The comparison shows 

that the performance of the VSC with the hyper sliding 

surface is the best among all controllers. 
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