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Abstract

The presence of mass and stiffness fixed points in the frequency responses of vibrational systems may greatly affect the
design of these systems. In this paper, the physical reason for the occurrence of mass and stiffness fixed points and the
relationship between them and the phenomenon of internal absorber are investigated. It is found that the frequencies at which
mass and stiffness fixed points occur, represent eigenfrequencies of subsystems of the whole vibrational system.
Furthermore, it is found that the mass and stiffness fixed points are strongly related with the phenomenon of internal

absorbers.
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1. Introduction

The presence of damping, mass, and stiffness fixed
points in the frequency responses of vibrating systems may
complicate their vibration control since these fixed points
can only be recognized if the parameters of the system are
varied. A mass fixed point is an intersection of the
frequency responses of a dynamic system for different
values of the mass. Damping and stiffness fixed points are
similarly defined. At a fixed point frequency, the vibration
amplitude remains constant, independent of the values of
the varied parameters. Thereto, when the operating
frequency lie close to a mass (stiffness) fixed point
frequency, then the amplitude of vibration cannot be
effectively controlled by varying the values of masses
(stiffnesses).

In addition to their dependence on the masses and
stiffnesses of the dynamic system, the mass and stiffness
fixed points are dependent on the location of the force
application. That is because the location of the force
application affects the phenomenon of the internal
absorber, which is related with the force balance on
different masses of the system.

Mass and stiffness fixed points may be used to design
vibrational systems with zero or constant amplitudes for
some masses of a system which can even include variable
masses or stiffnesses.

Damping fixed points of systems with one and two
degrees of freedom were treated in connection with
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vibration absorption and vibration isolation by many
authors, including Den Hartog [1] and Klotter [2]. Bogy
and Paslay [3] used the damping fixed points to obtain
optimal damping for the purpose of minimizing the
maximum steady state response of a particular linear
damped two-degree-of-freedom vibratory system. Henney
and Raney [4] used the damping fixed points to find
approximate analytical expressions for optimum damping
for a uniform beam forced and damped in four different
configurations. Dayou [5] examined the fixed points
theory for global vibration control of a continuous
structure using vibration neutralizer.

Mass, stiffness, and damping fixed points of a system
with two degrees of freedom were considered by Abu-
Hilal [6], where the frequencies at which damping, mass,
and/or stiffness fixed points occur and their amplitudes
were determined analytically. Also Abu-Hilal [7]
presented a procedure for determining the mass and
stiffness fixed point frequencies of vibratory discrete linear
system with n degrees of freedom. To verify the given
procedure, all mass and stiffness fixed point frequencies of
a system with three degrees of freedom were determined in
closed forms.

In this paper the nature of the mass and stiffness fixed
points of vibratory discrete linear dynamic systems and
their physical meaning are investigated. Furthermore, the
relationship between mass and stiffness fixed points and
the phenomenon of internal absorber are studied. The
vibration amplitudes at fixed points frequencies of an
undamped system with three degrees of freedom as shown
in Fig. 1 are determined and discussed. Although a three
degrees of freedom system is studied in this contribution,
the obtained results are general and applicable to systems
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with n degrees of freedom. A three degrees of freedom
system is used in this study in order to obtain the fixed
points frequencies and their amplitudes in closed forms.

2. Mathematical Formulation and I mplementation

The equation of motion of an undamped linear system
with n degrees of freedom is given as

MX+Kx=F 1

where M, K, and X, are the mass matrix, the stiffness
matrix, and the displacement vector of the system,
respectively, and F is the excitation force vector. If a

harmonic force F = Pcoswt is assumed, where

P= [Pt’ i PH]T is the vector of the force
amplitudes and o is the circular excitation frequency, then
the steady-state displacement vector of the system is
obtained by using the solution

X = X cos art @)

Substituting Eq. (2) into Eq. (1) and simplifying yields

(K —aM)X =P 3)

where X = Uil, ...,XH]T is the vector of the

displacement amplitudes, X} = X}; + =+ XIH' is
the vibration amplitude of mass j, and X, (j, g = 1.2,..., n)
is the frequency response of mass j due to a force P,
applied at position g, with all other forces equal to zero

(i.e.,

Pa=-=Pfg-n=Pfg+1)=~=Pn=0).

In this contribution we set P,= P).

The frequency response X, can be obtained from Eq.
(3) and written in a bilinear form as given in [7] as:

a.e +a
X~ :P o B S 4)
J8 g
ase, +a,

where e; represents a stiffness &; or a mass m; and a,, ay,
a3, and ay are polynomials in the variable w?.

