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Abstract 

Current engineering analyses rely on running expensive and complex computer codes. Statistical techniques are widely used 
in engineering design to construct approximate models of these costly analysis codes. These models referred as metamodels, 
are then used in place of the actual analysis codes to reduce the computational burden of engineering analyses. The intent of 
this study is to provide a comprehensive discussion of the fundamental issues that arise in design optimization using 
metamodels, highlighting concepts, methods, techniques, as well as practical implications. The paper addresses the selection 
of design of experiments, metamodel selection, sensitivity analysis and optimization.  
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1. Introduction                  *       
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Traditional engineering design optimization which is 
the process of identifying the right combination of product 
parameters is often done manually, time consuming and 
involves a step by step approach. Approximation methods 
are widely used to reduce the computational burden of 
engineering analyses.  The use of long running computer 
simulations in design leads to a fundamental problem 
when trying to compare and contrast various competing 
options. It is also not possible to analyze all of the 
combinations of variables that one would wish. This 
problem is particularly acute when using optimization 
schemes. Metamodels, also referred as surrogate models, 
are a cheaper alternative to costly analysis tools and can 
significantly reduce the computational time involved. 
Modern optimization techniques like Genetic Algorithms 
(GA) have been found to be very robust and general for 
solving engineering design problems. Evolutionary 
algorithms such as GA have been used with metamodels 
(surrogate models) to reduce the cost of exact function 
evaluations. In this paper, a methodology of developing 
metamodel and applying it to the optimization problem is 
explained. As a case study, the roof slab of a Prototype 
Fast Breeder Reactor was taken and design optimization 
was carried out. In this approach, experimental design, 
metamodels, evolutionary algorithm, and finite element 
analysis tool are brought together to provide an integrated 
optimization system. 

Metamodeling involves (a) choosing an experimental 
design for generating data, (b) choosing a model to 
represent the data, and (c) fitting the model to the observed 
data. There are several options for each of these steps, 
which will be discussed below. Forrester et. al [1] 
discussed the recent advances in surrogate based design for 
global optimization. Simpson et.al [2] has done a survey 
on the application of metamodels on design. The paper 
also gives the following recommendations: (i) If many 
factors(more than 50) must be modeled in a deterministic 
application, neural networks may be the best choice (ii) If 
the underlying function to be modeled is deterministic and 
highly nonlinear in a moderate number of factors (less than 
50, say), then kriging may be the best choice despite the 
added complexity, (ii) In deterministic applications with a 
few fairly well behaved factors, another option for 
exploration is using the standard Response surface 
methodology approach. In Simpson, et al. [3], kriging 
methods are compared against polynomial regression 
models for the multidisciplinary design optimization of an 
aero spike nozzle. Alam et al [4] investigated the effects of 
experimental design on the development of artificial neural 
networks as simulation metamodels. This paper shows that 
a modified-Latin Hypercube design, supplemented by 
domain knowledge, could be an effective and robust 
method for the development of neural network simulation 
metamodels. Queipo et.al. [5] discussed the fundamental 
issues that arise in the SBAO of computationally 
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expensive models such as those found in aerospace 
systems. The paper mainly focused on the design of 
experiments based on Latin Hypercube Sampling (LHS) & 
Orthogonal Arrays (OA) and Surrogate modeling 
techniques based on polynomial regression model, kriging 
and radial basis function. Ruichen et.al [6] compares four 
popular metamodeling techniques— Polynomial 
Regression, Multivariate Adaptive Regression Splines, 
Radial Basis Functions, and Kriging— based on multiple 
performance criteria using fourteen test problems 
representing different classes of problems. Giunta, et al. 
[7] also compare kriging models and polynomial 
regression models for two 5 and 10 variable test problems. 
In Varadarajan, et al. [8], Artificial Neural Network 
(ANN) methods are compared with polynomial regression 
models for the engine design problem in modeling the 
nonlinear thermodynamic behavior. In Yang, et al., (9), 
four approximation methods— enhanced Multivariate 
Adaptive Regression Splines (MARS), Stepwise 
Regression, ANN, and the Moving Least Square— are 
compared for the construction of safety related functions in 
automotive crash analysis, for a relative small sampling 
size. Similarly many researchers have compared the 
various experimental designs and/or metamodeling 
techniques. Only limited researchers are explained about 
the application of metamodel in the optimization process. 
This paper explains the methodology of performing 
experimental design, creating metamodel and applying it 
to the optimization. 

