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Abstract  
  
The main aim of this paper is to demonstrate a new approach for the health monitoring of structures to identify the damage at 
earliest possible stage using the acceleration-time data obtained from the piezoelectric accelerometers. This paper presents a 
unique combination of time series models to extract the damage sensitive features and exponentially weighted moving 
average (EWMA) control charts to monitor the variations of the selected features. First, the damage sensitive features are 
extracted by fitting a time series prediction model called an auto-regressive (AR) model to the acceleration-time data 
obtained from the undamaged structure. Then the residual errors are calculated which quantify the difference between the 
actual acceleration-time data and the prediction from the AR model at each time interval is defined as the damage sensitive 
feature. The variation of these features is monitored using EWMA control charts. The applicability of the proposed damage 
identification approach is tested with the welded structure like cantilever plate. The damage is introduced to the test structure 
by cutting a slot in the weld using electrical discharge machining. Three damage levels are considered and named damage 
level zero, damage level one and damage level two. As the outliers are statistically significant in number and are increasing 
as the damage level increases, it is concluded from the EWMA control charts that this approach not only identifies the 
presence of damage but also sensitive to the severity of the damage.  
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1. Introduction 1 
 

Vibration based damage identification is a tool 
that has received considerable research activity in the 
field of mechanical, aerospace and civil engineering 
structures. Most of these structures are welded structures 
because welding is an economical and efficient method 
for obtaining a permanent joint. A welded joint offer 
many advantages like, lighter in weight, less cost, less 
production time, no stress concentration and provides 
more strength compared with many other joints [1]. The 
process of implementing a damage identification strategy 
for these structures is generally referred to as Structural 
health monitoring (SHM) [2]. Here damage is defined as 
changes to the material and/or geometric properties of 
these systems, including changes to the boundary 
conditions and system connectivity, which adversely 
affect the system’s performance.  
               The SHM process involves the observation of a 
system over time using periodically sampled dynamic 
response measurements from an array of sensors. Many 
of these structures continue to be used despite of aging 
and the associated potential for damage accumulation 
.Therefore interest in the ability to monitor the structural 
health and to detect the damage at earliest possible stage 
is very important for both economical and life safety 
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point of view. Ideally a robust damage detection method 
will be able to identify the damage at a very early stage, 
locate the damage with in sensor resolution being used, 
and provide some estimate of the severity of the damage. 
Current damage identification methods are either visual 
or localized experimental methods such as acoustic or 
ultrasonic methods, magnetic field methods, radiography, 
eddy-current methods and thermal field methods [3]. All 
these experimental techniques require that the vicinity of 
the damage is known a priori and that the portion of the 
structure being inspected is readily accessible. Subjected 
to these limitations the need for the additional global 
vibration based damage identification methods that can 
be applied to complex structures has lead to the 
development of methods that examine changes in 
vibration characteristics of the structures [4, 5 and 6]. 
Most of the literature show many different methods for 
extracting damage sensitive features from vibration 
response measurements. But few of the cited references 
take a statistical approach for quantifying the observed 
changes in those features [2]. The extraction of damage 
sensitive features from these measurements and the 
statistical analysis of these features are then used to 
determine the current state of system health. There are 
other techniques which use the lamb wave parameters to 
identify the damage [7]. 
 

The basic idea of this global damage 
identification method is that damage will alter the 
stiffness, mass or energy dissipation properties of a 
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system, which in turn alter the measured dynamic 
response of the system. Therefore all vibration based 
damage identification methods, namely [8, 9, 10 and 11] 
depend on experimental data with inherent uncertainties. 
There are many cases where damage causes a structure to 
go from a system that can be accurately modeled as a 
linear system to a system that exhibits a non-linear 
dynamic response [12]. Common examples of this 
change in system response are associated with the 
formation of fatigue cracks that open and close during 
subsequent dynamic loading and the loss of preload in 
bolted connections which results in a rattle. 

 
This paper will present the problem of 

vibration based damage identification method using 
control chart analysis paradigm, which is one of the most 
popular method of statistical process control [13, 14]. 
The applicability of the proposed damage identification 
approach is tested with the welded structure and the 
acceleration-time data is collected for the both 
undamaged and damaged cases .Control charts approach 
is very efficient and suitable for on line continuous 
monitoring of the systems [14]. Full automation of the 
damage identification procedure is necessary for remote 
i.e., web based monitoring applications. 
 
