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Abstract 

   Monitoring and predicting machine components' faults play an important role in maintenance actions. Developing an 
intelligent system is a good way to overcome the problems of maintenance management. In fact, several methods of fault 
diagnostics have been developed and applied effectively to identify the machine faults at an early stage using different 
quantities (Measures or Readings) such as current, voltage, speed, temperature, and vibrations. In this paper, an intelligent 
machine condition monitoring and diagnostic system is introduced with experimental verification. An adaptive neuro-fuzzy 
inference system (ANFIS) and a neural network system (NN) are used to monitor and predict the fault types of a critical 
mechanical element in the Potash industry (namely; a Carnallite surge tank pump). The system uses a piezoelectric 
accelerometer to generate a signal related to machine condition and fault type. Combinations of the vibration time signal 
features (i.e., root mean square, variance, skewness, kurtosis, and normalized sixth central moment) are used as inputs to both 
ANFIS and neural nets, which in turn output a value for predicted fault type. Experimental validation runs were conducted to 
compare the actual fault types with the predicted ones. The comparison shows that the adoption of the time root mean square 
and variance features achieved the minimum fault prediction errors for both ANFIS and neural nets. In addition, trapezoidal 
membership function in ANFIS achieved a fault prediction accuracy of 95%, whereas, a cascade forward back-propagation 
neural network achieved a better fault prediction accuracy of 99%.  
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1. Introduction  * 
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   In recent years, with the rapid development of 
condition monitoring and forecasting, information 
processing, fault detecting, and artificial intelligence 
technology, it has been possible and feasible to monitor 
and forecast equipment condition and assess its health 
online. It is well recognized that optimized maintenance 
practices within an industrial setting require the correct 
blend of maintenance strategies. Condition-based 
(reliability centered, predictive, proactive) maintenance is 
an important part of this blend for many compelling 
reasons [1].  

   Recently, there has been a significant amount of 
research effort directed towards developing and 
implementing useful automated machinery fault detection 
and diagnostic tools. Most of these tools have been based 
on various pattern-recognition schemes, knowledge-based 
systems or artificial neural networks systems. The main 
thrust of the work has been towards developing systems 

that are not only objective in their treatment of data and 
presentation of results, but also flexible, thereby being 
applicable in a wide range of situations. A new method 
using fuzzy logic techniques to improve the performance 
of the classical inductive learning approach was presented 
by [2]. In [2], a hard cut point was proposed to discritize 
the continuous-valued attributes by using soft discritization 
to enable the systems have les sensitivity to noise. In [3], 
they used the concept of the fuzzy fractal dimension to 
measure the complexity of a time series of observed data 
from the plant. A method for analyzing and forecasting 
field failure data for repairable systems was proposed by 
[4]. This novel method constructed a predictive model by 
combining the seasonal autoregressive integrated-moving 
average (SARIMA) method and neural network model. In 
[5], they introduced a new combined method based on 
wavelet transformation, fuzzy logic, and neuro-networks 
for fault diagnosis of a triplex.  
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   Most real life physical systems are nonlinear, ill-
defined and uncertain which makes them difficult to model 
by conventional mathematical means. Furthermore, most 
industrial processes are based on the assumption that the 
process is a linear system. Fuzzy logic and neural networks 
have the potential to deliver successful solutions to 
problems that have previously proved difficult or 
impossible to handle by conventional linear methods [6-9]. 
Fuzzy logic and fuzzy inference systems have been shown 
to be effective techniques for the identification and 
prediction of complex, nonlinear, and vague systems. 
Fuzzy logic is particularly attractive due to its ability to 
solve problems in the absence of mathematical models. 

   Condition-based maintenance (CBM) is a method 
used to reduce the uncertainty of maintenance activities, 
and is carried out according to the need indicated by the 
equipment condition [10]. CBM assumes that existing 
indicative prognostic parameters can be detected and used 
to quantify possible failure of equipment before it actually 
occurs. Prognosis parameters provide the indication of 
potential problems and incipient faults which would cause 
the component or equipment to deviate from the 
acceptable performance level [11]. A number of 
computational tools have been developed for condition-
based maintenance such as knowledge base [12-13], 
analytic hierarchy process [14-15], Petri nets [16], neural 
networks [17-18], and fuzzy logic and networks [19-20]. 