1.1. Design of Experiments Techniques 

Design of Experiments includes the design of all 
information-gathering exercises where variation is present, 
usually under the full control of the experimenter. Often 
the experimenter is interested in the effect of some process 
or intervention on some objects. Design of experiments is 
a discipline that has very broad application. In the 
following part, we will introduce the most frequently used 
DOE techniques. 

1.1.1. Full-factorial Design 

A full-factorial design is one in which all combinations 
of all factors at all levels are evaluated. It is an old 
engineering practice to systematically evaluate a grid of 
points, requiring n1*n2*n3*...ni (i is the number of factors, 
n is the number of levels for factor i) design point 
evaluations. This practice provides extensive information 
for accurate estimation of factor and interaction effects. 
However, it is often deemed cost-prohibitive due to the 
number of analyses required. 

1.1.2. Orthogonal Arrays 

The use of orthogonal arrays can avoid a costly full-
factorial experiment in which all combinations of all 
factors at different levels are studied. A fractional factorial 
experiment is a certain fractional subset (1/2, 1/4, 1/8, etc.) 
of the full factorial set of experiments, carefully selected to 
maintain orthogonality (independence) among the various 
factors and certain interactions. While the use of 
orthogonal arrays for fractional factorial design suffers 
from reduced resolution in the analysis of results (i.e., 
factor effects are aliased with interaction effects as more 
factors are added to a given array), the significant 
reduction in the required number of experiments can often 

justify this loss in resolution as long as some of the 
interaction effects are assumed negligible. In fractional 
factorial designs, the number of columns in the design 
matrix is less than the number necessary to represent every 
factor and all interactions of those factors. Instead, 
columns are “shared” by these quantities, an occurrence 
known as confounding. Confounding results in the 
dilemma of not being able to realize which quantity in a 
given column produced the effect on the outputs attributed 
to that column. In such a case, the designer must make an 
assumption as to which quantities can be considered 
insignificant (typically the highest-order interactions) so 
that a single contributing quantity can be identified. 

1.1.3. Latin Hypercube Design 

Another class of experimental design which efficiently 
samples large design spaces is Latin Hypercube sampling. 
With this technique, the design space for each factor is 
uniformly divided (the same number of divisions (n) for all 
factors). These levels are then randomly combined to 
specify n points defining the design matrix (each level of a 
factor is studied only once). An advantage of using Latin 
Hypercubes over Orthogonal Arrays is that more points 
and more combinations can be studied for each factor. The 
Latin Hypercube technique allows the designer total 
freedom in selecting the number of designs to run (as long 
as it is greater than the number factors). While, the 
configurations are more restrictive using the Orthogonal 
Arrays. A drawback to the Latin Hypercubes is that, in 
general, they are not reproducible since they are generated 
with random combinations. In addition, as the number of 
points decreases, the chances of missing some regions of 
the design space increases. 

1.1.4. Central Composite Design 

Central Composite Design (CCD) is a statistically 
based technique in which a 2-level full-factorial 
experiment is augmented with a center point and two 
additional points for each factor (star points). Thus, five 
levels are defined for each factor, and to study n factors 
using Central Composite Design requires 2n +2n +1 design 
point evaluations. The corner points are for the assessment 
of linear and 2-way interaction terms. Center points are 
used to detect curvature and sometime replicated in 
experimental DOE to estimate pure error. Star points are 
for the assessment of quadratic terms. Although Central 
Composite Design requires a significant number of design 
point evaluations, it is a popular technique for compiling 
data for Response Surface Modeling due to the expanse of 
design space covered, and higher order information 
obtained. 

1.1.5. Box-Behnken Design 

Box and Behnken developed a family of efficient three-
level designs for fitting second-order response surfaces. It 
exists only for 3-7 factors. Number of runs is very close to 
CCD for the same number of factors. The Box-Behnken 
design doesn’t have any corners and it is suitable for the 
situation when corners are not feasible (physical designs). 
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1.2. Approximating Methods 

Approximation concepts were introduced in structural 
design optimization in the late 1970s to do the following: 
• Reduce the number of independent design variables 

through design variable linking and reduced basis 
vectors concepts. 

• Perform constraint deletion through truncation and 
regionalization schemes. 

