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Abstract: 

In this paper we develop and analyse economic statistical design of control chart with the assumption that the sample 

average of the quality characteristic (follows a Johnson distribution and the process in-control times follow Pareto 

distribution. The Johnson distribution is generally taken for all types of skewed and kurtic variables. Here, the Pareto 

distribution is chosen since in many production processes at places like Fertilisers, chemicals, etc., the in-control times are 

having long upper tail and suits to the Pareto distribution. The expected cost per a unit time is derived with the use of the 

cost model developed for the control chart. Minimizing the expected cost per a unit time, the optimal design parameters 

like sample size and the time interval between two successive samples are derived for given Type I and Type II errors 

associated with the control chart. The sensitivity of the model with respect to the parameters and costs are also studied. This 

design is extended to the case when the time to search for an assignable cause and time to repair are also random and follow 

a Weibull distribution. The effect of randomness on these times is also investigated. 
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Notations:  

 S = Expected number of samples taken during the in-

control state. 

ARL0= Average run length when process is in control 

ARL1= Average run length when process is out of control 

h = Time interval between successive samples 

k = Number of standard deviations from control limits to 

centre line  

Δ = Number of standard deviations slip when out of 

control 

n = Sample size 

E = Expected sampling time for one observation 

δ1= Indicator variable to indicate whether production 

continues or not during the assignable 

cause search, δ1=1    if production continues and δ1=0, 

otherwise  

δ2= Indicator variable to indicate whether production 

continues or not during the repair process, δ2=1   if 

production continues and δ2=0, otherwise 

T0= Expected assignable cause search time for a false 

alarm 

T1= Expected time to identify the assignable cause 

T2 = Expected time to repair the process 

a = Fixed cost per sample 

b = Variable cost per sample 

C0 = Hourly cost due to nonconformities produced while 

the process is in control 

C1 = Hourly cost due to nonconformities produced while 

the process is out of control (C1> C0) 

C2 = Cost per false alarm 

W = Cost for locating and repairing the assignable cause 

α = Probability that falls outside the control limits when 

the process is in control 

 β= Probability that falls within the control limits when 

the process is out of control 

E(C) = Expected Cycle cost 

E(T) = Expected Cycle time 
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1. Introduction: 

For the excellence in productivity, one has to 

concentrate on the quality improvement programs. The 

major issue of achieving excellence in quality depends on 

Quality control. One of the important techniques adopted 

for process control is control chart. With the help of 

Central limit theorem, many researchers considered that 

the sample mean of the quality characteristic follows 

normal distribution[1]. However, this assumption is 

suitable only when the sample size is large. But in many 

practical situations, the sample size of the quality character 

is small and the normal assumption leads to error. Taking 

this concept into consideration several researchers 

developed control charts and statistical economic design 

with various distributions [2-6].  

Recently Huifen Chen and Yuyen Cheng [7] have 

considered the economic statistical design of  chart with 

the assumption that the sample average, of the quality 

character follows Johnson distribution. Their cost model 

was based on the model proposed by Mc Williams [8], 

which is an extension of the work of Lorenzen and Vance 

[9]. They emphasised the need of utilising Johnson 

distribution as distribution. They have also assumed that 

the in-control times of the process follow a Weibull   

distribution. One of the major drawbacks of the two 

parameter Weibull distribution is that it considers the 

failure starts from zeroth time. In many practical situations 

once the process is put in control it may take a minimum 

period to failure. Hence it is reasonable to consider a 

distribution for the process in-control times which 

characterize this property. One such distribution often used 

in reliability and life testing is Pareto distribution.  

The Pareto distribution also characterizes a limiting 

distribution of the waiting time (time to exceed a specific 

value of the process character). This distribution is named 

after an Italian, Vilfredo Pareto (1848-1923). It is also 

empirically observed that in Chemical industries, the in-

control times of the process are having left – skewed with 

long upper tail depicting the frequency distribution of 

Pareto. Very little work has been reported in literature 

regarding the Economic design of  control chart with 

Pareto in-control times even though this distribution is 

quite common in many Manufacturing and Production 

processes. Hence in this article , we develop and analyze 

the Economic statistical design of the   control chart 

with the assumption that the quality characteristic  

follows Johnson distribution with mean „μ’ and variance 

„ ‟ and the in control times of the process are random 

and follows a Pareto distribution with probability density 

function of the form,  

      (1)                 

The Pareto Cumulative distribution function is  

                                             

              (2)         
where, „t‟ is the in-control time, „θ‟ is the parameter of Pareto 

distribution, „c‟ is the shape parameter and its mean is  

[10]. The various shapes of the Pareto distribution frequency 

curves for different values of the parameter, „c‟ are shown in 

Figure1.                           