   This study was motivated by the problem of improper 
condition-based maintenance strategy and a need of a 
process industry (Potash production) for a fast enough 
machine monitoring system to be employed as real-time 
fault detection system at their plants. In this paper, the 
maintenance records analysis is used to provide critical 
information from past experience to improve current 
maintenance process in the Potash industry. A neuro-fuzzy 
technique (i.e., ANFIS) and a neural network of time-
based analysis are used to build an intelligent condition 
monitoring system to predict the type of fault or failure for 
one of the critical production units. Different combinations 
of five statistical parameters computed from the vibration 
time signal of a critical pump were fed as inputs into both 
ANFIS and neural network to output a value for the 
predicted fault. The procedure is illustrated using the 
vibration data of a carnallite surge tank pump with normal 
and faulty pump. 

   This paper is organized as follows: Section 1 is an 
introduction. Intelligent condition monitoring and fault 
diagnosis system will be given in the second section. 
Section 3 is about vibration data analysis and feature 
selection. Structure of adaptive neuro-fuzzy inference 
system and neural network will be discussed in section 4. 
ANFIS and neural-networks time-based fault diagnosis 
system is the subject of section 5. The last section is to 
conclude. 

 

2. Intelligent Condition Monitoring and Fault 
Diagnosis System. 

   Condition monitoring is becoming popular in 
industry because of its efficient role in detecting potential 
failures. The use of condition monitoring techniques will 
generally improve plant production availability, and 
reduce downtime cost, but in some cases it also tends to 

over-maintain the plant in question. If a hidden defect is 
already present, with the help of condition monitoring, the 
defect may be identified and corrective actions may be 
taken. It is noted however that for a cost-effective 
maintenance, advanced prediction of such a defect and its 
development is very important since ordering spare parts 
and possible production shutdowns for maintenance may 
be costly and require careful planning well before the 
failure actually occurs. 

Condition monitoring traditionally means acquiring 
data from various classes of plant which gives an 
indication of the condition of machine. Condition 
monitoring is an essential element of predictive 
maintenance. An ideal condition monitoring system would 
accept measured data as input and will produce the 
operational status, a possible mode of failure and time to 
failure as output. 

Many machinery fault diagnostic techniques use 
automatic signal classification in order to increase 
accuracy and reduce errors caused by subjective human 
judgment. Detection of machine faults like mass 
imbalance, rotor rub, shaft misalignment, gear failure, and 
bearing defects is possible by comparing the vibration 
signals of a machine operating with and without faulty 
conditions. These signals can also be used to detect the 
incipient failures of the machine components through 
online monitoring system, reducing the possibility of 
catastrophic damage. 

   In intelligent maintenance management systems, 
IMMS, the three “isolated islands” of the automation 
system (i.e., monitoring and forecasting, diagnosis and 
prognosis, and maintenance decision making) are 
integrated into an organic system, and maintenance 
improved by sharing information among these systems. 
Intelligent methods try to decode the intelligence supplied 
from the system. Artificial intelligence techniques such as 
expert systems, neural networks, genetic algorithms, and 
fuzzy logic, have been widely applied in mechanical 
equipment monitoring and diagnosis with different aspects 
and degrees. It also noticed that different techniques have 
their unique advantages and disadvantages, and usually 
cannot replace each other. 

The main problem of the Potash industry (Arab Potash 
Company, APC) is the visual inspection of frequency 
analysis performed at the preventive maintenance 
department, and more importantly the low speed of the 
automatic frequency-based monitoring system which is no 
longer suitable for real-time applications. Although they 
have a very progressive maintenance software system used 
to assent the conjuncture of their machines, as an attempt 
to control the break downs and the health conditions of the 
machines, the visual inspection by maintenance staff 
results in big discrepancies between the predicted and 
actual faults, thus causing time delays, inconsistencies, 
increased inaccurate maintenance activities, and of course 
increased loss of money. The carnallite surge tank pump is 
one of the important components that undergoes repetitive 
failures which cause breakdowns for the process, Figures 1 
shows one of the carnallite surge tank pumps. 