• Reduce the number of computer intensive, detailed 
analyses (or simulation code evaluations) through the 
use of mathematical approximations of the design 
optimization objective and constraint functions. 
These approximations models can be used to reduce 

simulation codes or analyses that are computation 
intensive. They can also help to eliminate the 
computational noise for simulation codes in the case the 
outputs rapidly oscillate with gradual changes in the values 
of input parameters. Computational noise has a strong 
adverse effect on optimization by creating numerous local 
optima. Approximation models (Response Surface Models 
in particular) naturally smooth out the response functions, 
and, in many cases, help to converge to a global optimum 
faster. The usage of approximation is not restricted to 
optimization. It also provides an efficient means of post-
optimization or sensitivity analysis. Their value is very 
high for computationally expensive engineering methods, 
such as Monte Carlo Simulation, Reliability-Based 
Optimization, or Probabilistic Design Optimization. 

1.2.1. Response Surface Method 

Response surface method is a collection of statistical 
and mathematical techniques useful for developing, 
improving, and optimizing processes. In some systems 
based on the underlying engineering, chemical, or physical 
principles, the nature of the relationship between y and x’s 
might be know exactly. Then a model of the form 
y=g(x1,x2,...,xk )+e can be written. This type of relationship 
is often called a mechanistic model. However, the more 
common situation would be that the underlying 
mechanism is not fully understood, and the experimenter 
must approximate the unknown function g with an 
appropriate empirical y = f(x1, x2,….., x3) + e. Usually the 
function f is a first-order or second-order polynomial. This 
empirical model is called a response surface model. The 
model then can be used in optimization studies with a very 
small computational expense, since evaluation only 
involves calculating the value of a polynomial for a given 
set of design variables. Accuracy of the model is highly 
dependent on the amount of information collected for its 
construction (number of exact analyses), shape of the exact 
response function being approximated (like the order of 
polynomial), and volume of the design space in which the 
model is constructed (the range covered by the RSM). In a 
sufficiently small volume of the design space, any smooth 
function can be approximated by a quadratic polynomial 
with good accuracy. For highly non-linear functions, 
polynomials of 3rd or 4th order can be used. If the model is 
used outside of the design space where it was constructed, 
its accuracy is impaired, and refining of the model is 
required. The response surface model relies on the fact that 
the set of designs on which it is based is well chosen. 
Randomly chosen designs may cause an inaccurate surface 
to be constructed or even prevent the ability to construct a 

surface at all. Because simulations are often time-
consuming or the experiments are expensive, the overall 
efficiency of the design process relies heavily on the 
appropriate selection of a design set on which to base the 
approximations. CCD design, Box-Behnken design and D-
optimal design are the widely used DOE methods to 
generate the design set for constructing a response surface 
model. 

1.2.2. Kriging Meta Models 

Kriging (named after the South-African mining 
engineer Krige) is an interpolation method that predicts 
unknown values. More precisely, a Kriging prediction is a 
weighted linear combination of all output values already 
observed. These weights depend on the distances between 
the new and the observed inputs. The closer the inputs, the 
bigger the weights are. Kriging models are extremely 
flexible due to the wide range of correlation functions 
which can be chosen for building the approximation 
model. Furthermore, depending on the choice of the 
correlation function, the model either can provide an exact 
interpolation of the data, or an inexact interpolation. The 
most popular DOE for Kriging is Latin Hypercube Design 
(LHS). LHS offers flexible design sizes n (number of 
scenarios simulated) for any value of k (number of 
simulation inputs). Geometrically, many classic designs 
consist of corners of k-dimensional cubes, so these designs 
imply simulation of extreme scenarios. LHS, however, has 
better space filling properties. 

1.2.3. Neural Networks 

Artificial Neural Networks (ANN) has been studied for 
many years in the hope of mimicking the human brain’s 
ability to solve problems that are ambiguous and require a 
large amount of processing. Human brains accomplish this 
data processing by utilizing massive parallelism, with 
millions of neurons working together to solve complicated 
problems. Similarly, ANN models consists of many 
computational elements, called “neurons” to correspond to 
their biological counter-parts, operating in parallel and 
connected by links with variable weights. These weights 
are adapted during the training process, most commonly 
through the back-propagation algorithm, by presenting the 
neural network with examples of input-output pairs 
exhibiting the relationship the network is attempting to 
learn. The most common applications of ANN involve 
approximation and classification. Approximation models 
attempt to estimate input-output transformation functions, 
while classification involves using the known inputs to 
determine class membership. There is no much literature 
about the optimal experimental design for neural networks 
or even verification of the effectiveness of the traditional 
regression model based optimal design methods on the 
neural net.  