Figure  1. Pareto Distribution Frequency curves (ϴ=5) 

The expected hourly cost equals the ratio of the 

expected cycle cost to the expected cycle time. The 

schematic diagram of a Production cycle is shown in 

Figure2 as given by Lorenzen and Vance [9]. 

Figure  2. Production Cycle 

 The optimal design parameters of the control chart 

namely, the Sample size (n) and the Sampling interval (h) 

are derived by minimizing the expected cost per unit time. 

The sensitivity of the model with respect to the parameters 

and costs is also studied. This model is extended to the 

case when the out of control times (the time to identify 

assignable causes and time to repair) are also random and 

follows Weibull distribution. 

2. Cost Model 

The production process is assumed to start in an in-

control state.  In order to detect a shift in the process mean, 

a sample of „n‟ independent quality characteristic 

measurements X1, X2, X3 … Xn is taken at intervals of „h‟ 

hours. The sample average is assumed to have Johnson 

distribution. Johnson family, proposed by Normanl 

Johnson [10], includes three transformations of the 

standard normal distribution. Let Y and X denote the 

Johnson and standard normal variables, respectively. We 

use the transformation 

        (3)                         

The constants „ξ‟ and „η‟ are location and scale 

parameters, „γ‟ and „δ‟ are the shape parameters. To 

compute the Johnson cumulative probability F(y) = 

P{Y  y}, we transform Y to X using Equation (3) and 

then let F(y) = Φ(x), where „Φ‟ is the standard normal 
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cumulative distribution function. Here, Y is taken as a 

bounded normal distribution. Hence, 

                               

                            (4)               

where,  is the Johnson cumulative distribution 

function with mean, „μ‟ and standard deviation,   . 

For independent observations , average run lengths 

when the process is in control and out of control i.e., ARL0 

and ARL1  respectively are related to Type I and Type II 

error probabilities, „α‟ and  „β‟ as follows :  

   

where,      

                                

                (5) 

and    

where,        

                             

   (6)           

The control chart is designed to detect whether the 

process is out of control or not. 

The design parameters „n‟ and „h‟ are chosen to 

minimize the expected cost per a unit time i.e., E(C)/E(T). 

A quality cycle is defined as the time until the next in - 

control period. The in-control times in each cycle are 

identically and independently distributed. Hence, the 

expected hourly cost E(C/T) equals the ratio of the 

expected cycle cost to the expected cycle time.  

From Figure2, the expected cycle time consists of 4 

parts namely, (1) Expected time elapsed before assignable 

cause occurs , (2) Expected time between the occurrence 

of  the assignable cause and the next out of control signal, 

(3) Expected time „T1‟ to identify the assignable cause and 

(4) Expected time „T2‟ to repair the process. In this model 

it is assumed that the process in-control times follow 

Pareto distribution with mean,  and the in-control 

times in each cycle are independently identically 

distributed with probability density function of the form 

given in Equation (1). Therefore, the expected time 

elapsed before the assignable cause occurs, when the 

production ceases during the search for an assignable 

cause, is the mean of the in-control times plus the time 

spent searching during false alarms.  

The expected time spent during false alarms is „T0‟ 

times the expected number of false alarms 

                                                                          (7)                                              

where, „ ‟ is the expected search time for a false 

alarm,  

 „S‟ is the expected number of samples taken while in 

control and  

„ARL0‟ is the average run length while in control. 

We have, 

                            (8) 

where, is the cumulative distribution 

function of Pareto distribution (in-control time) as given in 

Equation (2).  

If the process is shut down during searches, the 

expected time equals to 

  

Let δ1=1 if production continues during searches and 

δ1=0 if production ceases during searches. 

