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Abstract

Production inventory model plays a dominant role in production scheduling and planning. For the determination of optimal
downtime, uptime of production and production quantity, it is required to minimize the expected total cost. The total cost of
production is dependent on demand, production rate and rate of decay in deteriorating items. In this paper, we develop and
analyze the production inventory model for deteriorating items by assuming that the demand is a function of both on-hand
inventory and time. It is also assumed that the lifetime of commodity is random and follows a Weibull distribution. The
sensitivity of the model is analyzed with respect to the parameters and costs. A case study is carried out to determine
production schedules in a pickle manufacturing industry. This model also includes other production-level inventory models

as particular cases for specific values of the parameters.
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1. Introduction

Recently much emphasis is given to study the control
and maintenance of production inventories of the
deteriorating items. The deterioration of inventory on
stocks during the storage period constituents an important
factor. The deterioration in general may be considered
because of various effects on the stock, some of which are
damage, spoilage, obsolescence, decay, decreasing
usefulness and many more. For example, in manufacturing
industries like drugs, pharmaceuticals, food products,
radioactive substances, the item deteriorates over a period.
Nahmias [1], Raafat [2], Goyal and Giri [3] reviewed
inventory models for deteriorating items. Cohen [4],
Aggarwal [5], Dave and Shah [6], Pal [7], Kalpakham and
Sapna [8], Giri and Chaudhari [9] developed the inventory
models with exponential lifetime. Tadikamalla [10]
developed inventory model with Gamma distribution for
deterioration. Covert and Philip [11], Philip [12], Goel and
Aggarwal [13], Hwang [14] and Venkatasubbaiah et.al
[15] discussed inventory models with Weibull distribution
for the lifetime of the commodity. Nirupamadevi et.al [16],
[17] studied the inventory models with the assumption that
the lifetime of the commodity follows a mixture of
Weibull  distribution. Lakshminarayana etal [18]
suggested inventory models for deteriorating items with
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exponential, Weibull and mixture of Weibull lifetime
distributions having seconds’ sale.

In all these papers, they assumed that the replenishment
is instantaneous but in production processes, the
replenishment is finite. Srinivasa Rao et.al [19] developed
a production inventory model with generalized Pareto
lifetime and time dependent demand. Mahapatra and Maity
[20], Halim, Giri and Chaudhuri [21] studied the
production inventory models for deteriorating items with
fuzzy deterioration rate. In these models, they assumed
that the demand is dependent on stock or on-hand
inventory. Ouyang et.al [22] studied the inventory models
with stock dependent demand. Bhowmick et.al [23]
suggested a continuous deterministic inventory system for
deteriorating items with inventory-level dependent time
varying demand. Jie Min et.al. [24] proposed a perishable
inventory model with a stock dependent selling rate. They
also considered the demand rate is dependent on the
negative inventory level during the stock out period. Lee
and Hsu [25] developed a two-warehouse inventory model
for deteriorating items with time-dependent demand.
Manna and Chiang [26] developed two deterministic
economic production quantity models for Weibull-
distribution deteriorating items with demand rate as a ramp
type function of time. Tripathy and Mishra [27] studied an
inventory model for weibull deteriorating items with price
dependent demand and time-varying holding cost. In all
these papers, they have considered that the demand is a
function of either stock dependent or time dependent.
However, in many manufacturing processes of
deteriorating items, the demand is a function of both on-
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hand inventory and time. For example, in Seafood
processing units, the rate of deterioration is variable and
time dependent. Hence, in this paper, we develop and
analyze an inventory model for deteriorating items with
the assumption that the lifetime of commodity is random
and follows a Weibull distribution. The Weibull rates of
decay include increasing/ decreasing/ constant rates of
decay. We also assume that the demand is a linear function
of on hand inventory and power pattern demand. This
model is a general one as it includes several of the earlier
models as particular cases for specific values of
parameters. We have developed two models by
considering with and without shortages where as with
shortages model is discussed in detail.

2. Assumptions and Notations

The production inventory model for deteriorating items
is developed under the following assumptions and
notations:

2.1. Assumptions

i) The production inventory system involves only one type
of item.

ii) The life time of commodity is random and follows a
three parameter Weibull distribution with

probability density function of the form

f-oft—y)" e o,p>0,t>y:
(Johnson et.al,1995) [28]

1
n

D (t) = r+(p11(t)+(p2rt—, 0<t<T,

1
nTn"
where, r is demand rate, n is pattern index; 91,97 (phi)

and T (tau) are positive constants which can be varied

depending on the demand rate. This assumption is
considered taking the linear relationship between

production and demand. If 91 =09, =0, the rate of

demand  becomes  constant and D(t) =T.

Ifg, = Oand7z =0, the demand rate becomes power

pattern demand. If ¢, =0, the demand rate becomes

stock dependent demand.

vi) In shortages model, shortages are allowed and fully
backlogged. During the shortages period, the backlogging
rate is the surplus available after fulfilling the on hand
demand and there is a penalty (7T ) (pi) for not meeting the
demand.

