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Abstract 

The presence of mass and stiffness fixed points in the frequency responses of vibrational systems may greatly affect the 
design of these systems. In this paper, the physical reason for the occurrence of mass and stiffness fixed points and the 
relationship between them and the phenomenon of internal absorber are investigated. It is found that the frequencies at which 
mass and stiffness fixed points occur, represent eigenfrequencies of subsystems of the whole vibrational system. 
Furthermore, it is found that the mass and stiffness fixed points are strongly related with the phenomenon of internal 
absorbers. 
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1. Introduction                  *       

The presence of damping, mass, and stiffness fixed 
points in the frequency responses of vibrating systems may 
complicate their vibration control since these fixed points 
can only be recognized if the parameters of the system are 
varied. A mass fixed point is an intersection of the 
frequency responses of a dynamic system for different 
values of the mass. Damping and stiffness fixed points are 
similarly defined. At a fixed point frequency, the vibration 
amplitude remains constant, independent of the values of 
the varied parameters. Thereto, when the operating 
frequency lie close to a mass (stiffness) fixed point 
frequency, then the amplitude of vibration cannot be 
effectively controlled by varying the values of masses 
(stiffnesses).  

In addition to their dependence on the masses and 
stiffnesses of the dynamic system, the mass and stiffness 
fixed points are dependent on the location of the force 
application. That is because the location of the force 
application affects the phenomenon of the internal 
absorber, which is related with the force balance on 
different masses of the system. 

Mass and stiffness fixed  points may be used to design 
vibrational systems with zero or constant amplitudes for 
some masses of a system which can even include variable 
masses or stiffnesses. 

Damping fixed points of systems with one and two 
degrees of freedom were treated in connection with 

                                                 
* Corresponding author. hilal122@yahoo.com 

vibration absorption and vibration isolation by many 
authors, including Den Hartog [1] and Klotter [2]. Bogy 
and Paslay [3] used the damping fixed points to obtain 
optimal damping for the purpose of minimizing the 
maximum steady state response of a particular linear 
damped two-degree-of-freedom vibratory system. Henney 
and Raney [4] used the damping fixed points to find 
approximate analytical expressions for optimum damping 
for a uniform beam forced and damped in four different 
configurations. Dayou [5] examined the fixed points 
theory for global vibration control of a continuous 
structure using vibration neutralizer. 

Mass, stiffness, and damping fixed points of a system 
with two degrees of freedom were considered by Abu-
Hilal [6], where the frequencies at which damping, mass, 
and/or stiffness fixed points occur and their amplitudes 
were determined analytically. Also Abu-Hilal [7] 
presented a procedure for determining the mass and 
stiffness fixed point frequencies of vibratory discrete linear 
system with n degrees of freedom. To verify the given 
procedure, all mass and stiffness fixed point frequencies of 
a system with three degrees of freedom were determined in 
closed forms.  

In this paper the nature of the mass and stiffness fixed 
points of vibratory discrete linear dynamic systems and 
their physical meaning are investigated. Furthermore, the 
relationship between mass and stiffness fixed points and 
the phenomenon of internal absorber are studied. The 
vibration amplitudes at fixed points frequencies of an 
undamped system with three degrees of freedom as shown 
in Fig. 1 are determined and discussed. Although a three 
degrees of freedom system is studied in this contribution, 
the obtained results are general and applicable to systems 
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with n degrees of freedom. A three degrees of freedom 
system is used in this study in order to obtain the fixed 
points frequencies and their amplitudes in closed forms. 

2. Mathematical Formulation and Implementation 

The equation of motion of an undamped linear system 
with n degrees of freedom is given as 
                                   (1)                                                                                          FKxxM =+&&

where M, K, and x, are the mass matrix, the stiffness 
matrix, and the displacement vector of the system, 
respectively, and F is the excitation force vector. If a 

harmonic force  is assumed, where 

 is the vector of the force 
amplitudes and ω is the circular excitation frequency, then 
the steady-state displacement vector of the system is 
obtained by using the solution 
     tωcosXx =                                                     (2)                                                                                            

Substituting Eq. (2) into Eq. (1) and simplifying yields 

                                             (3)                                                                                   PXMK =− )( 2ω

where  is the vector of the 

displacement amplitudes,  is 

the vibration amplitude of mass j, and Xjg ( j, g = 1,2,…, n) 

is the frequency response of mass j due to a force Pg 

applied at position g, with all other forces equal to zero 

(i.e.,

 In this contribution we set Pg = P0. 