2. Methodology 

During the optimization process, the model of the 
component to be optimized will be called for analysis 
several times, each time with different geometric 
parameters. So the model has to be in parametric form, 
which enables it to change the parameter whenever 
required. So a parametric model of the component has to 



 © 2010  Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 4,  Number 5 (ISSN 1995-6665) 
 
656 

be modeled using CAD tool which is compatible with the 
analysis (CAE) tool. Sensitivity analysis of the component 
was performed to find the effect of the objective function 
and the state variables (stress/deformation) on the variation 
of geometric parameters. The parameters which influence 
more on the state variables are alone considered for the 
optimization study. In order to reduce the computation cost 
and to have a better sampling search in the design space, 
design of experiments was performed using Central 
Composite Design (CCD). For the sampling points, the 
computer experiment was conducted using ANSYS 
package and the results are fed to Minitab software to 
create the metamodel. This metamodel was used in 
Genetic Algorithm (GA) coding for optimization.  

3. CASE STUDY 

The foremost step in the metamodel based optimization 
is the development of metamodel. Development of 
metamodel requires lot of experiments to be carried out to 
the train the model. Experiments may not be feasible in 
case of complex problems like our case study and in such 
situations, simulation will be useful. This method of using 
computer simulation for developing metamodel is termed 
as design of computer experiments and is explained in 
detail in the following chapters. 

3.1. Parametric Modeling and finite element analysis 

As explained earlier, metamodel development requires 
lot of simulations, for which parametric model of the 
structure being optimized is required. The structure 
considered for the metamodel based optimization is a roof 
slab of a nuclear reactor. The roof slab acts as a support for 
various components of the reactor and is shown in Figure 
1. The main objective of the optimization is to minimize 

the total weight of the roof slab. As the model will be 
explored during analysis for various combinations of 
parameters, a parametric model of the roof slab was 
developed. The variables taken for parametric modeling 
are various plate thicknesses and height of the roof slab.  

The parametric model was created using the finite 
element software ANSYS. The necessary loading 
conditions (weight of various components on the roof slab) 
and boundary conditions are applied on the structure and a 
methodology of analyzing the structure for static loading 
condition was established. 

3.2. Sensitivity analysis 

The next step in metamodel based optimization is to 
predict the decision variables for the roof slab through an 
investigation of the sensitivity of the objective function on 
small increments of these variables. The design variables 
considered for the sensitivity analysis are Height (H1), 
Top and Bottom plate thickness (T1), Inner shell thickness 
(T3), Outer shell thickness (T4), Stiffener thickness (T5) 
and Intermediate Heat Exchanger (IHX), Primary Sodium 
Pump (PSP) shell thickness (R1). Sensitivity analysis is 
carried out using ANSYS sweep optimization module and 
the analysis reveals that deformation is sensitive to the 
variations in the parameters H1, and T1, stress is sensitive 
to the variations in the parameters T1, T3, T4, T5 and R1, 
and cost of the roof slab is sensitive to the variations in the 
parameters T1 and T4. So each parameter is contributing to 
in different aspects and hence all the parameters are taken 
as design variables for the optimization process. Figure 2 
to 5 shows the sensitivity of the objective function (cost) 
and the state variables (stress and deformation) to the 
variation of the design variables. 

 
Figure 1. Parametric model of the roof slab 
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Figure 2. Sensitivity of the cost to the variation of the various 
thicknesses 

Figure 3. Sensitivity of the maximum stress developed in the roof slab to 
the variation of the various thicknesses 
 

  
Figure 4. Sensitivity of the maximum deformation on the roof 
slab to the variation of the various thicknesses 

Figure 5.  Sensitivity of the cost of  the roof slab to the variation of the 
roof slab height 

 

3.3. Experimental Design 

An important issue to metamodeling is to achieve good 
accuracy of metamodels with a reasonable number of 
sample points. Experimental design is the sampling plan in 
design space. The type of experimental design adopted in 
this work was Central Composite Design (CCD), since 

many researchers have used this technique for the design 
of computer experiments [10, 11, 12].  Minitab software 
has been used to perform the experimental design. The 
factor H1 has four levels and factors T1, T3, T4, T5 and R1 
have two levels each as given in Table 1. Table 2 shows 
the sample design points based on CCD. 