 
2. Mathematical Formulation 

 
An AR model is first fitted to the measured 

acceleration-time histories obtained from the undamaged 
structure. Residual errors, which quantify the difference 
between the actual measured time history and the 
prediction from the AR model at each time interval, are 
used as the damage-sensitive features. Exponentially 
weighted moving average (EWMA) control charts are 
employed to monitor the variation of the selected 
features. Control limits for the control charts are 
constructed based on the features obtained from the 
initial intact structure. The residual errors computed from 
the new data and the prediction from the AR model are 
then monitored against the control limits. A statistically 
significant number of residual errors outside the control 
limits indicate a system anomaly.  
  
2.1 AR Model  

The basic assumption in the use of control 
charts is the independence of the extracted features. 
Conventional control charts give false alarms too 
frequently if the selected features exhibit a high level of 
correlation over time [15]. Hence it is necessary to 
remove the correlation in the raw time history before the 
application of the control charts. As a feature extraction 
process, an AR model is fitted to the undamaged 
acceleration time history in order to remove the auto-
correlation. 

An AR model is essentially an  infinite impulse 
response filter with some additional interpretation placed 
on it. The notation AR(p) refers to the autoregressive 
model of order p. The AR(p) model given in [15] is 
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th time series 
value, a1, a2…….ap are the parameters or the co-

efficients  of the AR model, p is the order of the AR 
model, Xt – i previous measured time series values. ε t is 
assumed to be an unobservable random error with zero 
mean and constant variance (white noise). Here white 
noise is generated using the Mat lab version 7.0 and  is 
presented in later sections.  

If represents the estimated acceleration-
time measurements from the fitted AR model and X

tX


t  
represents the measured acceleration-time data from the 
experiment, then the residuals at time ‘t’ is given by 

   et = Xt - t                                              ( 2 ) X


If the fitted AR model accurately represents the 
measured signal, the residual should be nearly 
uncorrelated. 

2.1.1 Selection of AR model order ’p’  

There are many techniques available for 
selecting the model order ’p’, such as final prediction 
error (FPE), Akaike’s information criteria (AIC) and 
Bayesian information criteria (BIC). For feature 
estimation it is not good to select model order p 
arbitrarily large. Selecting very high order model will 
results in small estimated white noise varience. 

In 1969 Akaike[16] developed FPE criterion to 
choose the appropriate AR model order to fit to a time 
series data. By applying FPE criterion select the value of 
p which will minimizes the FPE. In 1973 Akaike[17] 
developed a more general applicable criterion for 
selecting the model order is the information criterion of 
Akaike known as AIC. But in 1989 Hurvich and Tsai[18] 
suggested a bias-corrected version of the AIC known as 
AICC. From AICBIC criteria the order of the AR model 
is obtained as 4. Therefore AR(4) model is developed 
from the acceleration-time data of the undamaged 
structure. 

2.1.2.Calculation of  AR parameters 

The AR parameters are generally calculated by 
considering the Yule-walker equations[19]. The AR(p) 
model  given in the equation (1) is based on parameters 
ai where i = 1, ..., p. There is a direct correspondence 
between these parameters and the covariance function of 
the process, and this corrrspondence can be inverted to 
determine the parameters from the autocorrelation 
function. This is done by using the following Yule-
Walker equations, 

                 Tp a = γp                              ( 3 ) 

σ2 = γ(0)- a' γp                     ( 4 ) 
 

where Tp is the covariance matrix  and 

γ

p
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The above equations (the Yule-Walker 
equations) provide one route to estimate the parameters 
of an AR(p) model, by replacing the theoretical 
covariances with estimated values. One way of 
specificying the estimated covariances is equivalent to 
calculation using least squares regression of values Xt on 
the ‘p’ previous values of the same series. 
 

Once the AR model is fitted to the 
acceleration- time history obtained from the undamaged 

structure,  tX


 is the predicted time history from the AR 
model at time ‘t’. Then the residual errors(et) are 
calculated using equation(2) and is defined as the 
damage sensitive features used in this work. The control 
charts provide statistical frame work to detect the 
changes in the selected damage sensitive features. 
 