The frequency response Xjg can be obtained from Eq. 
(3) and written in a bilinear form as given in [7] as: 
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where ei represents a stiffness ki or a mass mi and a1, a2, 
a3, and a4 are polynomials in the variable ω2. 

The frequency response Xjg has a mass or a stiffness 
fixed point if [7] 
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The frequencies of these fixed points are determined by 
equating Xjg to two different values of ei. 

Using Eq. (5) or the procedure presented in [7], we 
obtain the frequencies of the mass and stiffness fixed 
points of the three mass system shown in Fig. 1. These 
frequencies are given in third row of Table 1, where 
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Examining these frequencies yields that these 
frequencies are the natural frequencies of the systems 

f the original 
system shown in Fig.1. 
shown in Fig. 2 which represent subsystems o
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Fig. 1. Three-degree-of-freedom system. 
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In general, we can conclude, that the frequencies of 

mass and stiffness fixed points of vibrational linear 
discrete systems are natural frequencies of subsystems of 
the whole system. 

The vibrational amplitudes Aij at the fixed points 
frequencies of the system considered are listed in Table 1. 
Empty cells mean that the dynamic responses Xij have no 
fixed points by varying the corresponding parameters ki or 
mi. For instance, from the fourth row of the table we can 
read that the dynamic response X11 has no stiffness fixed 
points by force application on mass m1 with the frequency 
ω3 and varying the stiffnesses k1 or k2. Other cells provide 
values of amplitudes Aij as provided in the appendix. 

3. Conceptual Analysis of Results 

The following is conceptual discussion of the results 
given in Table 1. 

3.1. Fixed points at the frequencies ω10 and ω11 

By a force application on mass m1 in Fig.1 with an 
excitation frequency ω equal to one of the two natural 
frequencies ω10, ω11 of the subsystem S6 shown in Fig. 2, 
the subsystem S6 serves in this case as an internal absorber 
to the subsystem S1 shown in Fig.2. That is because at 
these frequencies the force transmitted from the spring k2 
to the mass m1 is equal but opposite to the force acting 
there, so that m1 remains at rest (x1=0). The subsystem S6 
vibrates at ω10 in its first mode and at ω11 in its second 
mode with proportional amplitudes. In both cases, the 
amplitude A21 of mass m2 is equal to P0/k2, because of the 
force balance at m1 (k2A21cos(ωit) = P0cos(ωit), i =10,11). The 
amplitudes of mass m3 are then obtained from the 
eigenvectors of system S6 and are given as 
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Table 1. Mass and stiffness point frequencies ωi and their amplitudes Aij for the three-degree-of-freedom-system shown in Fig.1 

 Varying parameter 

 k1 k2 k3 m1 m2 m3 

 ω3 ω10 ω11 ω1 ω2 ω3 ω5 ω1 ω4 ω6 ω7 ω1 ω3 ω10 ω11 ω1 ω3 ω4 ω1 ω4 ω8 ω9 

A11  0 0 C1   C10 C1    C1  0 0 C1 C8  C1    

A21 0 C4 C4 C1 C12 0 C10 C1 C4   C1 0 C4 C4 C1 0 C4 C1 C4   

A31  C15 C16 C1 C14  C11 C1  C19 C20 C1  C15 C16 C1 C9 C7 C1  C17 C18 

A12 0 C4 C4 C1 C12 0 C10 C1 C4   C1 0 C4 C4 C1 0 C4 C1 C4   

A22 0    C12 0  C2 0   C2 0   C2 0 0 C2 0   

A32 C5    C14 C5  C2 0 C21 C22 C2 C5   C2 C5 0 C2 0 C5 C5 

A13  C15 C16 C1 C14  C11 C1  C19 C20 C1  C15 C16 C1 C9 C7 C1  C17 C18 

A23 C5    C14 C5  C2 0 C21 C22 C2 C5   C2 C5 0 C2 0 C5 C5 

A33     C13     C21 C22 C3    C3  C6 C3  0 0 

 
All three frequency responses Xi1 have mass and 

stiffness fixed points at the frequencies ω10 and ω11 since 
their amplitudes Ai1 are independent of k1 and m1 at these 
frequencies. These frequency responses are shown in Fig. 
3, first column for different values of m1. 