Hence, the expected time until the assignable cause 

occurs is  

                                                

                               (9)     

The total number of samples taken is the sum of 

expected number of samples taken during the in control 

time (S), plus the number of samples when the process has 

gone out of control (ARL1) 

 
The time interval between sampling is „h‟. Hence, the 

total time period for taking (S+ARL1 ) samples is  

 
But, the samples are being taken out every „h‟ hours 

irrespective of whether the process is in or out of control. 

Here, we require only the time period between the 

occurrence of assignable cause and the next out of control 

signal which is simply the total time period minus the 

mean time of in control state.  

It is assumed that the in control times follow Pareto 

distribution with mean .  

Hence, the required time is 

 

As „E‟ is the expected time for measuring each 

observation, for a sample of „n‟ items, the time to analyze 

the sample and chart the result is „nE‟. Hence the total 

expected time between the occurrence of assignable cause 

and the next out of control signal is                                                    

 
                  (10) 

As „ ‟ is the expected time to identify the assignable 

cause and „ ‟ is the expected time to repair the process, 

the total time required when the process is out of control is 

                                        

(11)                

Therefore, from Equations (9) & (11) the expected 

cycle time is  
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    (12)                      

The cost of the entire cycle includes (1) Cost of non 

conformities, (2) Cost of false alarms, (3) Expected cost 

for sampling and charting the result and (4) Cost of 

repairs, „W‟.  

Let C0 = Hourly cost due to nonconformities produced 

while the process is in control and  

C1 = Hourly cost due to nonconformities produced while 

the process is out of control (C1> C0) 

Assuming that the production continues during both 

search and repair, the expected cost per cycle due to non 

conformities  

 

(13)  

where, „δ1’ and „δ2’ are as defined earlier. 

The expected number of false alarms    

The expected cost of false alarms 

                                 (14) 

where, „C2‟ is the cost per false alarm. 

Since the fixed cost per sample (a) and the variable cost 

per sample (b) are considered to effect the total cost, the 

expected cost for sampling and charting the result is given 

by (a+b.n) times the total time producing divided by the 

time interval between sampling 

 (15)                  

From Equations (13), (14) and (15), we have, 

The Expected cycle cost is,   

         (16)                   

in the design of  chart ,  the design parameters „n‟ 

and „h‟ are chosen to minimize the expected  

cost per hour „Z‟ for a quality cycle where, 

Z=E(C)/E(T)                                                            (17)   

Substituting the Equations (12) and (16) in Equation 

(17), we get,                            

         (18)                                                                                                       

Where, „α‟ and „β‟ are as defined in Equations (5) and 

(6) respectively. 

The optimum values for „h‟ and „n‟ are obtained by 

differentiating „Z‟ with respect to „h‟ and „n‟ and equating 

them to zero. 

Let  

 

     

                  (19)                                                            

 

we have, 

 (20)                                                                                                                                                                           

      (21)                                                 

Therefore,  implies, 

 This implies,  

(22) 

Where, „α‟ and „β‟ are as defined in Equations (5) and 

(6) respectively. 

And for optimal „n‟,   

(23) 

                                                                 (24)  

Therefore,  implies, 

  This implies, 

(25) 

Where, „α‟ and „β‟ are as defined in Equations (5) and 

(6) respectively.               

Solving the Equations (22) and (25) iteratively using 

numerical method the optimal sampling interval (h*) and 

the optimal sample size (n*) can be obtained for the given 

values of the model parameters and cost parameters 

3. Sensitivity Analysis:  

 The sensitivity of the cost model is studied with 

respect to all the cost parameters involved in the model. 

The initial parameters of the cost model are set as follows:  
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c =2, θ = 5, δ1= δ2=1, E= 0.01, a = 3, b = 0.01, T0=1, T1=2, 

T2=1, C2=5, W = 90,  

C0=10, C1=20, ξ=0.05, η=2, γ=2, δ=1, μ=2.5, σ=1, k=3, 

Δ=0.5 

Using the Equations (22) and (25) and the initial values 

of the parameters as given above, the optimal interval 

between the successive samples (h*) and the optimal 

sample size (n*) are obtained. Substituting these values in 

the total cost, „Z‟, the optimal total cost Z* is computed 

and all these values are presented inTable-1and Table-2.