2.2 Statistical Process Control  
 

Control charts may be used in variety of ways, 
but in many applications it is used for on-line process 
monitoring. General theory of control charts was first 
proposed by Dr Walter S. Shewhart[15], and control 
charts developed according to his principles are often 
called “Shewhart control charts”. Basically control chart 
is a graphical display with limit lines, called control 
lines.  
 

The purpose of drawing a control chart is to 
detect any changes in the process that would be evident 
by any abnormal points listed on the graph from the data 
collected. If these points are plotted in "real time", the 
operator will immediately see that the point is exceeding 
one of the control limits, and can make an immediate 
action.  
 

When the structure is in good condition, the 
damage sensitive features derived from the acceleration-
time measurements will have some distribution. These 
features may change if the structure is damaged. 
Therefore statistical process control provides a 
framework for monitoring the features and for 
identifying new data that are inconsistent with past data. 
EWMA control charts hitherto not used for the present 
purpose are proposed to monitor the damage sensitive 
features derived from the acceleration-time 
measurements.  These control charts are very effective 
against small process shifts. 
 
2.2.1 EWMA control charts 
 

EWMA control charts are generally considered 
somewhat more advanced techniques than the Shewhart 
control charts. EWMA quality control chart offers 
considerable performance improvement relative to 
Shewhart quality control charts when the magnitude of 
the shift in process mean is small. The EWMA control 
chart was introduced by Robert in 1959[20]. For 
individual observations (n=1) the EWMA chart is 
defined as  
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Where λ is a constant lies between 0 and 1 and 

the starting value z0 =CL is the target mean. Recursively 

substituting 1)1(   jiji zx   for zi-j , 

j=1,2…….i-1 in equation (5), it can be shown that zi is a 
weighted average of all past and current observations. 
Then 
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If the observations xi are independent random 

variables with variance σ2, the variance of zi is given by 
the equation, 
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Therefore, the EWMA control chart would be 

constructed by plotting zi versus the sample number i (or 
time). The upper control limit (UCL), center line (CL) 
and lower control limit (LCL) for the EWMA control 
chart is defined as follows 
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Where, L and λ are the design parameters of 

EWMA control chart. Since the EWMA control chart 
can be viewed as a weighted average of all the past and 
present observations, the distribution of zi can be 
reasonably approximated by a normal distribution as a 
result of the central limit theorem. Therefore, the EWMA 
chart is insensitive to the normality assumption of 
individual observations xi.  
 
3. Experimental setup 
 
 The applicability of the proposed damage 
identification approach is tested with the test structure 
(Figure 1) by fixing it to the multi axes electro dynamic 
vibration shaker.  Test structure is made of carbon-steel 
and the two plates are welded to form a cantilever.  
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Figure 1. Test structure 

 
 The dimensions of the plate which is drilled 
with four 8 mm through holes at each corner are 150 mm 
x 150 mm. The centre of the drilled holes is at 18 mm 
from each corner side of the plate. The dimensions of the 
other plate which is welded to the above plate, so as to 
form a cantilever plate is150 mm x 100 mm. The elastic 
constants of the material considered are Young’s 
modules (E), 200 x 109 N/m2 (200 Gpa), Poisson’s ratio 
(), 0.3 and the mass density (ρ), 7850 kg/m3.  
 

Damage is introduced into the structure by 
cutting a slot in the weld. This is done by electrical 
discharge machining (EDM). Two damage levels are 
investigated by introducing two such slots in different 
test structures in which 10 mm slot length is considered 
as damage level one, where as 20 mm slot length is 
considered as damage level two (Diagrammatically 
represented in Figure 2). However damage level zero 
refers to the undamaged condition of the structure.  The 
thickness of the slot is 0.6 mm for all the cases.  

 
 

  
 
 a)  Damage level one             b) Damage level two 
 

Figure 2. Diagrammatic representation of damaged structure 
 

The test structure is fitted to the multi axes 
electro dynamic vibration shaker with the help of four 
bolts and nuts as shown in Figure 3. Electro-dynamic 
vibration shaker used for experimentation consists of 
drive coil connected rigidly to the moving platform and 
positioned in the magnetic field when an alternate current 
flow in this drive coil gives rise to a force by converting 
an electric current into mechanical force which moves 
the platform. The vibrator can operate from either sine or 
random input wave form in the required frequency range.  