The frequency response Xj, has a mass or a stiffness
fixed point if [7]

4 _ % ®)

a, a,

The frequencies of these fixed points are determined by
equating X, to two different values of e;.

Using Eq. (5) or the procedure presented in [7], we
obtain the frequencies of the mass and stiffness fixed
points of the three mass system shown in Fig. 1. These
frequencies are given in third row of Table 1, where

w =0 6)

@, =k, /m, 4

Wy = ks /m; ®)
ay = (ki +ky) /my ©)

; =\/k3(m2 +my)/m, m, (10)
1 — 2
2mm,

1 2

R o= [b; /b3 —b,] (12)

2mym,
1 = [
= bs ¥/b; —b (13)
W11 2mym, [Ds 5 —Dg |
b, =km, +k,(m; +m,) (14)
b, =4k k,mm, (15)
by =km, +k,(m, +m,)+kym, (16)

by =4(kk, + ks + kykey))mym, (17)
by =kym; + ky(m, +my) (18)
b = 4k, kymym, (19)

Examining these frequencies yields that these
frequencies are the natural frequencies of the systems
shown in Fig. 2 which represent subsystems of the original
system shown in Fig.1.

Fig. 1. Three-degree-of-freedom system.
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Fig. 2. Subsystems of a three-degree-of-freedom system.

In general, we can conclude, that the frequencies of
mass and stiffness fixed points of vibrational linear
discrete systems are natural frequencies of subsystems of
the whole system.

The vibrational amplitudes A; at the fixed points
frequencies of the system considered are listed in Table 1.
Empty cells mean that the dynamic responses Xj; have no
fixed points by varying the corresponding parameters &; or
m;. For instance, from the fourth row of the table we can
read that the dynamic response X;; has no stiffness fixed
points by force application on mass m; with the frequency
wj3 and varying the stiffnesses &; or k. Other cells provide
values of amplitudes 4;; as provided in the appendix.

3. Conceptual Analysis of Results

The following is conceptual discussion of the results
given in Table 1.

3.1. Fixed points at the frequencies wpand wy;

By a force application on mass m, in Fig.l with an
excitation frequency w equal to one of the two natural
frequencies g, w; of the subsystem S6 shown in Fig. 2,
the subsystem S6 serves in this case as an internal absorber
to the subsystem S/ shown in Fig.2. That is because at
these frequencies the force transmitted from the spring 4,
to the mass m; is equal but opposite to the force acting
there, so that m; remains at rest (x;=0). The subsystem S6
vibrates at wq in its first mode and at w;; in its second
mode with proportional amplitudes. In both cases, the
amplitude 4,; of mass m, is equal to Py/k,, because of the
force balance at m (kA cos(w;t) = Pocos(wit), ;=1011)- The
amplitudes of mass ms; are then obtained from the
eigenvectors of system S6 and are given as

k

_ 3
A31 = 2 Azla i=10,11 (20)
ky — my@;

1
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Table 1. Mass and stiffness point frequencies w;and their amplitudes A; for the three-degree-of-freedom-system shown in Fig.1

Varying parameter

ki ) ks

O | O | o) | 0 | @ 0 05 | o | o5 o
An 0 0 G Co | G
Ay 0 Cy | C C | Ca| 0 Cyp G| Cs
A3 Cis | Co | C | Cis Cy G Cio
A 0 Cs | C C | Cn| 0 Cyp G| C
An | 0 Cp| O C | 0
Az | Cs Cu | Cs C | 0 Cy
Az Cis | Cs | C | Cis Ch | G Cig
Ay | Cs Cis | GCs C 0 | Cy
Az Cis Cau

All three frequency responses X; have mass and
stiffness fixed points at the frequencies @,y and w;; since
their amplitudes A4;; are independent of &; and m, at these
frequencies. These frequency responses are shown in Fig.
3, first column for different values of m;.

Also if the force P acts on the masses m, or mjs, then the
frequency responses X|; ;- ; stay having mass and stiffness
fixed points at w; and w;; (but with nonzero amplitudes),
that is because of the symmetry of the system matrices M
and K of the whole system shown in Fig. 1. On the other
hand, the fixed points at w;y and w;; in the frequency
responses of masses m, and mj vanish in this case. Figure
3, second column shows dynamic responses for different
values of m; by force application on mass m,.