2.2. Notations

The notations employed in this paper are as given below:
A - Setup cost

C - Unit cost

h - Holding cost of a unit per unit time

T - Shortage cost

K( ty, t3, T) - The total cost of the system per unit time
with shortages model

Q - Total quantity of items produced per unit time

R - Rate of Production of items per unit time

where, Ol (alpha) is the shape parameter, B (beta) is the
scale parameter and Y (gamma) is the
location parameter. The Weibull distribution for
deterioration is assumed since in many
deteriorating items, the rate of deterioration is a variable
depending on time having increasing /
decreasing / constant rates of decay. It is reasonable to
assume that the deterioration starts only
after certain period of life, which is equivalent to?y,
hence, the instantaneous rate of
deterioration is
o= — D gt - >y

1-F(t)
where, F(t) is the cumulative density function of the
Weibull distribution.
This Weibull distribution includes exponential distribution
as particular case when B =17 =0
and truncated exponential distribution when B =1.
iii) There is no repair or replacement of the deteriorated
item during the production cycle and the
deteriorated item is thrown as a scrap.
iv) The rate of production is governed by supply and is
finite say (R) .The production rate is
greater than demand rate and system is in steady state
during production.
v) The rate of demand is a function of quantity as
equation(1)

0<op,<1,0<9,<1,1t>0 1)

I(t) - On hand inventory at time t
Y - The time point at which deterioration starts

t; - The time point at which production stopped

t, - The time point at which shortages occur

t3 - The time point at which the production re
commences

T - Production cycle time

3. Mathematical M odeling

Here, we have considered a production inventory
system for deteriorating items, which is assumed to follow
the pattern as, described. The production starts when
inventory is zero and the produced items meet the demand
and deterioration. The production is stopped, when stock
reaches to a maximum inventory level and allowed to
reach zero gradually due to the demand and deterioration.
Shortages are allowed and backlogged until some time
interval and at the same time production starts to clear the
backlogging and the regular demand until stock becomes
Zero.

Consider a production-level inventory model, in which
shortages are allowed. The production starts at time t = 0,
when the stock is zero and reaches to a maximum
inventory level at time t = t; The time interval is divided
into two non-overlapping intervals (0,7 ) and (7,t)).
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During the interval (0,7 ), the produced items partly meet
the demand and during interval (Y, t;), the produced items
are partly consumed due to the demand and deterioration
and excess items are stored. The production is stopped at
time t = t; and the stock level is allowed to reduce
gradually due to the demand and deterioration and at time t

Inventory Lewvel
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until time t = t; and production starts at this instant of
time. During the time period (t;, T), all the backlogged
shortages are cleared in addition to fulfilling the on hand
demand and the cycle repeats thereafter. The above
inventory model is represented in Fig.1.

Fig.1 The inventory system - with shortages.

= t,, the inventory becomes zero. Shortages are permitted

Let I(t) denote the inventory level of the system at time t (0 <t < T).
The differential equations describing the instantaneous state of I(t) in the interval (0, T) are given by

Ly

%I(t):R— r+(plI(t)+(p2% , 0<t<y (1)
nT"
i—l
—I(t)+oB(t—y) ' (t)=R—4t+¢I(t)+9,——} y<t<t, )
nT®
ﬁ—l
—I(t)+oB(t—7) " L(t)=—{t+ 0 I(t)+ ¢, — ", t <t<t, 3)
nT"
%I(t):—r, t, <t<t, 4)
%I(t):R—r, t, <t<T (5)

with the boundary conditions 1(0) =0, I(t;) =0 and I(T) =0
By solving the equations (1), (2), (3), (4), and (5) and using boundary conditions, we obtain the instantaneous state of
inventory at any given time t, during the interval (0, ) ) is

1
-1

t n

_ ra
I(t)=e "’”J- R—-<1+0, - e”du, 0<t<y (6)
0 nTo
The instantaneous state of inventory at any time t, during the interval (}/, t,) is
L L
ol P o) t ru® a(u-yf+ou h ru” ou
I(t):e J- R—-3t+0, - ‘du+I R—-qt+o, - “du |, y<t<t O
! nT» 0 nT®
The instantaneous state of inventory at any time t, during the interval (ty, t,) is
L
—{a(t- )[3+¢,t} h ru” a(u- )ﬁ+ u
I(t)= e I T+, — 7 du |, t, <t<t, (8)

' nT®



742 © 2010 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 4, Number 6 (ISSN 1995-6665)

The instantaneous state of inventory at any time t, during the interval (t,, t3) is

I(t) = T(t2 —t), t,<t<t, ©)
The instantaneous state of inventory at any time t, during the interval (t,, T) is
1= (R-7)t-T). t, <t<T. (10)
From the equations (9) and (10), we get
Rt, —(R—-1)T
th- # , (11)
T

The total production in the cycle time T is
Q=R t;+R(T-t3), (12)
The Stock loss due to deterioration in the interval (0, T) is given by

Ly

T n
L(t):Rtl-J. r+(p11(t)+(p2rt T dt, (13)
0 nTn

Backlogged demand at time t is

It
_J. T+(P11(t)+(P2 1 dt (14)

The total cost per unit time K (t, t3, T) is the sum of the set up cost per unit time, purchasing cost per unit time, holding cost
per unit time and shortage cost per unit time.
Therefore,

K(tl,u,T)—‘?Jr(T3Q+¥ﬁ1(t)dt+ [1tyde+ [ 1ot +¥[j —I(tdt+ | —I(t)dt}, (1s)

By substituting the values of I(t) and Q from the equations (6) to (10 ) and (12) in equation (15), we get

L

h|t oot ru" .
A C —J-e ""j R—-Jt+0, —r e""dudt
Kt t5, )= —4+ —[Rt, +R(T—t,)|+ T =
! T T[ 1 ( 3)] 0 0_ nTn
4 5 t rui’l . Y ru%’l
+J.e_{“(”) W‘I}I R—{1+0,—F— o) +“"”du+.[ R-<1+0, —re"du |dt
4 Y nT; 0 l’lT;

1
t —1 ty

G rPa] [ U7 {gatwrf o [ et — i _
+J.tl e Ir+(p2 — e dy | dt T J- 1(t, t)dt+.[ (R-1)(t—T)dt

l - T (16)

Using the truncated Taylor’s series expansion for exponential function and on integrating and simplifying the equation (16),
we get

1
l+1 —+2

h R—T{He“*’”—l}_n%r Yo"

A C
K(ty, t3, T) = ?+¥[Rtl + R(T — 1 )]+ ?