Table 1. Various parameters considered for the optimization of roof slab 

Levels Factors 
1 2 3 4 

H1(m) 1.8 1.6 - - 
T1(m) 1.50 2.00 2.25 3.00 
T3(m) 1.50 2.00 2.25 3.00 
T4(m) 1.50 2.00 2.25 3.00 
T5(m) 1.50 2.00 2.25 3.00 
R1(m) 1.50 2.00 2.25 3.00 
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Table 2. Experimental design sample points based on CCD 

H1 
m 

T1  
x 10-2 m 

T3 
x 10-2 m 

T4 
x 10-2 m 

T5 
x 10-2 m 

R1 
x 10-2 m 

1.7 2.25 2.25 2.25 2.25 2.25 

1.41 2.25 2.25 2.25 2.25 2.25 

1.7 2.25 2.25 2.25 2.25 2.25 

1.98 2.25 2.25 2.25 2.25 2.25 

1.7 0.13 2.25 2.25 2.25 2.25 

1.7 2.25 2.25 2.25 2.25 2.25 

1.7 4.37 2.25 2.25 2.25 2.25 

1.7 2.25 1.29 2.25 2.25 2.25 

1.7 2.25 2.25 2.25 2.25 2.25 

1.7 2.25 4.37 2.25 2.25 2.25 

1.7 2.25 2.25 0.129 2.25 2.25 

1.7 2.25 2.25 2.25 2.25 2.25 

1.7 2.25 2.25 4.37 2.25 2.25 

1.7 2.25 2.25 2.25 1.29 2.25 

1.7 2.25 2.25 2.25 2.25 2.25 

1.7 2.25 2.25 2.25 4.37 2.25 

1.7 2.25 2.25 2.25 2.25 0.129 

1.7 2.25 2.25 2.25 2.25 2.25 

1.7 2.25 2.25 2.25 2.25 4.37 

1.6 1.50 1.50 1.50 1.50 1.50 

1.8 1.50 1.50 1.50 1.50 1.50 

1.6 3.00 1.50 1.50 1.50 1.50 

1.8 3.00 1.50 1.50 1.50 1.50 

1.6 1.50 3.00 1.50 1.50 1.50 

1.7 2.25 2.25 2.25 2.25 2.25 

1.8 1.50 3.00 1.50 1.50 1.50 

1.6 3.00 3.00 1.50 1.50 1.50 

1.8 3.00 3.00 1.50 1.50 1.50 

1.6 1.50 1.50 3.00 1.50 1.50 

1.8 1.50 1.50 3.00 1.50 1.50 

1.6 3.00 1.50 3.00 1.50 1.50 

1.7 2.25 2.25 2.25 2.25 2.25 

1.8 3.00 1.50 3.00 1.50 1.50 

1.6 1.50 3.00 3.00 1.50 1.50 

1.8 1.50 3.00 3.00 1.50 1.50 

1.6 3.00 3.00 3.00 1.50 1.50 

1.8 3.00 3.00 3.00 1.50 1.50 

1.6 1.50 1.50 1.50 3.00 1.50 

1.8 1.50 1.50 1.50 3.00 1.50 

1.7 2.25 2.25 2.25 2.25 2.25 

1.6 3.00 1.50 1.50 3.00 1.50 

1.8 3.00 1.50 1.50 3.00 1.50 

1.6 1.50 3.00 1.50 3.00 1.50 

1.8 1.50 3.00 1.50 3.00 1.50 

1.6 3.00 3.00 1.50 3.00 1.50 

1.8 3.00 3.00 1.50 3.00 1.50 

1.6 1.50 1.50 3.00 3.00 1.50 
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1.8 1.50 1.50 3.00 3.00 1.50 