Also if the force P acts on the masses m2 or m3, then the 
frequency responses X1i, i=2,3 stay having mass and stiffness 
fixed points at ω10 and ω11 (but with nonzero amplitudes), 
that is because of the symmetry of the system matrices M 
and K of the whole system shown in Fig. 1. On the other 
hand, the fixed points at ω10 and ω11 in the frequency 
responses of masses  m2 and m3 vanish in this case. Figure 
3, second column shows dynamic responses for different 
values of m1 by force application on mass m2. 

3.2. Fixed points at the frequencies ω8 and ω9 

By force application on mass m3 in Fig.1 with an 
excitation frequency ω equal to one of the two natural 
frequencies ω8 and ω9 of the subsystem S5 given in Fig. 2, 
this system serves as an internal absorber to the mass m3. 
That is because at these frequencies the force transmitted 
from the spring k3 to the mass m3 is equal but opposite to 
the excitation force acting there, so that m3 remains at rest 
(x3 = 0). The subsystem S5 vibrates at ω8 in its first mode 
and at ω9 in its second mode with proportional amplitudes. 
In both cases, the amplitude of mass m2 is equal to P0/k3, 
because of the force balance at m3 (k3x2 = P). The 
amplitude of mass m1 is then obtained from the 
eigenvectors of system S5 and given as 
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By force application on mass m2 or m3 at the frequency 

The frequency responses Xi3, i=1,2,3 have mass fixed 
points at the frequencies ω8 and ω9 since their amplitudes 
Ai3 are independent of the values of m3 at these 
frequencies. 

Also if the force P acts on the masses m1 or m2, then 
mass m3 stays keeping its fixed points at the frequencies 
ω8 and ω9, because of the symmetry of the mass and 
stiffness matrices of the whole system  which leads to 
Xij=Xji, i,j=1,2,3. The frequency responses of masses m1 and 
m2 possess in this case no fixed points more. 

3.3. Fixed points at the frequencies ω6 and ω7 

By force application on mass m3 in Fig. 1, the 
amplitudes of all three masses Ai3 remain constant at the 
frequencies ω6 and ω7 independent of the values of k3. This 
means that at these frequencies, the spring k3 remains 
undeformed, so that at these frequencies x3 = x2, i.e. there 
is no relative motion between the masses m2 and m3. 
Hence by varying the values of k3, the frequency responses 
Xi3 get stiffness fixed points at ω6 and ω7 as shown in 
Fig.4. 

By force application on the masses m1 or m2 at the 
frequencies ω6 or ω7 and varying the values of k3, the 
stiffness fixed points of the dynamic responses X11, X12, 
X21, and X22 vanish, where X31 and X32 stay having fixed 
points at ω6 and ω7 because of the symmetry of the mass 
and stiffness matrices of the whole system. 

3.4. Fixed points at the frequencies ω2 and ω5 

Varying the values of k2 yields stiffness fixed points at 
the frequencies ω2 and ω5. At the frequency ω2, all the 
frequency responses Xij, except X11 have stiffness fixed 
points since their amplitudes Aij at this frequency are 
independent of the stiffness k2. At the frequency ω5, the 
frequency responses X11, X21, X31, X12, and X13 have 
stiffness fixed points.  

, the natural frequency of the system S1, 

the system S7 vibrates in its own way unaffected from the 
spring k2, as if this spring does not exist. 

In order to maintain the whole system connected by the 
force application on the masses m2 or m3 at the frequency 
ω2, and at the same time the spring k2 remains 
undeformed, the amplitude of mass m1 must equal to the 
amplitude of the neighborhood mass m2 in this case as 
shown in Table 1, 6th column; i.e. X12=X22, and X13=X23. 