0, 0, Ti I+n  1+42n

l+2 l+3
¢,v" _ ¢, v" _ i_ﬁ a(tl_Y)B+2 P33
(1+n)1+2n) (I1+n)1+2n) + T){z 2+(B+1)(B+2)+6(t1 )

Co f g )L =) e [ o 2
B+1)| " B+2 2 +1)° 2 | B+l B+1)B+2)
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+2 (tl _V)[M }} Oy (3 3 QO tl(tl _V)ﬁ+2 (tl _V)ﬁ+3
6t —y)" (6 )~ -
B+3 3 B+1
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B+2  (B+2)B+3)

2 2 L 1, LA L
_(Pl (4_,Y4) _ (p211. n tln 1_,Yn1 +q n n tln Bl_ynﬁl
8 ~|1+n I+Bn [1+nB+n
nT"
A (T nBy n tfﬁ_ ) ﬁ**ﬁ(t —v) +L
v v l-n+pn| 1+npl ' v v Y (1+n)(1+2n)

%4—2 $+2 n %+B+1 %+B+1 nB 14 %+B i+[3
tl - Y —ony ————— tl - ’Y - 1:l - ’Y
I+nB+n 1+nf

) n n tl+2[3+l lJr2ﬁ+1 nB;/ tl+2[3 l+2[5 y%w (t )BH
—0 n _ 0 _ n Y -
14pn |1+2pn+n| = Teopnl Y

—_

B+l
1 1 1 1 L
np n —+2B ~+2B n ﬂ —+2B-1 Z+2B-1 n
_ 7/ t;’l _,Yn _ 7/ tln _,Yn _Y (tl_y)ﬁ+1
l-n+fn [1+2Bn 1+2Bn—n B+1
3 aQ,n n tﬁ+2+|3 B ﬁ+2+[3 3 nB;/ tiﬂ%l 3 i+[3+1 B (p1n2 ti+2 B i+2
I+n |14+ 2n+fn : Y I+Bn+n 1 Y 1+2n| ' Y

1
1 —+p
—+24B —+24B n
— 0, — e /4 -
14+Bn |14+ 2n+pn 2 I-n+pn |1+pn+n

1
—+p+1 l+B+1 ;71+ﬁ 21’12 1 L t2 —t2
(tl“ -y j—y 5 (t2-v?) _—(1+1(1p;(1+3n) -y +T{t2(t2—t1)—(2 )

+ﬁ{(tz )P, - t,)- (t, -y (& _Y)M}

t2
+(P1 : (tz_tl)_&(t;_tf)
B+2 B+2 2 6
1 2 1 1 1 1 1
¢,r o n ;+1 ;+l n ;+B n ;+[3+1 ;+B+1
+ 2l{nt2(t2—t])—l+n(t2 —t! J-HX{HB'H{[Z (tz—t,)——(tz —t J}
nTn"
B'\{n l—lJrﬁ n lJrﬁ l+B no, L n L) L
- t7 t,—t, )— ty -t +—t7 t, -t )= ty -t
1-n+pn ? (2 1) 1+ Bn 2 : l+n|° (2 1) 1+2n( ° :
t
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1

_&z—ﬂ“3+&1—ﬂwiH} -2 in wﬁb—vf”—hl—ﬂmq—{ -

B+3 B+3 LB+ I+nf+n
nT®
1
t%+B+1 _ti+ﬁ+1 3 nBy t%+l3 _t%fﬁ ta n tz?rB {(t _ )B+1 —(t _ )B”}
2 ! 1+np| > ' np+l|pr1tc ) o
1 1 1 1 i_H—B
) n t5+2ﬂ+1 B t;+2ﬁ+1 ~ npy thB _ tH+2B B Byn t)
1+2pn+n | ° : 1+2pn| 1 I=n+Pn | p+1
l+2[3 l+2[5 I’IB Y l+2[3—1 l+2[3—1
P Y PR L SO DL (P AP RN o A PSS P
e A e 1 B v et L
1 1
e 1 n P
{(t2_7)+ _(t1_7)+ }_{ [t2 -4 J

3 3 p+1
npy Y L (2 .2 SRS a (tz _Y) 2.2
_ tn —tn — T —t —t - —=—— |+ t; —t
1+Bn+n(2 1 J}H " {2(2 ) 3 3) B+l 2 =)

The total cost per unit time is to be minimized for obtaining the optimal production scheduling policies. For a given ts,
K(t;.t3,T) is a convex function of t; we obtain the necessary condition, which minimizes K(t; t;,T) with respect to t; is

IK(t,,t,,T) _
ot,
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This implies

K(t,t,,T) C. h ot, =y)" et] @ :
—(1 3 ): TR+¥I:(R—-E){[1+ (l Y) -|-(Pl L — {(tl_Y)B(ztl_Y+t16)_(t1_7)ﬁ1}

ot, B+1 2 B+l

o’ (t, _Y)2B+1 _ 9, (t, _Y)ﬁ 2 2p) 2 B
B+1 2 { B+l (3t1 2t1Y+t1B) (B+1)(B+2){(tl Y)
_ _ B2 2 oQ, (‘[1_7)B+l _ _(tl_Y)B+2 _(P]2t13
T B s

