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Abstract 

Computational fluid dynamics (CFD) simulations are carried out for incompressible fluid flow around ellipsoid in laminar 

steady axisymmetric regime (20 ≤ Re ≤ 200). The ratio of the major to the minor axis of the ellipsoid are ranged over a/b = 

0.5 to 2. A commercial finite volume package FLUENT was used to analyze and visualize the nature of the flow around 

ellipsoids of different axis ratio. The simulation results are presented in terms of skin friction coefficient, separation angles 

and drag coefficient. It was found that the total drag coefficient around the ellipsoid is strongly governed by the axis ratio as 

well as the Reynolds number. It was observed that the Reynolds number at which the separation first occur increase with axis 

ratio. Separation angels and drag coefficient for special case of a sphere (AR = 1) was found to be in good agreement with 

previous experimental results and with the standard drag curve. The present study has established that commercially-

available software like FLUENT can provide a reasonable good solution of complicated flow structures including flow with 

separation. 
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Nomenclature 

a  [m] ellipsoid major diameter in the flow direction  

b  [m] ellipsoid minor diameter in the direction normal to the flow    

AR  [-] axis ratio a/b 

Cd  [-] total drag coefficient  

Cf  [-] friction drag coefficient 

Cp [-] pressure drag coefficient   

P    [N/m2]  pressure 

Re [-] Reynolds number  

U  [m/s]   free stream velocity  

Vx  [m/s]  x-component velocity 

Vr [m/s]  r-component velocity 

Greek Symbols 

     [Pa.s] fluid dynamic viscosity  

      [kg/m3] fluid density 

 Θs     [degree] separation angle 

1. Introduction 

The flow separation around simple and complex bluff 

body is one of the most important and challenging 

problems in fluid mechanics. The separated flow around a 

body is difficult to predict and results in many undesirable 

phenomena such as drag increase, lift loss and fluctuations 

in the pressure filed, etc. The accuracy of the predicted 

flow field depends on model equations, numerical methods 

and grid spacing among other factors. Experimental 

investigations of the steady wake behind a sphere at low 

Reynolds numbers have been performed by [1,2]. They 

found that for Reynolds numbers less than 24 the flow 

around the sphere is perfectly laminar, no flow separation 

occurs, and the flow on the downstream side of the sphere 

is identical to that on the upstream side. The flow past a 

sphere over a larger range of Reynolds numbers have been 

investigated experimentally by [3,4]. They found that the 

flow was axisymmetric and stable up to Re = 200, while in 

[5] found the same behavior occurring up to Re = 210. 

These observations are in good agreement with the 

calculations of [6], who investigated the linear stability of 

the steady axisymmetric flow past a sphere and found that 

the flow undergoes a regular bifurcation at a Reynolds 

number of about 210 and results in the development of a 

non-axisymmetric wake. 

The use of computational fluid dynamics codes to 

simulate the flow around geometrically complicated 

shapes such as airplanes, cars and ships has become 

standard engineering practice in the last few years. 

Therefore, several authors have developed numerical 

techniques for calculating viscous flow, applied them to a 

spheroid, and compared their predictions to the 

experimental results previously mentioned. The numerical 

work has developed from solutions of the boundary layer 

equations with a predetermined pressure distribution [7-
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12]. Numerical studies of  the fluid flow past different 

shape of spheroid  particles over the Reynolds number 

range, 1 ≤ Re ≥ 500 at different aspect ratio are presented 

by [12]. They found that the effect of shape of particles on 

individual and total drag coefficient was small at low 

Reynolds number and magnifies with increasing Reynolds 

number. Separation points where the boundary layer leaves 

the surface were not clearly considered in their study. 

Direct numerical simulation based on spectral-type 

methods to simulate the flow between Re = 25 and Re 

=1000 were carried out by [11]. Their simulations showed 

that the flow past a sphere is axisymmetric up to a 

Reynolds number of approximately 212, and that beyond 

this Reynolds number the flow undergoes a transition to 

three-dimensionality through a regular bifurcation. 

There seems to be lack of computational works on flow 

separation around ellipsoid in axisymmetric flow regime. 