To solve this problem, an adaptive neuro-fuzzy 
inference system (ANFIS) as well as a neural network was 
used in this paper to replace the human operator and the 
automatic frequency-based system for predicting the faults 
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types from the original time signal. The critical component 
(namely; the carnallite surge tank pump) was selected to 
apply our intelligent fault diagnosis system because this 
component has faced many unsuccessfully-predicted 
breakdowns and failures, which resulted in unnecessary 
money loss. The carnallite pump, shown in Figure 1, is 
considered a critical component because its breakdown 
could easily cause a production shut down or delay. A 

special software (i.e., EMONITOR Odyssey Delux) is 
used at this Potash industry to display and manipulate the 
vibration time signals coming from a piezoelectric 
accelerometer mounted on the pump component. As given 
in Figure 2, the frequency pattern of the original time 
signal is clear, but visual and automatic inspection and 
prediction usually results in an inaccurate diagnosis of the 
fault type. 

Figure 1.  The carnallite surge tank pump. 

Figure 2. A sample of the vibration time signal in the axial direction along with its frequency-domain analysis using 
Odyssey software. 
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3. Vibration Data Analysis and Feature Selection 

The  traditional way  of  observing  signals  is  to  view  
them  in what  is  called  the  time domain. The time 
domain is a record of what happened to a parameter 
compared to time. Typically, the signal would be displayed 
on an oscilloscope or a computer screen as given in Figure 
2. In the analysis of time series signals, certain restrictions 
are imposed by the length of the data window (T), being 
analyzed and by the sampling rate (fs), used when 
digitizing continuous data [21]. A sample of time series 
segment of length T = 2.8 sec is shown in Figure 2. This is 
a standard time duration used at the Potash production 
plant to pick up useful vibration signals for frequency 
analysis.  

Machines faults diagnosis and prediction requires 
generating representative and useful information about the 
vibration features by means of a sensor. Our approach to 
predict the fault type is to mount a piezoelectric 
accelerometer on the machine's component under study in 
order to give a time-series signal which is supposed to 
contain useful information about the machine's faults, 
failures and health conditions. The data used in building 
intelligent maintenance system has undergone several 
processing and analysis steps which will be described 
briefly in this section. 

The first step is the vibration measurement by using 
sensor as shown in Figure 3; this sensor is a piezoelectric 
accelerometer. Accelerometers are absolute vibration 
transducers which produce a signal proportional to the 
vibration acceleration. The  piezoelectric accelerometer  is  
most  attractive  in  view  of  its  rigidity,  wide frequency  
range,  flat response and dynamic range, this sensor has the 
ability to measure the vibration in the three dimensions 
(namely; axial, horizontal, and vertical). 

As an example, it is important to note that carrying out 
measurements on bearings readings should be taken in 
both radial and axial planes. Using both planes is an 
important method for distinguishing between various 
mechanical faults. 

The piezoelectric accelerometer is connected with data 
base collection device which in turn is connected with a 
computer that has the analysis software (i.e., Emonitor 
odyssey deluxe) as shown in Figure 3, which in turn 
applies preliminary signal  automatically on the vibration 
time signals (e.g., low-pass filtering, and windowing)  and 
transfers the vibration from time domain to frequency 
domain. Figure 3 shows the Graphical User Interface for 
data transfer of the data base from the data collection 
device to computer. The output of these signal handling 
and processing when displayed on Emonitor software 
screen, is shown as the last step of Figure 3. 

Upon the final output of signal processing steps is 
generated as illustrated in Figure 3, and before analyzing 
data using neuro-fuzzy or neural networks, the time data of 
701 observations were divided into 3 bins each, with 234 
non-overlapping samples in each bin. Each of these bins 
has been processed using MATLAB 7.0 to extract the 
following statistical five features: 

Carnallite Surge 
Tank Pump 

The sensor 
Piezoelectric 
accelerometer 

Data collection 
(Data Pac) 

Data transfer 
to computer 

Vibration Time 
Signal 

(EMONITOR 
Odyssey) 

1. Root mean square (rms), 
2. Variance ( σ2 ),  
3. Skewness (normalized third central moment,γ3), 
4. Kurtosis (normalized fourth central moment, γ4) and 

Figure 3. Experimental setup used to generate vibration time 
signals (i.e., training data) 