By force application on m2, the vibration amplitudes of 
masses m2 and m3, respectively, become: 
respectively, become:  
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Fig. 3. Frequency responses Xij for the system shown in Fig. 1 for the arbitrary selected parameters: k1 = 36 N/m, k2 = 24 N/m, k3 = 8 N/m, m2 

= 10 kg, m3 = 6 kg, P0 = 0.01 N and different values of m1.  (______) m1 = 2 kg, (……) m1 = 10 kg, (-----) m1 = 100 kg. ω10 = 0.935 rad/s, ω11 = 
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By the force application on m2, the amplitude of m2 

becomes  because of the symmetry of the 
system matrices. The amplitude of mass m3 is then 
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By the force application on mass m1 at the frequency 
ω2, the fixed point of X11 vanishes whereas X21 and X31 stay 
keeping their fixed points at ω2 because of the symmetry 
of the mass and stiffness matrices of the whole system. 
The amplitudes of masses m2 and m3 are then A21 = A12 and 
A31 = A13, respectively. 

By force application on mass m1 at the frequency ω5, 
the natural frequency of the subsystem S7, the subsystem 
S7 vibrate in its second mode shape with an amplitude 
ratio A31/A21 = m2/m3. The system S1 vibrates at this 
frequency with the amplitude  
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In order to remain the spring k2 undeformed, the mass 
m2 vibrates with the same amplitude and in the same 
direction as m1 as shown in Table 1, 8th column, that is 
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For the amplitude of mass m3 we get  
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Also because of the symmetry of the system matrices 
M and K, the amplitudes of mass m1 by the application of 

the force on m2 or m3 become , and 

, respectively, and its frequency responses 
X13 and X12 have stiffness fixed points at ω5. 

3.5. Fixed points at the frequencies ω3 and ω4 

3.5.1. Force application on m2 

If the force P acts on mass m2 in Fig.1 with an 
excitation frequency equal to one of the eigenfrequencies 
ω4 and ω3, of subsystems S2 and S3, respectively, shown 
in Fig. 2, then these subsystems act as internal absorbers 
for mass m2 as shown in Fig. 5. 

Absorber S2 at the frequency ω4 
This case occurs when the mass m2 is acted upon a 

force with the natural frequency ω4 of the subsystem S2. 
At this frequency, the subsystem (m2, k3, m3) remains at 
rest (x2 = x3 = 0), where the internal absorber S2 vibrates at 
its natural frequency with the constant amplitude A12 = 
P0/k2, which is obtained from the force balance at m2; that 
is, from k2A12cosω4t  = P0cosω4t,  follows: A12 = P0/k2. 
Also the frequency responses Xi2, i=1,2,3 have mass and 
stiffness fixed points at the frequency ω4 since the 

amplitudes Ai2 are independent of m2, m3, and k3 at this 
frequency as shown in Table 1. 

Absorber S3 at the frequency ω3 
If the excitation frequency of the applied load becomes 

equal to ω3, the natural frequency of the subsystem S3, 
then this subsystem vibrates with a constant amplitude A32 
at its natural frequency, where the subsystem (k1, k2, m1, 
m2) remains at rest (x1 = x2 = 0). Therefore at the frequency 
ω3 all three frequency responses Xi2 have mass and 
stiffness fixed points by varying the values of k1, k2, m1, or 
m2. The vibration amplitude A32 of mass m3 follows from 
the force balance at m2. (from k3A32cosω3t = P0cosω3t 
follows : A32 = P0/k3). 

Also the frequency responses X2i, i=1,2,3 have always 
fixed points at the absorber frequencies ω3 and ω4 
independent of which mass, the force acts, because of the 
symmetry of the system matrices. However, the amplitude 
of m2 may become nonzero when the force is applied on 
the other masses. 

3.5.2. Force applied on mass m1 

When the force P acts on mass m1 at the frequency ω3, 
the natural frequency of the top subsystem S3 (k3-m3-
system), then the forces acting on mass m2 will be 
balanced (k3x3 = k2x1), since S3 serves at this frequency as 
an absorber for mass m2. Therefore, at the frequency ω3 
mass m2 remains at rest independent of the values of k1, k2, 
m1, and m2, whereas the masses m1 and m3 vibrate out of 
phase with different but proportional amplitudes. 