1 1 1 1 1
(sz Nt +o n tlnﬁ_ynﬁ __ nBy tlﬂﬁl_ynsl ¢,n tnl
T 1+Pn I-n+Pn l+n
n n
1 1 1 1
—+p 7+1371 ) n —+2B —+2p-1 —+p 8 n[};/ —+2p-1
—ongt?  —pyt" —-a tr —pyt? -y ot = te
{1 Prt| } {1+Bn{l Brt| Y (1 'Y)} 1— n+[3n{
H+ZB 2 ﬁﬁ—ﬁ—l B a(pl +5+1 + % i+B+1
—Pyt; =Y (tl Yt —@nt}  —oQ ——— 1+ B t
1
P nfy L ¢; Lo o p+1
SIS VE I SR TSR s — P ot t 4+ ——\(t, —
Y 1} 1—n+[3n{1 Y }} len :Th B+1{(1 Y)
. t2 t2 1 1 1, 1,
—(tz—y)ﬁl}—(p”+(p“ +(sz ntr —nt? 4ol —gn __bm
np+1

l-n+pn

l_1+ﬁ l_1+ﬁ n(Pl l-¢—1 l-%—1 B 1 B
T L .t R URS e rves SURSIACTRS SR

B+ a 2B B+ il i _L )8
e (R R R I 2 SR B e
B p+2 Q.1 o
(3t —2tly+tB) (B+1)(B+2){ (t,—y) (3t,—y+tp)+(t,—7) }H} nTi{ {tl
-t el [ et )
t3 (tl 7) Prt| }+a{nﬁ+l{ t3 (tl 7) +1 +Byt } I—n+pn
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1 1 1
—+p ne, 4 —42
+10 H { ttn D Ho (18)
1+n

The total cost per unit time is to be minimized for obtaining the optimal production scheduling policies. For a given t;,
K(t, t5,T) is a convex function of t; we obtain the necessary condition which minimizes K(t, t;) with respect to t; is

IK(t,,t,,T) ¢

ot
Rt L K R U N S A
pr 1, 30, 0, (Pz : 1 -
yt, —(x =y "y T 5 x’y— tltplxy—jx y nl+n)x"y—tx" y—nx"y

nTn

n (1 Lip LiptLep Byn ( ) Lipt
+ —+pB+1|x" y—t —-Xx" - +
a{n3+l{(n P jx Y 1}{ Bj ) y} l-n+pn b
1 1 1 1 1
—tly(l—1+[3)x“ " —yx*" ’ 1}}+&{y(l+2jx“ —t]y(1 +1jx“ . ly}}
n l+n n

- M{L T e L E ) Al (Pt Gl (S IR Y

B+1 (B+1)
+1 +1 2 1 . +1 +1
a6 ) }}—&f{n{m{xwmﬂxx—v)ﬁ +x-v)
nT®
X; y—(tl—v)ﬁ”y% —yxn” +yB7«+BI}M{nﬁnﬂ{ﬁ{x“ﬁ(ﬁﬂxx—Y)ﬁy
+<x—y>ﬁ“[l+ﬁ}‘1”“y—<t )[ +BJ yhoxo Py o™yl B
n : 1-n+pn
l_'_ﬁ,l 1
e () e e R R O S S e

+syyxi““}}+““’l{ ! {yxn e+ Lt
B+1 n

1+n

(l+1jyxi yx7ﬁ+'+vaxi+B SPRIESS y—l—y—x2y+i{l{x2y(ﬁ+1)(x—Y)B
n 2 2 B+1]2

+2xy B+ 1) —y)"" —y(B+1x—y) f-x(x -y %{2x3y—tfxy—x3y}}

1
1 2 1 1 —+p 5
e —+1 n t
__(pltpfr ny Ry ) FE RIS S R S b l+2+[3 x—— l+B
- 2\n 2n np+1 2 n X \n

nT®
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1 1
1 —+p 2 o
—+p+l nx " 1](1 1 t ne,x"y |[1](1
oyl By UL ) (e 8 ety L
I-n+fn |2 |(n n X I+n |2 |\n
1 n R’t; R(R-7)T 2Rt; (R-1)T
—t| =1 p—x7 e || Tty ( . T 3+( ) +R-1)(t, - T)
n T T T T T
1
where X =—{Rt3 —(R—’C)T} andy=—, (19)
T T
Solving the equations (18) and (19), using numerical and the records verified to decide the values of various
m?thods, we ob*tain the optimal p*)roduction down time*tl as parameters.
t; and t3 as t; . Substituting t; in equation (11), t; and Let the inventory system with shortages has the following
t; in equation (12), we obtain t, and optimal production parameter values:
quantity Q as Q respectively. R=30units r=10units 7 =12units h=1Rs.10/-
C=Rs.10/- A=Rs.75/-
n=3 T=4 months T=Rs.15/-

4. Case Study

Consider the case of deriving the economic production
quantity and other optimal policies for a pickle-
manufacturing unit. Here, the product is deteriorating type
and has random lifetime and assumed to follow a three-
parameter Weibull distribution. Discussions held with the
personnel connected with the production and marketing

For the assigned values of deterioration parameters
OL,B,'Y =(0.1, 1.0, 0.01) and demand parameters
®,,P, )= (0.1, 0.1), the optimal values of time "),

production quantity (Q"), total system cost (K") have been

determined. The values of above parameters are varied
further to observe the trend in optimal policies and the

results obtained are shown in Table 1.