5. Normalized sixth central moment (γ6). 

The above-mentioned statistical parameters of the time-
domain signal could be evaluated as follows: 

Where E is the expected value, yi is the time signal 
amplitude, yiavg = yi – μ, and the mean is estimated as: 
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 μ = E {yi}, These five features resulted from previous step 
were used as inputs and the faults codes of Table 1 as 
output into ANFIS or neural network toolboxes of Matlab 
7.0. Table 2 gives a whole set of data for component item 
13 (i.e., carnallite surge tank pump), axial direction, 
depending on two of the time signal features (i.e., rms and 
σ2), along with the fault type codes as given in Table 1. 
These data points of Table 2 were divided into training set  
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Table 2. The training data set for component 13, axial direction, with rms and σ2 as inputs. 

rms1 σ21 rms2 σ22 rms3 σ23 Actual Fault code 

3.7307 13.981 3.8662 15.012 3.9502 15.671 300 

1.2485 1.5655 1.223 1.5022 1.2897 1.6706 200 

1.3565 1.848 1.3335 1.786 1.3234 1.759 200 

0.9928 0.9899 1.1611 1.3539 1.0622 1.133 200 

1.3402 1.8039 1.3107 1.7254 1.171 1.3771 200 

1.6552 2.7515 1.6109 2.2908 1.6855 2.8531 200 

1.215 1.4827 1.2306 1.521 1.2481 1.5643 200 

13.076 171.72 12.666 161.12 22.64 514.77 300 

2.8199 7.9862 2.7284 7.4761 2.7346 7.5099 200 

1.7922 3.2259 1.5147 2.3042 1.3804 1.9136 200 

1.3467 1.8215 1.5302 2.3514 1.6215 2.6406 200 

2.443 5.9941 2.819 7.9807 2.8086 7.9223 200 

1.8628 3.4851 1.7569 3.1 1.6668 2.79 200 

0.9843 0.9731 1.0165 1.0377 0.984 0.9723 200 

3.1338 9.8633 3.1908 10.225 3.0204 9.1623 300 

1.9599 3.8577 1.8879 3.5796 2.08 4.3449 200 

0.907 0.8261 0.8984 0.8107 0.9357 0.8793 200 

2.0023 4.0265 1.9251 3.7218 1.8842 3.5653 200 

1.0872 1.1872 1.0067 1.0177 1.0271 1.0595 200 

2.5425 6.4922 2.5336 6.4465 2.4124 5.8446 200 

2.2107 4.9087 2.0619 4.2697 2.2094 4.9023 200 

1.2672 1.6126 1.2585 1.5906 1.2272 1.5125 200 

2.4477 6.0169 2.3541 5.5657 2.1948 4.8379 200 

5.6621 32.197 5.8764 34.68 5.6977 32.603 100 

6.637 44.24 7.0581 50.023 6.7727 46.067 100 

1.206 1.4608 1.1843 1.4083 1.1547 1.3391 200 

2.6178 6.8826 2.6075 6.8281 2.3234 5.4214 200 

2.3611 5.599 2.687 7.251 2.5142 6.3485 200 

1.7136 2.9492 1.8835 3.5627 1.7775 3.1732 200 

1.6569 2.7572 1.4991 2.2569 1.3466 1.8212 200 

0.8988 0.8114 0.8949 0.8042 0.8966 0.8073 200 

0.0989 0.0098 0.1002 0.0101 0.0924 0.0086 200 

2.5588 6.5757 2.4251 5.9065 2.3858 5.7163 200 

1.2306 1.5209 1.1383 1.3013 1.0534 1.1144 200 

0.8541 0.7326 0.8338 0.6982 0.9651 0.9354 200 

3.0268 9.2009 2.9115 8.5136 3.042 9.2938 300 

1.7095 2.935 1.8268 3.3518 1.7048 2.9189 200 

5.6362 31.904 5.5425 30.852 5.6648 32.227 100 

3.8295 14.729 4.0158 16.197 3.9914 16.001 300 

1.5041 2.272 1.457 2.1401 1.6345 2.6796 200 

1.1725 1.3806 1.114 1.2462 1.1229 1.2662 200 

1.0424 1.0912 1.067 1.1433 1.0358 1.0776 200 

2.1943 4.8359 2.4021 5.7949 2.3776 5.6775 200 

3.8507 14.892 4.0665 16.608 3.731 13.98 300 

 
 Table 2  continues next page… 
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rms1 σ21 rms2 σ22 rms3 σ23 
Actual Fault 