 Table  1. Optimal values of n, h and Z for various values of c, θ, ξ, η, γ and δ

C θ ξ η γ δ h* n* Z* 

1.890 5 0.05 2 2 1 12.048 146 19.819 

1.895 5 0.05 2 2 1 12.020 139 19.823 

1.990 5 0.05 2 2 1 11.683 15 19.887 

1.995 5 0.05 2 2 1 11.677 9 19.890 

2 5.05 0.05 2 2 1 11.709 27 19.881 

2 5.10 0.05 2 2 1 11.766 51 19.869 

2 5.15 0.05 2 2 1 11.838 75 19.857 

2 5.20 0.05 2 2 1 11.922 99 19.845 

2 5 0.01 2 2 1 11.949 6 19.893 

2 5 0.02 2 2 1 11.882 5 19.893 

2 5 0.03 2 2 1 11.814 4 19.893 

2 5 0.04 2 2 1 11.744 3 19.893 

2 5 0.05 1.80 2 1 13.357 90 19.922 

2 5 0.05 1.85 2 1 12.878 67 19.916 

2 5 0.05 1.90 2 1 12.437 45 19.910 

2 5 0.05 1.95 2 1 12.035 23 19.902 

2 5 0.05 2 1.92 1 13.343 114 19.933 

2 5 0.05 2 1.94 1 12.801 84 19.926 

2 5 0.05 2 1.96 1 12.343 55 19.916 

2 5 0.05 2 1.98 1 11.968 27 19.905 

2 5 0.05 2 2 0.96 15.266 68 19.856 

2 5 0.05 2 2 0.97 14.504 55 19.863 

2 5 0.05 2 2 0.98 13.658 40 19.871 

2 5 0.05 2 2 0.99 12.405 22 19.881 
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Table  2. Optimal values of n, h and Z for various values of  C0, C1, C2, W, a, b and Δ 