Table 1. Effect of demand and deterioration parameters on optimal policies — Demand is function of on hand inventory and time - with

shortages
PARAMETERS OPTIMAL POLICIES
o | Bl Y ||| T | |R|D|C|Z |n|Aalu |6 |6 |Q K’
0.10 0.173 | 2.383 | 3.353 | 24.60 | 196.487
0.08 0.137 | 2.373 | 3.370 | 23.77 | 197.668
0.09 | 1.0 | 0.01 0.1 0.1 12 | 10 | 30 | 10 | 10 | 15 3 75 | 0.103 | 2.363 | 3.386 | 22.94 | 198.706
0.11 0.071 | 2.356 | 3.402 | 22.07 | 199.627
0.12 0.042 | 2.345 | 3.416 | 21.28 | 200.402
1.4 0.205 | 2.293 | 3317 | 26.64 | 204.124
1.8 0.229 | 2.205 | 3.282 | 28.41 | 210.941
2.2 0.246 | 2.125 | 3.250 | 29.88 | 217.104
2.6 0.259 | 2.053 | 3.221 | 31.14 | 222.720
0.00 0.449 | 2.428 | 3.371 | 32.34 | 175.151
0.04 0.356 | 2.413 | 3365 | 29.73 | 182911
0.08 0.264 | 2.398 | 3.359 | 27.15 | 190.019
0.12 0.084 | 2.370 | 3.348 | 22.08 | 202.309
0.12 0.207 | 2.455 | 3.382 | 24.75 | 198.721
0.14 0.239 | 2.520 | 3.408 | 24.93 | 200.780
0.16 0.268 | 2.580 | 3.432 | 25.08 | 202.671
0.18 0.295 | 2.637 | 3.455 | 25.20 | 204.398
0.12 0.175 | 2.385 | 3.354 | 24.63 | 196.344
0.14 0.176 | 2.387 | 3.355 | 24.63 | 196.221
0.16 0.177 | 2.390 | 3.356 | 24.63 | 196.143
0.18 0.178 | 2.390 | 3.356 | 24.66 | 196.064
14 0.173 | 2.383 | 3.353 | 24.60 | 197.737
16 0.173 | 2.383 | 3.353 | 24.60 | 198.987
18 0.173 | 2.383 | 3.353 | 24.60 | 200.237
20 0.173 | 2.383 | 3.353 | 24.60 | 201.487
12 0.179 | 2.385 | 3.354 | 24.75 | 196.664
14 0.185 | 2.387 | 3.355 | 24.90 | 196.839
16 0.191 | 2.390 | 3.356 | 25.05 | 197.041
18 0.197 | 2.390 | 3.356 | 25.23 | 197.226
31 0.137 | 2.373 | 3.370 | 23.77 | 197.668
32 0.103 | 2.363 | 3.386 | 22.94 | 198.706
33 0.071 | 2.356 | 3.402 | 22.07 | 199.627
34 0.042 | 2.345 | 3.416 | 21.28 | 200.402
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11 0.205 | 2.293 | 3317 | 26.64 | 204.124
12 0.229 | 2.205 | 3.282 | 28.41 | 210.941
13 0.246 | 2.125 | 3.250 | 29.88 | 217.104
14 0.259 | 2.053 | 3.221 | 31.14 | 222.720
7 0.449 | 2.428 | 3371 | 32.34 | 175.151

8 0.356 | 2.413 | 3.365 | 29.73 | 182911

9 0.264 | 2.398 | 3.359 | 27.15 | 190.019

11 0.084 | 2.370 | 3.348 | 22.08 | 202.309

16 0.207 | 2.455 | 3.382 | 24.75 | 198.721

17 0.239 | 2.520 | 3.408 | 24.93 | 200.780

18 0.268 | 2.580 | 3.432 | 25.08 | 202.671

19 0.295 | 2.637 | 3.455 | 25.20 | 204.398

35 0.175 | 2.385 | 3.354 | 24.63 | 196.344

4.0 0.176 | 2.387 | 3.355 | 24.63 | 196.221

4.5 0.177 | 2.390 | 3.356 | 24.63 | 196.143

5.0 0.178 | 2.390 | 3.356 | 24.66 | 196.064

80 | 0.173 | 2.383 | 3.353 | 24.60 | 197.737

85 | 0.173 | 2.383 | 3.353 | 24.60 | 198.987

90 | 0.173 | 2.383 | 3.353 | 24.60 | 200.237

95 | 0.173 | 2.383 | 3.353 | 24.60 | 201.487

The increase in deterioration parameter o has shown
decreasing trend in all optimal values of time (t;”, t,, t;")
and production quantity (Q) viz., (0.137 to 0.042, 2.373 to
2.345, 3.370 to 3.416 months) and (23.77 to 21.28 units)
but increase in total cost (K, Rs.197.668 to 200.402)
respectively. Increase in [ results in increase in t, " (0.173
to 0.259 months), Q" (24.60 to 31.14 units) and K"
(Rs.196.487 to 222.720) respectively. Increase in y results
decrease in all optimal policies. Increase in demand
parameter ((,) and shortage cost (mr) has shown increase
in all the optimal policies. The increase in production rate
(R, 30 to 34 units) and unit cost (C, Rs.7 to 11) has
decreasing effect on all optimal values of time (t, ", t,,
t;"), production quantity (Q") i.e. (t;", t,", t3;* = 0.173 to
0.042, 2.383 to 2.345, 3.353 to 3.416, 0.449 to 0.084,
2.428 to 2.370, 3.371 to 3.348 months respectively) and
(Q", 24.60 to 21.28, 32.34 to 22.08 units) respectively.
However, they have shown increasing trend in total cost
(K", Rs.196.487 to 200.402, Rs.175.151 to 202.309).