Therefore, this paper aims to provide a CFD simulation 

study of axisymmetric viscous laminar flow around 

ellipsoids by using commercial finite volume package 

FLUENT. Another sub goal of the present study is to test 

whether FLUENT, a commercial Computational Fluid 

Dynamics (CFD) software package, is capable of 

providing the solutions for the problem under 

consideration. 

2. Theoretical Formulation  

2.1. Governing equations  

The governing equation for laminar 2D steady-state 

incompressible in axisymmetric geometry are the 

continuity equation and the two equations of motion: 
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where  x is the axial coordinate, r is the radial 

coordinate,  vx is the axial velocity and vr is the radial 

velocity, p is the static pressure, µ is the molecular 

viscosity, ρ is the density and 
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 no external body force is 

considered in this study.  

2.2. Boundary conditions  

The x-coordinate denote the direction of the bulk flow 

and along the major axis of ellipsoid. The r-coordinate is 

along the minor axis of the ellipsoid. Figure 1 shows the 

coordinate system for the 2-D ellipsoid model.   

Figure 1. Schematic of the physical problem 

The top and left boundaries of the domain are modeled 

as velocity inlet, the right boundary is modeled as an 

pressure out flow and the surface of the ellipsoid is 

modeled as a wall.  Additionally, the no-slip boundary 

condition is assumed to hold at all fluid-solid interface, i.e. 

at the top surface of the ellipsoid. The boundary conditions 

which describing the current simulated computational 

domain as well as the surface boundary layer is depicted in 

Figure 2. 

Figure 2. Solution domain and computational grid with boundary 

conditions and close up view of the boundary layer at AR = 2 

3. Numerical Methods 

A finite volume method  is employed using a 

commercial software FLUENT 6.2 to solve the governing 

equations subject to specified boundary conditions. Since 

the boundary layer separation is intimately connected with 

the pressure and velocity distribution in the boundary 

layer, accurate separation point predication are dependent 

on accurate resolution of the boundary layer near the 

surface of the body. Therefore, for the purpose of grid 

construction, the computational domain for ellipsoid 

model is divided into two regions: the boundary layer 

region and the free stream region (see Figure 2). The 

boundary layers are attached to the ellipsoid and the 

direction of the boundary layer grid is defined such that the 

grids extended into the interior of the domains.  More cells 

are constructed near the surface of the ellipsoid to 

compensate the high velocity gradient in the boundary 

layer region of the viscous flow. A commercial software 

GAMBIT is used for grid generation. The coupling 

between the pressure and velocity fields is achieved using 

PISO.  A second order upwind schemes is used for the 

convection. Here in this study, following [13], we define 

the total drag coefficient, dC   the pressure drag 

Since a half body section rotated about an axis parallel 

to the free stream velocity (axisymmetric body) is 

considered. The bottom boundary of the domain is 

modeled as an axis boundary. 

coefficient, PC the skin friction coefficient, fC  and a 

Reynolds number, Re  as follows: 
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where D, is the sum of the local skin friction and 

pressure drag, p  is the pressure of  the stream, A is 

appropriate reference area and U is free stream velocity. 

The grid independence is achieved by comparing the 

results of the different grid cell size. It was found that 

75000 cells  is satisfactory, and any increase beyond this 

size would lead to an insignificant change in the resulting 

solution.  

4. Results and Discussion   

Simulation results for axisymmetric laminar flow 

around sphere (AR =1) are compared to experimental data 

to verify the validity of the CFD simulation solution. 

Figure 3 shows the  total drag coefficient as a function of 

Reynolds number for special case of a sphere (AR = 1). As 

can be seen from Figure 3, there is an excellent agreement 

in the Reynolds number dependence of Cd  between CFD 

simulations in this study and the experimental measured 

dependence by [7].  

Figure 3. Comparison of computed drag coefficient with the 

experimental correlation of Clift et al. [5] for sphere (AR = 1).  

The effects of Reynolds number on the total drag 

coefficient for ellipsoids of different axis ratio are shown 

in Figure 4.  