C0 C1 C2 W a b Δ h* n* Z* 

9.80 20 5 90 3 0.01 0.5 11.562 51 19.866 

9.85 20 5 90 3 0.01 0.5 11.582 39 19.873 

9.90 20 5 90 3 0.01 0.5 11.606 27 19.880 

9.95 20 5 90 3 0.01 0.5 11.636 15 19.887 

10 20.05 5 90 3 0.01 0.5 11.636 15 19.937 

10 20.10 5 90 3 0.01 0.5 11.606 27 19.980 

10 20.15 5 90 3 0.01 0.5 11.582 39 20.023 

10 20.20 5 90 3 0.01 0.5 11.562 51 20.066 

10 20 10 90 3 0.01 0.5 13.446 28 19.919 

10 20 15 90 3 0.01 0.5 14.933 44 19.934 

10 20 20 90 3 0.01 0.5 16.243 56 19.944 

10 20 25 90 3 0.01 0.5 17.426 66 19.951 

10 20 5 87 3 0.01 0.5 11.535 74 19.853 

10 20 5 88 3 0.01 0.5 11.562 51 19.866 

10 20 5 89 3 0.01 0.5 11.606 27 19.880 

10 20 5 90 3 0.01 0.5 11.672 3 19.894 

10 20 5 90 2 0.01 0.5 12.079 95 19.895 

10 20 5 90 2.25 0.01 0.5 11.977 72 19.895 

10 20 5 90 2.5 0.01 0.5 11.875 49 19.894 

10 20 5 90 2.75 0.01 0.5 11.773 26 19.894 

10 20 5 90 3 0.001 0.5 11.702 13 19.893 

10 20 5 90 3 0.003 0.5 11.675 6 19.893 

10 20 5 90 3 0.005 0.5 11.669 4 19.893 

10 20 5 90 3 0.007 0.5 11.668 3 19.893 

10 20 5 90 3 0.01 0.75 12.192 33 19.892 

10 20 5 90 3 0.01 1 12.616 60 19.893 

10 20 5 90 3 0.01 1.25 13.042 85 19.895 

10 20 5 90 3 0.01 1.5 13.495 109 19.897 

From Table 1 , it is observed that as the shape 

parameter, „c‟ increases , the optimal values of „n‟ is 

decreasing, the optimal values of „h‟ is decreasing and the 

expected cost per hour decreases for fixed values of the 

other parameters. If the parameter, „ϴ‟ increases, the 

optimal values of „n‟ are increasing, the optimal values of 

„h‟ is increasing and the expected cost per hour decreases 

for fixed values of the other parameters. Regarding the 

Johnson distribution parameters, it is observed that as the 

parameter „ξ‟ increases, the optimal values of „n‟ is 

decreasing, the optimal values of „h‟ is decreasing and the 

expected cost per hour remains constant for fixed values of 

the other parameters. When the parameter „η‟ increases , 

the optimal values of „n‟ is decreasing, the optimal values 

of „h‟ is decreasing and the expected cost per hour 

decreases for fixed values of the other parameters. With 

respect to the parameter „γ‟ , if it increases , the optimal 

values of „n‟ is decreasing, the optimal values of „h‟ is 

decreasing and the expected cost per hour decreases for 

fixed values of the other parameters. As the parameter „δ‟ 

increases , the optimal values of „n‟ is decreasing, the 

optimal values of „h‟ is decreasing and the expected cost 

per hour increases for fixed values of the other parameters. 

1The variation in optimal design parameters for various 

values of „c‟ and „ϴ‟ are shown in Figures 3 and 4 

respectively. 

Figure  3. „c‟ Vs Optimal values of h, n and Z 

Figure  4. „ϴ‟ Vs Optimal values of h, n, Z  
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From Table 2, it is observed that as the parameter „C0‟ 

increases, the optimal values of „n‟ is decreasing, the 

optimal values of „h‟ is increasing and the expected cost 

per hour increases for fixed values of the other parameters. 

When the parameter „C1‟ increases, the optimal values of 

„n‟ is increasing, the optimal values of „h‟ is decreasing 

and the expected cost per hour increases for fixed values of 

the other parameters .With regard to the parameter „C2‟, if 

it increases, the optimal values of „n‟ is increasing, the 

optimal values of „h‟ is increasing and the expected cost 

per hour increases for fixed values of the other parameters. 

As the parameter „W‟ increases , the optimal values of „n‟ 

is decreasing, the optimal values of „h‟ is increasing and 

the expected cost per hour increases for fixed values of the 

other parameters. With reference to the parameter „a‟,  as it 

increases, the optimal values of „n‟ is decreasing, the 

optimal values of „h‟ are decreasing and the expected cost 

per hour decreases for fixed values of the other parameters. 

As the parameter „b‟ increases, the optimal values of „n‟ is 

decreasing, the optimal values of „h‟ is decreasing and the 

expected cost per hour  remains constant for fixed values 

of the other parameters. When the parameter „Δ‟ increases 

, the optimal values of „n‟ is increasing, the optimal values 

of „h‟ is increasing and the expected cost per hour 

increases for fixed values of the other parameters 

4. Optimal Design Parameters When the Process Out 

of Control Times are Random: 

the earlier sections 3 and 4, we assumed that the time to 

identify the assignable causes for process out of control 

(T1) and the time to repair or eliminate the assignable 

cause (T2) are fixed and known. But in many production 

processes there are multiple assignable causes like 

defective raw materials, faulty setup, untrained operators, 

the cumulative effect of heat, vibration, shocks, power 

fluctuations, etc., when the process is governed by 

multiple assignable causes, „T1‟ and „T2‟ are also random 

and follows a probability distribution. A suitable 

distribution for „T1‟ and „T2‟ is a Weibull distribution since 

it accommodates constant, increasing and decreasing 

hazard rates. Hence, here we assume that „T1‟ and „T2‟ 

follow Weibull distributions with parameters (λ1, ν1) and 

(λ2, ν2) respectively, „λ‟ being the scale parameter and „ν‟ 

being the shape parameter.  

            (26) 

             (27) 

The Expected values of „T1‟ and „T2‟ are  

           (28)                                         

        (29)   

Substituting these values in the equation (18), we get 

the expected cost per a unit time as 

    (30)     

Where, „α‟ and „β‟ are as defined in Equations (5) and 

(6) respectively. 

for obtaining the optimal design parameters of the  

chart, we differentiate „Z‟ with respect to „h‟ and „n‟ and 

equate them to zero. 

 implies,  

(31)     

 Where, „α‟ and „β‟ are as defined in Equations (5) and 

(6) respectively. 

  implies,                                                                                  

(32) 

Where, „α‟ and „β‟ are as defined in Equations (5) and 

(6) respectively. 