code 

1.3712 1.8883 1.6033 0.2146 1.2241 1.5049 200 

1.5978 2.5639 1.5616 2.4491 1.6925 2.8769 200 

2.2375 5.0282 11.056 0.5714 2.7876 7.8044 200 

2.9763 8.8968 4.1149 17.059 4.0959 16.827 200 

1.6633 2.7785 1.6581 2.7613 1.509 2.2869 200 

1.1405 1.3063 1.0985 1.2119 1.1265 1.2745 200 

1.4592 2.1385 1.2842 1.6564 1.1575 1.3455 200 

2.8833 8.3492 2.8825 8.3449 3.0087 9.0914 200 

0.4385 0.1931 0.5096 0.2609 0.538 0.2907 200 

5.1991 27.148 4.8232 23.364 4.7715 22.864 100 

2.3357 5.479 2.9529 8.7569 3.3841 11.501 200 

11.441 131.46 11.178 125.5 9.1815 84.662 200 

2.1325 4.567 2.049 4.2164 1.8905 3.589 200 

2.7235 7.4494 3.0313 9.2283 2.8 7.8737 200 

0.9063 0.8249 1.0504 1.1081 1.1852 1.4108 200 

1.2134 1.4788 0.664 0.4428 0.7107 0.5073 200 

2.6068 6.8247 2.4486 6.0204 2.4909 6.2323 200 

1.336 1.7925 1.2764 1.6361 1.291 1.6739 200 

1.2019 1.4509 1.2263 1.5102 1.1169 1.2528 200 

1.9368 3.7674 1.9661 3.8821 2.0943 4.4048 200 

2.0871 4.375 2.3831 5.7027 2.254 5.1035 200 

1.1115 1.2408 1.1403 1.306 1.183 1.4055 200 

0.8634 0.7487 0.9165 0.8436 0.9324 0.8732 200 

2.41 5.833 2.4545 6.0507 2.5355 6.4566 200 

2.2684 5.1684 2.5308 6.433 2.7589 7.6451 200 

5.9603 35.678 5.6239 31.765 5.8444 34.305 100 

3.5534 12.681 4.432 19.727 3.6933 13.699 300 

2.6698 7.1583 2.3951 5.7612 2.7892 7.8134 200 

1.3009 1.6997 1.5103 2.2908 1.531 2.3541 200 

 

(73 points) and testing set (19 points) in order to train and 
test ANFIS and neural networks as will be discussed in 
sections 5 and 6. 

4. Neural Networks and Adaptive Neuro-Fuzzy 
Inference System 

4.1. Neural Networks 

   Neural networks are universal function 
approximators. They are "model-free     estimators" [22].   
The first mathematical model of a neuron was proposed by 
[32] in 1943. It was a binary device using binary inputs, 
binary output, and a fixed activation threshold. In general, 
an artificial neural network, ANN (or simply neural 
network, NN) is a computational model defined by the 
following four parameters: 
 Type of neurons (also called nodes). 
 Connectionist architecture the organization of the 

connections between neurons. 
 Learning algorithm. 
 Recall algorithm. 

   Figure 4 shows artificial neural network architecture. 
The commonest type of artificial neural network consists 
of three groups, or layers, of units: a layer of "input" units 
is connected to a layer of "hidden" units, which is 
connected to a layer of "output" units. The activity of each 
layer could be summarized as follows: The activity of the 
input units represents the raw information that is fed into 
the network.    The activity of each hidden unit is 
determined by the activities of the input units and the 
behavior of the output units depends on the activity of the 
hidden units and the weights between the hidden and 
output units. A one-layer network with R input elements 
and neurons are illustrated in Figure 4. 

4.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

   Adaptive neuro-fuzzy inference system (ANFIS) is a 
fuzzy inference system implemented in the framework of 
an adaptive neural network. By using a hybrid learning 
procedure, ANFIS can construct an input-output mapping 
based on both human-knowledge as fuzzy If-Then rules 
and stipulated input-output data pairs for neural networks  
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Figure 4. Artificial neural network [33]. 

training. ANFIS architecture is shown in Figure 5, 
where x and y are the inputs, f is the output, Ai and An

2 are 
the input membership functions, wi and wn

2 are the rules 
firing strengths. Five network layers are used by ANFIS to 
perform the fuzzy inference process. nce process. 