5.SENSITIVITY ANALYSIS

A sensitivity analysis has been carried out to explore
the effect on the optimal policies by varying the value of
each parameter at a time and all parameters together. The
results obtained by changing parameters by -15%, -10%. -
5%, +5%, +10% and +15% are tabulated in Table 2.

It is noticed that the increase in deterioration
parameters((x,ﬁ) has increasing trend in optimal
production downtime, tl* (0.173 to 0.193, 0.173 to 0.177
months) but mixed response in production uptime, t;"
(3.353 to 3.360, 3.353 to 3.349 months) respectively. The
increase in shortage cost, T (from -15% to +15%) has

increasing effect on optimal times (t;”, 0.087 to 0.246 and
t;", 3.281 to 3.414 months), quantity Q" (24.18 to 24.96
units) and total system cost K* (Rs.190.6 to 201.268).

The graphical representation of the parameters
variation effect on optimal policies is shown in Fig.2

6. CONCLUSION

e This model considers the delayed nature of decay by
considering the location parameter in the decay
distribution.

e This model includes increasing, decreasing and
constant rates of decay which is a more general type
of distribution for decay.

e In this model, the demand function considered includes
a spectra of demand patterns like time dependent
demand, stock dependent demand, constant rate of
demand, both time and on-hand inventory dependent
demand. Hence, this model can be viewed as a
generalized EPQ, which serves several types of
demands.

e This model is also can be generalized by assuming that
product under consideration follows a general
distribution like Pearson type distribution which
includes Weibull as a particular case. Since, it is
capable of providing optimal production schedules it
can be commercialized by developing user-friendly
software package which serve as robust model for
production scheduling and inventory control. ';

We also reduced the model to without shortages (see

Appendix) by formulating the governing equations and

obtaining the solutions.
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Table-2: Sensitivity analysis of Optimal Policies -Demand is function of on hand inventory and time — with shortages
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Optimal
Parameters . -15% -10% -5% 0 +5% +10 % +15%
Policies
t 0.155 0.161 0.167 0.173 0.180 0.186 0.193
oo t3: 3.348 3.350 3.352 3.353 3.356 3.358 3.360
Q 24.21 24.33 24.45 24.60 24.72 24.84 24.99
K’ 196.335 196.389 196.435 196.487 196.502 196.523 201.535
t 0.169 0.170 0.172 0.173 0.175 0.176 0.177
,B (]) t3: 3.357 3.356 3.355 3.353 3.352 3.350 3.349
Q 24.36 24.42 24.51 24.60 24.69 24.78 24.84
K" 195.822 196.029 196.235 196.487 196.695 196.919 197.158
t 0.173 0.173 0.173 0.173 0.173 0.173 0.173
¥ 001 t3: 3.354 3.353 3.353 3.353 3.353 3.353 3.353
Q 24.57 24.60 24.60 24.60 24.60 24.60 24.60
K’ 196.467 196.484 196.485 196.487 196.489 196.491 196.493
t 0.155 0.161 0.167 0.173 0.180 0.186 0.193
ty" 3.348 3.350 3.351 3.353 3.356 3.358 3.360
¢1 ©h Q" 24.21 24.33 24.48 24.60 24.72 24.84 24.99
K" 196.340 196.393 196.422 196.487 196.500 196.519 196.529
t 0.169 0.170 0.172 0.173 0.175 0.176 0.178
ty" 3.353 3.353 3.353 3.353 3.354 3.354 3.354
¢2 b Q 24.48 24.51 24.57 24.60 24.63 24.66 24.72
K" 196.342 196.390 196.439 196.487 196.521 196.569 196.617
t 0.010 0.064 0.119 0.173 0.228 0.283 0.339
T2 t3: 3.435 3.407 3.380 3.353 3.328 3.303 3.279
Q 17.25 19.71 22.17 24.60 27 29.4 31.8
K" 174.099 181.903 189.339 196.487 203.264 209.733 215.887
t 0.169 0.17 0.172 0.173 0.175 0.176 0.178
«10) t3: 3.353 3.353 3.353 3.353 3.354 3.354 3.354
Q 24.48 24.51 24.57 24.60 24.63 24.66 24.72
K" 196.342 196.390 196.439 196.487 196.521 196.569 196.617
t 0.374 0.299 0.233 0.173 0.12 0.071 0.027
R(G0) t3: 3.268 3.298 3.327 3.353 3.378 3.402 3.423
Q 28.20 27.02 25.82 24.60 23.373 22.07 20.83
K’ 189.030 191.972 194.423 196.487 198.184 199.627 200.767
t 0.102 0.130 0.153 0.173 0.191 0.205 0.218
b (10) t3: 3414 3.393 3.373 3.353 3.335 3317 3.299
Q 20.64 22.11 234 24.60 25.68 26.64 27.57
K" 183.086 187.832 192.312 196.487 198.184 199.627 200.767
t 0.310 0.264 0.219 0.173 0.129 0.084 0.04
cao) t3: 3.362 3.359 3.356 3.353 3.351 3.348 3.345
Q 28.44 27.15 25.89 24.60 23.34 22.08 20.85
K" 186.533 190.019 193.318 196.487 199.453 202.309 205.010
t 0.087 0.118 0.146 0.173 0.199 0.223 0.246
z4s) t3: 3.281 3.307 3.331 3.353 3.375 3.395 3414
Q 24.18 24.33 24.45 24.60 24.72 24.84 24.96
K" 190.600 192.704 194.662 196.487 198.193 199.788 201.268
t 0.172 0.172 0.173 0.173 0.174 0.174 0.175
ne) ty" 3.352 3.353 3.353 3.353 3.354 3.354 3.358