Figure 4.Variation of the total drag as a function of Reynolds 

number for various axis ratio.  

It is clear that Cd values gradually decrease with 

increase in Reynolds number for all axis ratio. It can be 

seen that the ellipsoid of axis ratio AR = 2 exhibit the 

lowest drag coefficient due to the ellipsoid geometry. The 

simulated values of skin friction coefficient over the 

ellipsoid of different axis ratio at various Reynolds number 

is shown in Figure 5 (a-c).  

Figure 5. Skin friction coefficient on the surface of ellipsoid at 

different Reynolds numbers for (a) AR = 0.5, (b) AR = 1, (c)  

AR = 2.   

It can be observed that the skin friction coefficient 

around the ellipsoid decreases by increasing the Reynolds 

number regardless of the value of axis ratio. This is due to 

the increase of the convection stream flow. The 

distribution of the skin friction coefficient identify the 

points where the flow leaves the surface i.e. Cf ≈ 0. Since 

the point of separation itself is determined by the condition 

that the velocity gradient normal to the wall vanish 

( 0/  rvx ). It can be noted from Figure 5 (a) that 

the ellipsoid of axis ratio AR = 0.5  has always imposed to 

flow separation over the range of Reynolds number 20 ≤ 

Re ≤ 200. It shows that the separation angle increases with 

the Reynolds number from 113.5o at Re = 20 to 95.29o at 

Re = 200 ( separation angle measured from the front 

stagnation point). For special case of sphere AR = 1, as 

Reynolds number increase beyond Re = 20 the separation 

begin to occur Figure 5(b). For the ellipsoid of axis ratio 

AR = 2 there was no separation flow except at high 

Reynolds number Re = 200, Figure 5(c). As a result, the 

Reynolds number at which the separation first occur 

increase with axis ratio. Table 1 lists the values of the 

angular position of separation points for all axis ratio at 

various Reynolds number.  

The numerical prediction of separation angle values for 

special case of sphere AR = 1 matched very close Rimon 

and Cheng [8]. Figure 6 (a-c) shows the velocity vectors 

around rear half of ellipsoid for different axis ratio at Re = 

200. The separation region and vortex shedding are clearly 

visible near the rear half of ellipsoid. It can be seen that as 

the axis ratio increase the separation region tends to 

disappear. Figure 7 (a-c) shows the velocity vectors around 

the rear half of ellipsoid of axis ratio AR = 0.5 at various 

Reynolds number. It can be observed that as the Reynolds 

number increase the separation ring moves forward so that 

the attached recirculating wake widens and lengthens. 
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Table 1.Angle of separation for viscous axisymmetric laminar 

flow around ellipsoids. 

 Separation points (in degrees, θs) 

Reynolds 

number, 

Re 

AR = 0.5 AR = 1 AR = 2 
AR = 1,  

[8] 

20 113.4454 
No 

separation 

No 

separation 

No 

separation 

40 105.8824 146.7227 
No 

separation 
145.02 

100 98.31932 130.084 
No 

separation 
129.37 

200 95.29411 117.9832 161.8487 116.2 

Figure 6: Velocity vectors around the rear part of the ellipsoids at 

Re = 200 for (a) AR = 0.5, (b) AR = 1, (c) AR = 2. 

Figure 7: Velocity vectors around the rear part of the ellipsoid 

with AR = 0.5 for (a) Re = 20, (b) Re = 40, (c) Re = 200. 

5. Conclusions  

Drag and separation flow around ellipsoid in laminar 

steady axisymmetric region using Computational fluid 

dynamics (CFD) simulations are carried out. The nature of 

the flow around ellipsoids of different axis ratio was 

visualized. The dependency of the total drag coefficient on 

the Reynolds number and axis ratio of ellipsoids was 

shown. It was found that the Reynolds number at which 

the separation first occur increase with axis ratio i.e. for 

AR ≥ 2 there may be no separation region regardless of the 

Reynolds number. Comparison the simulation results with 

the experimental data validate the commercially-available 

software FLUENT in providing a reasonable good solution 

of complicated flow structures, including flow with 

separation.  
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