Figure 5. ANFIS architecture [33] Figure 5. ANFIS architecture [33] 

ANFIS is more powerful than the simple fuzzy logic 
algorithm and neural networks, since it provides a method 
for fuzzy modeling to learn information about the data set, 
in order to compute the membership function parameters 
that best allow the associated fuzzy inference system to 
track the given input/output data [23].  
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for fuzzy modeling to learn information about the data set, 
in order to compute the membership function parameters 
that best allow the associated fuzzy inference system to 
track the given input/output data [23].  

   The architecture of ANFIS, illustrated in Figure 5, 
has five layers to accomplish the tuning process of the 
fuzzy modeling system. The five layers are: 

   The architecture of ANFIS, illustrated in Figure 5, 
has five layers to accomplish the tuning process of the 
fuzzy modeling system. The five layers are: 
1. Layer 1: Every node in this layer is an adaptive node 

with a node function (i.e., membership function). 
Parameters of membership functions are referred to as 
premise or antecedent parameters.  
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premise or antecedent parameters.  
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multiplies the incoming signals and sends the product 
out. Each node represents the firing strength of a fuzzy 
rule. 

2. Layer 2: Every node in this layer is a fixed node, which 
multiplies the incoming signals and sends the product 
out. Each node represents the firing strength of a fuzzy 
rule. 

3. Layer 3: Every node in this layer is a fixed node which 
calculates the ratio of the one firing strength to the sum 
of all rules' firing strengths. The outputs of this layer 
are called normalized firing strengths.  

3. Layer 3: Every node in this layer is a fixed node which 
calculates the ratio of the one firing strength to the sum 
of all rules' firing strengths. The outputs of this layer 
are called normalized firing strengths.  

4. Layer 4: Every node in this layer is an adaptive node 
with a node function (i.e., linear combination of input 
variables). Parameters in this layer are referred to as 
consequent parameters. 

4. Layer 4: Every node in this layer is an adaptive node 
with a node function (i.e., linear combination of input 
variables). Parameters in this layer are referred to as 
consequent parameters. 

5. Layer 5: The single node in this layer is a fixed node 
that computes the overall output as the summation of 
all incoming signals 
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that computes the overall output as the summation of 
all incoming signals 
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   In the next section, fault-diagnosis systems based on 

ANFIS and neural networks will be presented. 

5. Intelligent Fault-Diagnosis Systems 5. Intelligent Fault-Diagnosis Systems 

5.1. Anfis-Based Fault-Diagnosis System 5.1. Anfis-Based Fault-Diagnosis System 

   ANFIS prediction of machine's fault types starts by 
obtaining the data set (input-output data pairs) and 
dividing it into training and testing or validating data sets. 
The training data set is used to find the initial premise 
parameters for the fuzzy membership functions by equally 
spacing each membership function. The testing data used 
to validate the system . 
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   Using ANFIS editor of Matlab 7.0 , statistical input 
data (i.e., rms, σ2, γ3, γ4, and γ6) were used to train and 
test the system. In fact, these five statistical features in 
each bin will complicate the structure of ANFIS. 
Therefore, combinations of two features were tested to 
build the system. Tables 3 and 4 shows the input features 
ranges and a sample of features used for tr
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2, γ3, γ4, and γ6) were used to train and 
test the system. In fact, these five statistical features in 
each bin will complicate the structure of ANFIS. 
Therefore, combinations of two features were tested to 
build the system. Tables 3 and 4 shows the input features 
ranges and a sample of features used for tr

Feature Meaning Range 

rms Root mean square 0.09 - 46 

σ  2 0.Variance 008 - 960 

γ3 Skewness -0.5 - 0.6 

γ4 1.5 - 6.0 Kurtosis 

γ6 
Normal central 

3E-6 - 5E+10 
ized sixth 
moment 

FC Fault Code 100 - 600 

 

Table 4. Sample of ANFIS training data. 