 
 

 
 

Figure 3. Experimental setup 
 

Table 1. Specifications of multi axes electro dynamic vibration 
shaker 

Peak sine force                     ± 400 Kg force 
Max. displacement               25 mm(pk-pk) 
Max. Velocity                      
1.2meter/second(nominal) 
Frequency range                   1 Hz to 3000 Hz 
Size of moving 
top  platform                        160 mm diameter 
Max. acceleration                 80 g (at no load) 
on vibrator platform         
Max. payload capacity          70 Kg’s 
Moving armature 
suspension                           Rolling strut type 
Moving mass                       5 kg 
of armature       
Drive power                      Through a solid state 
power amplifier 
Cooling method                  Air extraction 
Test direction                      All three mutually 
                                            perpendicular directions 

 
 Table 1 shows the specifications of the multi 
axes electro dynamic vibration shaker. Vibration 
characteristics of a structure can be examined in either 
actively or passively. In this work active investigation is 
selected for monitoring the vibration characteristics of a 
structure. The test structure is instrumented with three 
piezoelectric single axis accelerometers. Out of three 
accelerometers one is used for actuator (input) and the 
other two is for response. The response data from the two 
accelerometers are recorded and was sampled at 150 Hz. 
Piezoelectric sensors are electromechanical systems that 
react on compression the sensing elements show almost 
zero deflection. Due to this reason the piezoelectric 
sensors are robust, have an extremely high natural 
frequency and an excellent linearity over a wide 
amplitude range. Vibration response data from the 
structure is recorded using data recorder shown in Figure 
4. 
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Figure 4. Response data recorder 
 
 Four channel data acquisition system shown 
in Figure5 is used to convert the analog data into digital 
form. Total of 1024 acceleration-time measurements are 
acquired for damage level zero, damage level one and 
damage level two and are stored in MS-excel file. The 
plots of this data for different damage levels are shown in 
Figure 6. Figure 7 shows the white noise generated using 
Mat Lab 7.0 version. 
  

 
  

Figure 5 Four channel data-acquisition system 
 
 In general selection of the model either 
physics-based or data based will depend upon the amount 
of relevant data available and the level of confidence. 
When nothing is known a priori, about the structure then 
approach becomes entirely data based [21]. The data 
based models [22, 23, and 24] are relatively simple to fit 
to the measured response data and the application of one 
such model is considered in this work for extracting the 
damage sensitive features. An AR (4) model is fitted to 
the acceleration-time history obtained from the 
undamaged structure. Then the residual errors are 
calculated, which is the difference between the actual 
subsequent data and the prediction from the AR (4) 
model. To compare the residual errors obtained from 
data measured on the undamaged structure with similar 
quantities obtained from the damaged structure, EWMA 
control chart is developed using the acceleration-time 
data obtained from undamaged structure. 
 
 The control limits for EWMA control charts 
are calculated from the residual errors (features) obtained 
from the undamaged structure. Then the new data 
(damaged) are monitored against the control limits. A 
statistically significant number of residual error terms 
outside the control limit indicating the structure transit 
from undamaged to damaged state. 
 
4. Results and discussions 

 
 In this study the proposed damage 
identification approach based on time series models and 
EWMA control charts were tested on a cantilever plate 
like welded structure. As explained earlier two damage 
levels are investigated in this work i.e., damage level one 
and damage level two. Damage level zero configuration 
was considered “undamaged” and the structure was 
assumed to be well described by a linear model when 
subjected to input excitation. 
 
    The original data is checked for 
autocorrelation and shown in Figure8. It can be noted 
from the Figure8, that the acceleration-time data obtained 
from the experiment are auto-correlated. Therefore it is 
necessary to remove the auto-correlation before the 
application of control charts. To remove the auto-
correlation, a linear time prediction model called an AR 
model is developed from the acceleration-time data 
obtained from the damage level zero structure. The order 
of the AR model is calculated as four from the AICBIC 
criterion for this work. After obtaining the order of AR 
model, AR parameters are calculated using Yule-walker 
equations (equations 3 and 4) and the values are 
tabulated in table 2. 
 