3.2. Fixed points at the frequencies »8 and w9

By force application on mass m; in Fig.l with an
excitation frequency w equal to one of the two natural
frequencies wg and wg of the subsystem S5 given in Fig. 2,
this system serves as an internal absorber to the mass m;.
That is because at these frequencies the force transmitted
from the spring &3 to the mass mj is equal but opposite to
the excitation force acting there, so that m; remains at rest
(x3 = 0). The subsystem S5 vibrates at wg in its first mode
and at wy in its second mode with proportional amplitudes.
In both cases, the amplitude of mass m;, is equal to Py/ks,
because of the force balance at m; (ksx, = P). The
amplitude of mass m; is then obtained from the
eigenvectors of system S5 and given as

k
= 2 > A23 i= 8,9

The frequency responses X, 123 have mass fixed
points at the frequencies wg and wy since their amplitudes
Ap are independent of the values of m; at these
frequencies.

Also if the force P acts on the masses m; or m,, then
mass ms stays keeping its fixed points at the frequencies
wg and wg, because of the symmetry of the mass and
stiffness matrices of the whole system which leads to
Xi7=Xji, ij=123. The frequency responses of masses m; and
m, possess in this case no fixed points more.

A, @1)

Ca

m my ms
o | 03 Op | O | O | O3 O O | 04 | O @ O
C, 0 0 | C | Cs G

Ci| 0] C | C | C |0 | C  C |G

C, Cs | Cs C |G| C | C Ciy | Cis
Ci| 0] C | C | C |0 | Cy C |Gy

C |0 G| 00 |C|oO

C, | Gs C G| 0 [C| 0| C | GCs
C Cs | Ces  C | C | C|C Ci7 | Cis
G, | Gs C|C | 0 |C | 0 C | Cs
C; Cs Cs | G 0 0

3.3. Fixed points at the frequencies w6 and o7

By force application on mass mj; in Fig. 1, the
amplitudes of all three masses A4;; remain constant at the
frequencies wg and w; independent of the values of k3. This
means that at these frequencies, the spring k; remains
undeformed, so that at these frequencies x; = x,, i.e. there
is no relative motion between the masses m, and ms;.
Hence by varying the values of k3, the frequency responses
X3 get stiffness fixed points at wg and w; as shown in
Fig.4.

By force application on the masses m; or m, at the
frequencies wg or w; and varying the values of k3, the
stiffness fixed points of the dynamic responses Xj;, Xz,
X>1, and X5, vanish, where X3; and X;, stay having fixed
points at w¢ and w; because of the symmetry of the mass
and stiffness matrices of the whole system.

3.4. Fixed points at the frequencies w2 and w5

Varying the values of k, yields stiffness fixed points at
the frequencies w, and ws. At the frequency w,, all the
frequency responses Xj;, except X;; have stiffness fixed
points since their amplitudes A; at this frequency are
independent of the stiffness k. At the frequency ws, the
frequency responses X, Xp1, Xz, X, and Xj; have
stiffness fixed points.

By force application on mass m, or mj; at the frequency

g = ;]'—1, the natural frequency of the system S/,
ity

the system S7 vibrates in its own way unaffected from the

spring k», as if this spring does not exist.

In order to maintain the whole system connected by the
force application on the masses m, or ms at the frequency
w,, and at the same time the spring k, remains
undeformed, the amplitude of mass m; must equal to the
amplitude of the neighborhood mass m, in this case as
shown in Table 1, 6™ column; i.e. X;,=Xa,, and X;3=Xz3.

By force application on m,, the vibration amplitudes of
masses m, and ms, respectively, become:
respectively, become:
my(kym, — kymy)P, (22)

A =
2 kilkymymy —kym,(m, + m;y)]
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Fig. 3. Frequency responses Xj; for the system shown in Fig. 1 for the arbitrary selected parameters: k; =36 N/m, k,= 24 N/m, k3= 8 N/m, m,
=10 kg, m3= 6 kg, Py=0.01 N and different values of m;. (——)m;=2kg, (") m;=10kg, (----- ) m; =100 kg. w,9=0.935 rad/s, 0, =
1.913 rads.
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Fig. 4. Frequency responses X;; for the system shown in Fig. 1 for the arbitrary selected parameters: k; = 36 N/m, k, = 24 N/m, m, = 20 kg,
my=10 kg, m3;= 6 kg, Po=0.01 N and different values of k;. (——)k3=2N m’l, ()k=10N m", (----- ) k3= 100 N/m. ws= 0.988 rad/s,
w7=2.103 rad/s.
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2
m; k. P,

kyLkymymy — kymy (my +my) ]

By the force application on m;,, the amplitude of m,

becomes A 2z = ’13: because of the symmetry of the
system matrices. The amplitude of mass m; is then

my (kymy —kymy) Fy

ky Lymymy — keymy (my, + my) |

By the force application on mass m,; at the frequency
,, the fixed point of X}, vanishes whereas X,; and X3, stay
keeping their fixed points at w, because of the symmetry
of the mass and stiffness matrices of the whole system.
The amplitudes of masses m, and mjy are then 4,; = A1, and
A3 = A3, respectively.