 Solving the equations (31) and (32) simultaneously for 

„h‟ and „n‟ using numerical techniques, we obtain the 

optimal time interval between successive samples (h*) and 

the optimal sample size (n*). 

To study the effect of the random nature of „T1‟ and 

„T2‟ on the optimal design parameters we carry out the 

sensitivity analysis for the parameters „λ1‟, „ν1‟, „λ2‟ and 

„ν2‟ with the initial values of the other parameters as 

 c =2, θ = 5, δ1= δ2=1, E= 0.01, a = 3, b = 0.01, T0=1, 

C2=5,W = 90,C0=10, C1=20, ξ=0.05, η=2, γ=2, δ=1, 

μ=2.5, σ=1, k=3, Δ=0.5 and are shown in Table-3. 
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Table  3. Optimal values of n, h and Z for various values of   λ1, 

ν1, λ2 and ν2 

λ1 ν1 λ2 ν2 h* n* Z* 

2 0.7 1 0.5 11.525 6 19.893 

4 0.7 1 0.5 11.398 8 19.892 

6 0.7 1 0.5 11.357 9 19.892 

8 0.7 1 0.5 11.336 10 19.892 

3 0.4 1 0.5 11.716 2 19.894 

3 0.5 1 0.5 11.538 5 19.893 

3 0.6 1 0.5 11.472 7 19.893 

3 0.9 1 0.5 11.412 8 19.892 

3 0.7 1.1 0.5 11.368 9 19.892 

3 0.7 1.2 0.5 11.308 11 19.892 

3 0.7 1.3 0.5 11.257 12 19.892 

3 0.7 1.4 0.5 11.214 13 19.892 

3 0.7 1 0.50 11.44 8 19.893 

3 0.7 1 0.54 11.342 10 19.892 

3 0.7 1 0.58 11.272 11 19.892 

3 0.7 1 0.62 11.220 13 19.892 

From Table 3, we observe that as the parameter „λ1‟ 

increases, the optimal values of „n‟ is increasing, the 

optimal values of „h‟ is decreasing and the expected cost 

per hour decreases for fixed values of the other parameters. 

When the parameter „ν1‟ increases , the optimal values of 

„n‟ is increasing, the optimal values of „h‟ is decreasing 

and the expected cost per hour decreases for fixed values 

of the other parameters. With respect to the parameter „λ2‟ 

as it increases , the optimal values of „n‟ is increasing, the 

optimal values of „h‟ is decreasing and the expected cost 

per hour remains constant for fixed values of the other 

parameters. As the parameter „ν2‟ increases , the optimal 

values of „n‟ is increasing, the optimal values of „h‟ is 

decreasing and the expected cost per hour decreases for 

fixed values of the other parameters. The optimal design 

parameters, and  and the expected cost per a unit 

time are highly sensitive to the Weibull model parameters 

and by suitably estimating the model parameters we can 

have more accuracy in reducing the nonconformities and 

minimize the cost of Quality improvement program. 

5. Conclusions: 

In this paper we have proposed a Statistical economic 

design of control chart for the variables having Johnson 

distribution as distribution and the process in-control 

times follow a Pareto distribution. The Pareto distribution 

considered in this study can be applied for the processes 

which will run for a minimum period of time without non 

conformities. This distribution also includes the increasing 

and decreasing rates of failure. Minimizing the expected 

cost per a unit time, the optimal design parameters namely, 

sample size and time interval between successive samples 

are determined. 

The numerical values indicate that the effect of Johnson 

distribution parameters and Pareto distribution parameters 

have significant effect on optimal design parameters. 

Another variation in this model is also considered by 

introducing randomness for „T1‟ and „T2‟ (Time to identify 

the assignable cause and time to repair). As a result of this 

modification it is observed that the model parameters of 

„T1‟ and „T2‟will also significantly influence the design 

parameters. Sensitivity analysis carried out indicates that 

the optimal design parameters and the cost per a unit time 

are more sensitive towards the cost parameters than the 

other parameters. This design is much useful in quality 

control programs of production industries like chemicals, 

paints, films, etc. 
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