© 2010 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 4, Number 6 (ISSN 1995-6665)

750
Q* 24.60 24.57 24.60 24.60 24.60 24.60 24.63
K 196.608 196.576 196.530 196.487 196.432 196.393 196.356
t; 0.173 0.173 0.173 0.173 0.173 0.173 0.173
ATS) t;: 3.353 3.353 3.353 3.353 3.353 3.353 3.353
Q 24.60 24.60 24.60 24.60 24.60 24.60 24.60
K 193.675 194.612 195.550 196.487 197.425 198.362 199.300
t 0.13 0.144 0.173 0.19 0.208 227
ty" 3.347 3349 3.353 3357 3361 3.367
Al Q" 19.967 21.465 24.60 26.239 27.951 29.67
K" 143.615 160.179 177.915 196.487 215.954 236.298 257.615

Fig.2.Graphical representation of sensitivity analysis of important parameters —with shortages
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Appendix

1I (Without Shortages)

In this section, we consider the production level
inventory model in which shortages are not allowed. The
production starts at time t = 0, when the stock is zero and
reaches to a maximum inventory level at time t = t;. The
time interval is divided into two non-overlapping intervals
(0,Y) and (Y,t;). During the interval (0,7 ), the
produced
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items partly meet the demand and during interval (Y, t;),
the produced items are partly consumed due to the demand
and deterioration and excess items are stored. The
production is stopped at time t = t; and the stock level is
allowed to reduce gradually due to the demand and
deterioration and at time t = t,, the inventory becomes
zero. At this time, the production starts again and the cycle
repeats thereafter. The inventory model explained above is
shown in Fig.3.
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Inventory Level

e t =

Fig.3 The inventory system — without shortages

Let I (t) denote the inventory level of the system at time t (0 <t < T), then the differential equations governing the
instantaneous state of inventory I(t) at any time t are given by

L

%I(t)zR— r+(pll(t)+(p22 . 0<t<y (1)
nT®
LI
d p-1 t"
al(t)+a[3(t—y) I(t):R— 1:+(p11(t)+(p2—l , yStst, ®)
nT"
LI
%I(t)+aﬁ(t—y)ﬁll(t):— T+(p11(t)+(p2rt—1 , t, <t<T @)
nT*®

with the boundary conditions 1(0) = 0 and I(T) =0.

By solving the equations (1), (2) and (3) and using boundary conditions, we obtain the instantaneous state of inventory at
any given time t, during the interval (0,y) is
1

L)
n

- ru u
l(t)=e“’1tJ. R—q1+¢,——e""du, 0<t<y (4)
0 nT"

The instantaneous state of inventory at any time t, during the interval (7, t;) is

t

1 1
—1 —1

n Y n
R—-:{t+0, ° “(“'Y)B“"‘“du+.[ R—<t+0, o T
nT® 0 nT®

1(t)= e o oo

1 ohdu |, y<St<t,

2

Since the production is stopped after reaching maximum inventory level, at any time t during the interval (t;, T) is
1

-1
n

T
— ot o) ru a(u-v) +opu
I(t)= e AT+, — “du | {<t<T ©)
! nT»
The production quantity during the cycle time (0, T) is the production rate (R) multiplied by time period of production
(t1) and is given by
Q=Rt (7

The total cost per unit time K (t;, T) is the sum of the set up cost per unit time, purchasing cost per unit time and holding
cost per unit time and shortage cost per unit time i.e.,

K (t,T) = ? + (T:Q + ? fl(t)dt + j I(tydt+ [ I(t)dt |- ®)

By substituting the values for I(t) and Q from the equations (4),(5),(6) and (7) in equation (8), we get
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B 1
2
|7 ot "
K(t.m=2 +9Rtl+¥ J‘e“""'[ R—-3t+9, o —re"du
T T 0 O_ nTn
4 , t é_l Y i_l
B
+J-e‘{“(”) o} j R—<5t+0, 1 o vr) +""“du+.|. R—<5t+0, —rle™du
y v nT» 0 nT»

T “-1

o

t, t

1
nT™®

The above equation was simplified similar fashion as
done for shortages model.

T
e_{“("y)ﬁ+¢‘[} j T+0, =

By minimizing the total cost per unit time with respect
to t;, we can obtain the optimal production start up time t;
and the optimal economic production quantity Q. Since
K(ty,T) is a convex function of t; for a given T, we obtain
the necessary condition, which minimizes K(t;,T) is

IK(t,,T) _ 0
ot, '

Solving the above non- linear equation of for t;, by
using numerical methods, we can obtain the optimal value

alurfrom gy,

)

of t, as t;. Substituting t,” in equation (7) we can obtain
the optimal production quantity Q as Q" =R t; .