Using the theory of vibration of single degree of 
freedom systems [8], we obtain for the amplitude of mass 
m1 
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From the force balance at mass m2 where k3x3 = k2x1, we 
obtain for the vibration amplitude of mass m3 
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 From Eqs. (28) and (29) it is observable that the 
amplitudes of the masses m1 and m3 are independent of m2 
at the frequency ω3. Therefore their frequency responses 
X11 and X31 possess mass fixed point at ω3 by varying the 
values of m2. 

Also if the force acts on mass m1 at the frequency ω4, 
then the amplitude of m2 becomes A21 = A12 = P0/k2 
because of symmetry of the mass and stiffness matrices of 
the entire system. The amplitude of m3 becomes in this 
case 
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which is independent of mass m2. Hence the frequency 
response X31 has a mass fixed point at ω4 by varying the 
values of m2. However, the mass fixed point of the 
frequency response X11 vanishes in this case.  

3.5.3. Force applied on mass m3 

When the force P acts on the mass m3 at the frequency 
ω4, the natural frequency of  the bottom subsystem S2 (k1-
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k2-m1-system), then the forces acting on mass m2 will be 
balanced (k3x3 = k2x1), since S2 serves in this case as an  
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internal absorber for mass m2. Therefore at this frequency, 
m2 remains at rest independent of the values of k3, m2, and 
m3, whereas the masses m1 and m3 vibrate out of phase 
with different but proportional amplitudes. The vibration 
amplitude of mass m3 may obtained from the subsystem S3 
as 
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From the force balance on mass m2 where k3x3 = k2x1 
we get for the vibration amplitude of mass m1: 
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From Eqs. (31) and (32) it is obvious that the 
amplitudes of the masses m1 and m3 are independent of 
mass m2 at the frequency ω4. Therefore their frequency 
responses X13 and X33 have mass fixed points at ω4 by 
varying the values of m2. Also at the frequency ω3, the 
amplitude of mass m1 becomes 
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which is independent of mass m2. Hence the frequency 
response X13 has a mass fixed point at ω3 by varying the 
values of m2. On the other hand, the mass fixed point of 
the frequency response X33 vanishes in this case. 

3.6. Fixed points at the frequency ω1 (static case) 

The static deflections As,i of the masses m1, m2, and m3 
due to the force amplitude P0 are defined as follows: 

The force acts on mass m1 
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0
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The force acts on mass m2 
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The force acts on mass m3 
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From Eqs. (34) through (39) it is obvious that the static 
deflections Asi are independent of the masses mi, i=1,2,3. 
Therefore all frequency responses Xij, i,j=1,2,3 have mass 
fixed points at the frequency ω1 = 0. Since all static 
deflections are dependent on the stiffness k1, varying the 
values of this stiffness will not lead to stiffness fixed 
points in all frequency responses Xij. 
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By force application on mass m1, all frequency 

responses Xi1 have stiffness fixed points by varying the 
values of k2 or k3. 

By force application on mass m2, all frequency 
responses Xi2 have stiffness fixed points at ω1 when the 
values of k3 are varied. Also only X12 possesses a stiffness 
fixed point by varying the values of k2. 

Acts the force on the mass m3, then the frequency 
response X13 has stiffness fixed points at ω1 by varying the 
values of k2 or k3 and X23 has a stiffness fixed point by 
varying k3.The response X33 has no fixed points at ω1 in 
this case. 
4. Conclusions 

In this paper, the physical nature of mass and stiffness 
fixed points of undamped linear discrete vibrational 
systems is explored. It is found that the mass and stiffness 
fixed points frequencies of these systems represent natural 
frequencies of subsystems of the entire system. 
Furthermore, it is found that these fixed points are strongly 
related with the phenomenon of internal absorber and can 
be used to design vibratory systems with zero or constant 
amplitudes for some masses of the system. Also the mass 
and stiffness fixed points frequencies and their amplitudes 
of a system with three degree of freedom were determined 
and discussed in detail. 
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