By force application on mass m, at the frequency ws,
the natural frequency of the subsystem S7, the subsystem
S7 vibrate in its second mode shape with an amplitude
ratio Asi/A>; = my/mz. The system S/ vibrates at this
frequency with the amplitude

LR
11 — k 2
|~ aks

In order to remain the spring k, undeformed, the mass

m, vibrates with the same amplitude and in the same
direction as m, as shown in Table 1, 8" column, that is

(25)

F.
k, —m@?
1~ s
For the amplitude of mass m3 we get
m m B
Ay =—24,=—2—"0 @7)
31 21 2

Also because of the symmetry of the system matrices
M and K, the amplitudes of mass m, by the application of

the force on m, or m; become Al! = "-:IB!., and

A 1= = HE’.‘ 1, respectively, and its frequency responses
X13 and X7, have stiffness fixed points at ws.

3.5. Fixed points at the frequencies w3 and w4

3.5.1. Force application on m2

If the force P acts on mass m, in Fig.l with an
excitation frequency equal to one of the eigenfrequencies
w4 and w3, of subsystems S2 and S3, respectively, shown
in Fig. 2, then these subsystems act as internal absorbers
for mass m;, as shown in Fig. 5.

Absorber S2 at the frequency wy

This case occurs when the mass m, is acted upon a
force with the natural frequency w, of the subsystem S2.
At this frequency, the subsystem (m,, k3, m3) remains at
rest (x, = x3 = 0), where the internal absorber S2 vibrates at
its natural frequency with the constant amplitude 4,, =
Py/k,, which is obtained from the force balance at m,; that
is, from kyA,coswat = Pocoswgat, follows: Ay, = Pylk,.
Also the frequency responses Xp, 1,3 have mass and
stiffness fixed points at the frequency w, since the

amplitudes A, are independent of mj,, m;, and k3 at this
frequency as shown in Table 1.

Absorber S3 at the frequency m;3

If the excitation frequency of the applied load becomes
equal to ®;, the natural frequency of the subsystem S3,
then this subsystem vibrates with a constant amplitude As,
at its natural frequency, where the subsystem (k;, k,, mjy,
my) remains at rest (x; = x, = 0). Therefore at the frequency
®; all three frequency responses Xj; have mass and
stiffness fixed points by varying the values of k;, k,, m;, or
m,. The vibration amplitude Aj, of mass m; follows from
the force balance at m,. (from kiAj,cosmst = Pycoswmst
follows : A32 = Po/k3)

Also the frequency responses Xy, i-123 have always
fixed points at the absorber frequencies ®; and @,
independent of which mass, the force acts, because of the
symmetry of the system matrices. However, the amplitude
of m, may become nonzero when the force is applied on
the other masses.

3.5.2. Force applied on mass m;

When the force P acts on mass m, at the frequency ws,
the natural frequency of the top subsystem S3 (kz-ms-
system), then the forces acting on mass m, will be
balanced (ksx; = kx;), since S3 serves at this frequency as
an absorber for mass m,. Therefore, at the frequency w;
mass m, remains at rest independent of the values of &, &,
my, and m,, whereas the masses m; and mj; vibrate out of
phase with different but proportional amplitudes.

Using the theory of vibration of single degree of
freedom systems [8], we obtain for the amplitude of mass

4 = 5 _ mFy
k+k, _mlez ke —(k; + Iy )m

From the force balance at mass m, where kzx; = kyx,, we
obtain for the vibration amplitude of mass m;

ko, _k myhy
& kf’“ Jey ey, — (ke + ey

From Eqgs. (28) and (29) it is observable that the
amplitudes of the masses m; and m; are independent of m,
at the frequency ws. Therefore their frequency responses
X1, and X3, possess mass fixed point at w; by varying the
values of m,.