The results and the pictorial / graphical representations
are presented in Table-3, Table-4, Figure- 3 and Figure-4.
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Table-3: Effect of demand and deterioration parameters on optimal policies - Demand is function of on hand inventory and time — without

shortages
PARAMETERS OPTIMAL POLICIES
r R h C n A t ’ K’
¢ 'B Y 9 [ T ! Q
0.10 1.0 .01 0.10 0.10 12 10 30 10 10 3 75 0.954 28.62 274.210
0.08 0.935 28.05 271.756
0.09 0.945 28.35 273.074
0.11 0.963 28.89 275.166
0.12 0.971 29.13 275.942
1.4 1.053 31.59 278.026
1.8 1.186 35.58 276.020
22 1.354 40.62 251.760
2.6 1.530 45.90 160.750
0.00 0.953 28.59 274.230
0.04 0.956 28.68 273.960
0.08 0.958 28.74 273.650
0.12 0.960 28.80 273.350
0.12 0.971 29.13 269.650
0.14 0.985 29.55 264.380
0.16 0.996 29.88 258.410
0.18 1.006 30.18 251.740
0.12 0.959 28.77 274.240
0.14 0.965 28.95 274.260
0.16 0.970 29.10 274.270
0.18 0.975 29.25 274.290
14 1.197 3591 296.350
16 1.426 42.78 313.100
18 1.642 49.26 324.940
20 1.848 55.44 332.250
12 0.959 28.77 274.240
14 0.965 28.95 274.260
16 0.970 29.10 274.270
18 0.975 29.25 274.290
31 0.954 28.62 274.210
32 0.905 28.05 277.600
33 0.858 27.46 280.760
34 0.813 26.83 283.710
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0.771 26.21 286.470
11 1.030 30.90 292.200
12 1.094 32.82 309.690
13 1.150 34.50 326.780
14 1.198 35.94 343.570
7 1.211 36.33 249.447
8 1.123 33.69 258.373
9 1.038 31.14 266.620
11 0.872 26.16 281.159

35 0.954 28.62 273.951

4.0 0.953 28.59 273.744

4.5 0.953 28.59 273.575

5.0 0.953 28.59 273.434

80 0.954 28.62 275.460

85 0.954 28.62 276.710

90 0.954 28.62 277.960

95 0.954 28.62 279.210

Tab-4: Sensitivity analysis of Optimal Policies - Demand is function of on hand inventory and time — without shortages

Parameters Opt.l n_lal -15% -10% -5% 0 +5% +10% +15%
Policies

t 0.940 0.945 0.949 0.954 0.958 0.963 0.967

a (0.1 Q 28.2 28.35 28.47 28.62 28.74 28.89 29.01
K 272.438 273.074 273.666 274.210 274.711 275.166 275.576

t 0.924 0.934 0.944 0.954 0.965 0.976 0.988

B 1.0 o 27.72 28.02 28.32 28.62 28.95 29.28 29.64
K 272.600 273.126 273.664 274.210 274.758 275.302 275.835

t 0.954 0.954 0.954 0.954 0.954 0.954 0.954

7.1 Q 28.62 28.62 28.62 28.62 28.62 28.62 28.62
K 274.223 274.219 274.215 274.210 274.206 274.202 274.198

t 0.940 0.945 0.950 0.954 0.958 0.963 0.967

@, ©0.1) o 28.20 28.35 28.50 28.62 28.74 28.89 29.01
K 277.161 276.223 275.239 274.210 273.137 272018 270.855

t 0.950 0.951 0.953 0.954 0.955 0.957 0.958

®, 0.1 o 28.50 28.53 28.59 28.62 28.65 28.71 28.74
K 274.191 274.198 274.204 274.210 274.217 274.222 274.229

ty 0.723 0.802 0.878 0.954 1.028 1.101 1.173

T (12) o 21.69 24.06 26.34 28.62 30.84 33.03 35.19
K 249.224 258.113 266.437 274.210 281.451 288.173 294.391

t 0.95 0.951 0.953 0.954 0.955 0.957 0.958

1 (10) o 28.50 28.53 28.59 28.62 28.65 28.71 28.74
K 274.191 274.198 274.204 274.210 274.217 274.222 274.229

t 1215 1.12 1.034 0.954 0.881 0.813 0.75

R(30) o 30.983 30.24 29.469 28.62 27.752 26.829 25.875
K 255.597 262.484 268.659 274.210 279.207 283.712 287.778

t 0.811 0.863 0911 0.954 0.994 1.03 1.063

h(10) o 24.33 25.89 27.33 28.62 29.82 30.9 31.89
K 245.954 255.578 264.986 274.210 283.273 292.197 300.997

t 1.08 1.038 0.996 0.954 0.913 0.872 0.832

C(10) o 324 31.14 29.88 28.62 27.39 26.16 24.96
K 262.581 266.620 270.496 274.210 277.763 281.159 284.397

t 0.955 0.954 0.954 0.954 0.954 0.954 0.954

n(3) < 28.65 28.62 28.62 28.62 28.62 28.62 28.62
K 274.506 274.400 274.302 274.210 274.126 274.047 273.974

t 0.954 0.954 0.954 0.954 0.954 0.954 0.954

A(75) Q 28.62 28.62 28.62 28.62 28.62 28.62 28.62
K 271.398 272.335 273.273 274.210 275.148 276.085 277.023

t 0.893 0.913 0.933 0.954 0.975 0.996 1.017

All o 22.772 24.651 26.591 28.62 30.712 32.868 35.086
K 199.780 223.449 248.292 274.210 301.078 328.731 356.961
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Fig. 4: Graphical representation of sensitivity analysis of important parameters- without shortages
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