1.6 3.00 1.50 3.00 3.00 1.50 

1.7 2.25 2.25 2.25 2.25 2.25 

1.8 3.00 1.50 3.00 3.00 1.50 

1.6 1.50 3.00 3.00 3.00 1.50 

1.8 1.50 3.00 3.00 3.00 1.50 

1.6 3.00 3.00 3.00 3.00 1.50 

1.8 3.00 3.00 3.00 3.00 1.50 

1.6 1.50 1.50 1.50 1.50 3.00 

1.8 1.50 1.50 1.50 1.50 3.00 

1.6 3.00 1.50 1.50 1.50 3.00 

1.7 2.25 2.25 2.25 2.25 2.25 

1.8 3.00 1.50 1.50 1.50 3.00 

1.6 1.50 3.00 1.50 1.50 3.00 

1.8 1.50 3.00 1.50 1.50 3.00 

1.6 3.00 3.00 1.50 1.50 3.00 

1.8 3.00 3.00 1.50 1.50 3.00 

1.6 1.50 1.50 3.00 1.50 3.00 

1.8 1.50 1.50 3.00 1.50 3.00 

1.6 3.00 1.50 3.00 1.50 3.00 

1.8 3.00 1.50 3.00 1.50 3.00 

1.6 1.50 3.00 3.00 1.50 3.00 

1.7 2.25 2.25 2.25 2.25 2.25 

1.8 1.50 3.00 3.00 1.50 3.00 

1.6 3.00 3.00 3.00 1.50 3.00 

1.8 3.00 3.00 3.00 1.50 3.00 

1.6 1.50 1.50 1.50 3.00 3.00 

1.8 1.50 1.50 1.50 3.00 3.00 

1.6 3.00 1.50 1.50 3.00 3.00 

1.8 3.00 1.50 1.50 3.00 3.00 

1.7 2.25 2.25 2.25 2.25 2.25 

1.6 1.50 3.00 1.50 3.00 3.00 

1.8 1.50 3.00 1.50 3.00 3.00 

1.6 3.00 3.00 1.50 3.00 3.00 

1.8 3.00 3.00 1.50 3.00 3.00 

1.6 1.50 1.50 3.00 3.00 3.00 

1.7 2.25 2.25 2.25 2.25 2.25 

1.8 1.50 1.50 3.00 3.00 3.00 

1.6 3.00 1.50 3.00 3.00 3.00 

1.8 3.00 1.50 3.00 3.00 3.00 

1.6 1.50 3.00 3.00 3.00 3.00 

1.8 1.50 3.00 3.00 3.00 3.00 

1.6 3.00 3.00 3.00 3.00 3.00 
 

3.4. Metamodeling 

Metamodeling, often referred as Response Surface 
Methodology (RSM), involves (a) choosing an 
experimental design for generating data, (b) choosing a 
model to represent the data, and (c) fitting the model to the 

observed data. Detailed description of the RSM is given in 
Simpson et. al. [2]. Based on the experimental design, the 
computer experiments were conducted for the various 
combinations of factors at different levels using the CCD 
experimental design. The metamodeling technique used in 
this study is polynomial regression and has been applied 
by a number of researchers [2, 9, 10, 11, 13] in designing 
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complex engineering systems. The most widely used 
response surface approximating functions are low-order 
polynomials. For significant curvature, a second order 

polynomial which includes all two-factor interactions can 
be used. A second order polynomial model can be 
expressed as: 

 

ŷ = β0+β1x1+β2x2+... +βkxk+β12x1 x2+ …. +βk-1,kxk-1 xk+ β11x1
2 + β22x2

2 + …. + βkkxk
2                                  (1) 

The parameters of the polynomial in Equations (1) are 
usually determined by least squares regression analysis 
by fitting the response surface approximations to existing 
data. For the roof slab optimization problem, three 
metamodels are created to approximate the cost of roof 
slab, stress developed and deflection using CCD 
computer experimentation. In order to validate the 
metamodel some random experiments ware conducted 

and compared with the finite element simulation of the 
actual model. The regression coefficients for the three 
metamodel developed was given in Table 3. Table 4 
shows the fitness of the metamodels. Validated 
regression models of the three responses generated are 
shown below.Table 3. Regression coefficients for the 
metamodels. 
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Table 3. Regression coefficients for the metamodel 