Also if the force acts on mass m, at the frequency wy,
then the amplitude of m, becomes 4, = A, = Pk,
because of symmetry of the mass and stiffness matrices of
the entire system. The amplitude of mj; becomes in this

case
y kR Kk mky (30)
2k ke —mal k —(k +k
ky ky—myay; ke, [heymy —(k + Ky )ms ]

which is independent of mass m,. Hence the frequency
response X3, has a mass fixed point at w, by varying the
values of m,. However, the mass fixed point of the
frequency response X7, vanishes in this case.

(28)

29

3.5.3. Force applied on mass m;

When the force P acts on the mass mj at the frequency
o4, the natural frequency of the bottom subsystem S2 (k-
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ky-my-system), then the forces acting on mass m, will be
balanced (k3x3 = kx1), since S2 serves in this case as an
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X2=X3=0
Absorber S2

P = Pycosmst
X1=X2=0
Absorber S3

Fig. 5. Entire and subsystems (as absorbers).

internal absorber for mass m,. Therefore at this frequency,
m, remains at rest independent of the values of k3, m,, and
m3, whereas the masses m; and mj; vibrate out of phase
with different but proportional amplitudes. The vibration
amplitude of mass m; may obtained from the subsystem S3
as

A33 — PO _ mlR)

ks —m3a)§ - keymy — (ky + ey )my

31

From the force balance on mass m, where ksx; = kox,
we get for the vibration amplitude of mass m;:
ky ks mb
ky ky [ksmy —(ky + ey )mg |

From Egs. (31) and (32) it is obvious that the
amplitudes of the masses m; and mj are independent of
mass m;, at the frequency w,. Therefore their frequency
responses X3 and X;3 have mass fixed points at w4 by
varying the values of m,. Also at the frequency w;, the
amplitude of mass m; becomes

gl POk mly (33)
Yk Ty —mek] ke Ty —(k +hy)my)

which is independent of mass m,. Hence the frequency
response X3 has a mass fixed point at w3 by varying the
values of m,. On the other hand, the mass fixed point of
the frequency response X33 vanishes in this case.

3.6. Fixed points at the frequency w, (static case)

The static deflections 4;; of the masses m, m,, and m;
due to the force amplitude P, are defined as follows:
The force acts on mass m;

P
As,l = As,2 = As,3 = k_O (34)
1

The force acts on mass m,
P
A4, = =0 (35)
s kl
_(k +k)F,

(36)
kl kZ

As,2 = s,3

The force acts on mass mj3

As’1 =— 37)

_(h+k)P,
klkZ

A, (38)

_ (kiky + kyky + kyky) By
k1k2k3

A, (39)

S,

From Egs. (34) through (39) it is obvious that the static
deflections A4,; are independent of the masses m;, i=1,2,3.
Therefore all frequency responses Xj;, ,j=1,2,3 have mass
fixed points at the frequency w; = 0. Since all static
deflections are dependent on the stiffness k;, varying the
values of this stiffness will not lead to stiffness fixed
points in all frequency responses Xj;.



440 © 2010 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 4, Number 4 (ISSN 1995-6665)

By force application on mass mj, all frequency
responses JX;; have stiffness fixed points by varying the
values of k, or kj3.

By force application on mass m,, all frequency
responses X;, have stiffness fixed points at w; when the
values of k; are varied. Also only X;, possesses a stiffness
fixed point by varying the values of k.

Acts the force on the mass m;, then the frequency
response X;; has stiffness fixed points at w; by varying the
values of &, or k3 and X); has a stiffness fixed point by
varying k;.The response X;; has no fixed points at w; in
this case.

4. Conclusions

In this paper, the physical nature of mass and stiffness
fixed points of undamped linear discrete vibrational
systems is explored. It is found that the mass and stiffness
fixed points frequencies of these systems represent natural
frequencies of subsystems of the entire system.
Furthermore, it is found that these fixed points are strongly
related with the phenomenon of internal absorber and can
be used to design vibratory systems with zero or constant
amplitudes for some masses of the system. Also the mass
and stiffness fixed points frequencies and their amplitudes
of a system with three degree of freedom were determined
and discussed in detail.
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Appendix

kym?)P,
4= : (53)
C _& “0) k\[kymymy — kesmy (my +my) ]
=
k
| c.-k B "
sz(kf"kz)Po @ Pk [k — mayayy ]
kk
o C &L -
_ (kky + ks + k) By @) ° ky [y — myf; ]
’ kikyks
k P
17 =2 0 (56)
C4:5 @) ky [k, +ky —mag ]
k
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18 =2 0 7
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2m P
g =—""2 ° (59)
C = mFy 43) my [my(ky —ky)—kymy +C]
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C _ks it 46) my [my(ky =k ) +kym +C]
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