Table 2. AR Parameters 
AR parameter Calculated value from  

Yule-walker equations 
a1 -1.3644 
a2 0.6061 
a3 -0.6456 
a4 0.4241 

 
 Figure 9 presents the acceleration-time data 
prediction from the AR (4) model for the different 
damage levels. Then the residual errors are calculated, 
which is the difference between actual subsequent 
acceleration-time data and the prediction from AR (4) 
model. Since it is not possible to estimate the residual 
error values less than the model order, a total of 1020 
residual errors are calculated from 5 to1024 in each case 
of damage level and it is presented in Figure10. Then 
EWMA quality control charts are plotted using residual 
errors as data. EWMA control charts are plotted for 
individual observation (n=1) using 1020 residual errors 
(features) as data. The design parameters of the EWMA 
control chart L and λ are selected as 2.7 and 0.2 
respectively for present case as per [15].  
 

Figure11 shows the EWMA control charts for 
damage level zero, damage level one and damage level 
two. This shows that there are statistically significant 
number of data points are outside the control limits for 
the two damage levels considered. This is a clear 
indication of presence of damage in the structure. 
However it is seen that the number of outliers are more 
for damage level two than that of the damage level one, 
which is clear indication that this approach is sensitive to 
the severity of damage. It has been observed from Figure 
11 (b) for damage level one 66 residual error points are 
falling outside the control limits, and for damage level 
two from Figure 11(c), 105 residual error points are 
falling outside the control limits. Therefore this damage 
identification approach not only identifies the damage 
but also sensitive to the severity of the damage. 
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5. Conclusions 
 
 In this paper a statistical damage classification 
technique for vibration based damage identification 
problem in an unsupervised learning mode is studied. A 
unique combination of linear prediction model called an 
AR model to extract the damage sensitive features and 
EWMA control charts to monitor the variation of the 
selected features is presented. An experiment on welded 
structure was conducted using multi axes electro 
dynamic vibration shaker to study the applicability of 
statistical damage classification technique.  
 
 The experimental data obtained from the 
piezoelectric sensors are auto correlated. To remove the 
auto correlation an AR (4) model is developed from the 
acceleration-time data obtained from the damage level 
zero. Then the residual errors are calculated which 
quantify the difference between the actual measured time 
history and the prediction from the AR (4) model at each 
time interval, are used as the damage-sensitive features. 
Here two damage levels are considered i.e., damage level 
one and damage level two. The residual errors are nearly 
uncorrelated therefore the residual errors are taken as 
data for plotting the EWMA control charts. It is observed 
from the EWMA control charts that there are statistically 
significant number outliers. This suggests the presence of 
damage in the structure. These outliers are increasing as 
the damage level increases. This shows that this 
approach is sensitive to the severity of the damage. 
Therefore the approach presented in this paper is 
effective in identifying damage and also identifying its 
severity in the considered welded structure. Once the 
presence of damage is conformed in any machine 
structure it can be inspected thoroughly and can be put 
back into further service. 
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6(a) Damage level zero 

 

 
6(b) Damage level one 

 

 
6(c) Damage level two 

 
Figure 6. Acceleration-time data from the experiment for different damage levels 

 

 
 

Figure 7. White noise generation with zero mean and constant variance
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8(a) Damage level zero 

 

 
8(b) Damage level one 

 

 
8(c) Damage level two 

 
Figure 8. Auto-correlation for the experimental data obtained from different damage levels. 

 
 

 
9(a) Damage level zero 

 

 
9(b) Damage level one 

 

 
9(c) Damage level two 

 
Figure 9. Acceleration-time data prediction from AR (4) model for different damage levels 
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10(a) Damage level zero 

 

 
10(b) Damage level one 

 

 
10(c) Damage level two 

 
Figure 10. Residual errors (damage sensitive features) for different damage levels 

 
 
 
 
 
 
 

 
11(a) Damage level zero 
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11(b) Damage level one 

 

 
11(c) Damage level two 

Figure 11. EWMA control charts (n=1) for residual errors obtained from different damage levels 
 