Regression 
coefficients COST DMAX SMAX 

β0 -6.66E+07 3.26E-02 6.97E+08 

β1 1.03E+08 -1.71E-02 -2.77E+08 

β2 1.22E+09 -5.67E-01 -1.12E+10 

β3 4.04E+07 -1.92E-02 -7.01E+06 

β4 6.40E+08 -1.36E-01 -3.80E+09 

β5 -1.95E+08 -8.67E-02 -6.76E+09 

β6 -4.60E+07 -1.12E-01 -8.42E+08 

β7 6.19E+07 1.47E-01 -4.05E+08 

β8 1.99E+08 -5.09E-02 -5.10E+07 

β9 2.16E+08 8.08E-02 1.08E+09 

β10 3.83E+08 6.83E-02 2.32E+09 

β11 3.08E+08 8.16E-02 5.57E+08 

β12 -2.34E+09 1.74E+00 7.65E+09 

β13 1.03E+08 -2.62E-01 -8.73E+10 

β14 -8.97E+08 -7.51E-01 -4.46E+09 

β15 6.58E+08 -5.29E-01 -1.01E+09 

β16 8.25E+08 9.55E-01 -1.10E+10 

β17 -1.62E+09 8.99E-01 -1.06E+10 

β18 6.03E+08 9.10E-01 4.04E+09 

β19 3.81E+08 -7.57E-01 -6.12E+09 

β20 -1.40E+09 -6.79E-01 -6.79E+09 

β21 1.38E+09 -8.01E-01 -6.96E+09 

β22 -2.98E+07 1.82E-03 4.35E+07 

β23 -4.39E+09 5.18E+00 2.64E+11 

β24 -1.95E+09 -3.22E-01 3.29E+09 

β25 2.26E+10 -2.00E-01 3.65E+10 

β26 2.50E+09 -1.11E-01 3.88E+10 

β27 2.50E+09 -2.11E-01 3.74E+09 
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Table 4. Fitness of metamodels 

 
 

 

 

 

3.5. Optimization 

The objective of this optimization is to minimize the 
weight of the roof slab. The method of probabilistic search 
based on evolutionary algorithms was chosen for the 
present optimization problem. The real-coded genetic 
algorithm (RCGA) is developed for obtaining the optimal 
dimensions of the roof slab of PFBR. The code template 
developed by Deb [14] was used for this purpose. Certain 
modifications in the algorithm of this program were 
necessary to apply it for the present study. RCGA is 
developed for six input variables and two constraints. The 
RCGA parameters chosen are; crossover probability=0.8, 
mutation probability=0.2, number of generation=100, and 
the population size=60. Various thicknesses of the roof 
slab and the height of the roof slab are considered as the 
design variables for optimization. The state variables in the 
optimization are maximum stress and maximum 
deformation. In this study the maximum stress is the 
material yield strength and maximum deflection is the 

permissible axial movement of the control plug. The range 
of various design variables with respect to the design 
requirement is:  
• H1  –  [1600-1800] mm 
• T1  –  [15 - 30] mm 
• T3  –  [15 - 30] mm 
• T4  –  [15 - 30] mm 
• T5 – [15 - 30] mm 
• R1 – [15 - 30]mm 

The limits for the state variables are 128MPa and 4mm 
for maximum stress and deflection respectively. 
Optimization of the roof slab was carried out by this 
approach and the total volume of the roof slab is reduced 
by 14.6 % and the cost of roof slab is reduced by          
41.4%. Table 5 shows the design and state variables after 
optimization. The optimized roof slab is also checked for 
its design adequacy under static and dynamic conditions in 
Finite Element package ANSYS. 

Table 5. Results of optimization process 

Optimization 
Method 

H1 

(m) 

T1 

(m) 

T3 

(m) 

T4 

(m) 

T5 

(m) 

R1 

(m) 

COST 

( in Cores) 
Stress 
(MPa) 

Deformation 
(m) Optimized 

roof slab 
GA 1.7 0.020 0.020 0.015 0.015 0.015 8.37 92.4 0.0037 

Existing 
roof slab - 1.8 0.03 0.03 0.03 0.03 0.03 14.3 82.7 0.0024 

 

4. Conclusion 

Traditional solution methods for optimizing complex 
real life engineering problems can be very expensive and 
often results in sub-optimal solutions. In this paper, an 
approach to develop metamodel for complex real time 
problem is presented. As a case study, a roof slab for 
which design optimization has to be carried out is 
considered. A metamodel based optimization approach is 
presented to address expensive computational cost of large 
FE runs using meta-models. With the proposed strategy of 
performing computer experiments, creating metamodel 
and the application of evolutionary algorithms, this 
optimization methodology can easily be adopted to more 
complex structural problems.  
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