C t  omponen
number 

13_11_

a_01 

13 a_11_

_02 

1  3_11_

a_03 

1  3_11_

a_04 

13_11_ 13_11_

a_05 a_06 

RMS 7.5613 3.7307 1.8738 13.1524 1.2485 1.3565

VAR 57.4192 13.9806 3.5261 173.7325 1.5655 1.848

RMS 7.6958 3.8662 1.7561 12.6339 1.223 1.3335

VAR 59.48 15.0118 3.0971 160.3005 1.5022 1.786

RMS 7.5859 3.9502 1.7603 22.7711 1.2897 1.3234

VAR 57.7924 15.6711 3.1119 520.7485 1.6706 1.759

Fault Code 100 300 200 300 200 200 
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 The total number of data was 92 points. 73 points were 

used for training and 19 points (i.e., 20% of the total data 
points in order to make the process valid statistically), 
which are different and independent of the training data, 
were used for testing. In addition, each of the original data 
points (i.e., training and testing) is an average of 4 
readings (replicates) in order to insure the statistical 
validity of this work. Using a given input/output data set, 
the toolbox function ANFIS constructs a fuzzy inference 
system (FIS) whose membership function parameters are 
tuned (adjusted) using either a backpropagation algorithm 
alone or a mixture of backpropagation and least squares 
(hybrid method) . In this study, the membership function 
par

ect training and the maximum prediction 
acc

onsequently were excluded from 
the

m 
is very well-trained to predict the machine's fault type.  

S) for predicting the fault types is illustrated in 

5.2

ve been selected 
as 

d and the overall training error was 
de

twork were generated automatically by the 
pro

e equal 
to 0.92 that indicates the behavior of the network.  

ameters were updated using the hybrid method. 
ANFIS takes the experimental data of the vibration 

features in each bin (rms1(RMS1), σ21(VAR1), 
rms2(RMS2), σ22(VAR2), rms3(RMS3), σ23(VAR3)) as 
input training data of the system. Different ANFIS 
parameters were tested as training parameters in order to 
achieve the perf

uracy.  
   The training data set has been used to set the initial 

parameter of the (ANFIS) model. This model has been 
trained with different parameter in order to get the 
minimum training and testing error. 83 data points out of 
92 total pointes were adopted for training the system, the 
remaining 19 points were devoted to test and validate the 
system. Some fault codes did not appear in the 
training/testing data because these faults did not occur on 
the machine's components during the study period or in the 
machine's history, and c

 training/testing data. 
   A total of 216 fuzzy rules were used to build the 

fuzzy inference system. A Gaussian membership function 
(MF) was adopted to train ANFIS because it achieved 
minimum training error at epoch 170, as shown in the 
training curve of Figure 6. Figure 7 shows that the syste

Figure 6. ANFIS training curve. 

F

 
A perfect training is clear in this figure. Three Gaussian 

membership functions (MF) were used for root mean 
square inputs (RMS1, RMS2, RMS3) while another two 
Gaussian membership functions were adopted for variance 
inputs (VAR1, VAR2, VAR3). The final ANFIS-tuned 
(MF) for all input features are illustrated in Figures 8.    
The training root mean square error (RMSE) was dropped 
from 44.7159 when using root mean square (rms) and 
centralized six momentums (γ6) were used as inputs to the 
ANFIS model to 9.608 when using root mean square (rms) 
and variance (σ2) as input features to the model. The 
training remains constant after 170 epochs which means no 
improvement occurs after this epoch. The tuning trials of 
input features selection for the ANFIS system are 
highlighted in Table 5. The final trained fuzzy inference 
system (FI
Figure 9.  

. Neural-Networks-Based Fault-Diagnosis System 

A neural network system (i.e., nntool in Matlab 7.0) 
can be considered as a parameterized nonlinear map. 
However, in this study, the neural network parameters 
(i.e., Root mean square and Variance) ha

inputs, with failure code as the output. 
First, the training data was used to find the appropriate 

network between the input and the target (desired output) 
to realize the actual output. The error between each pair 
was compute

termined.   
A multi-layer forward neural network (ANN) is used 

for the computation. This network is also a cascade–
forward backpropagation network. The characteristic 
features of time domain signals of the system with normal 
and faulty conditions have been used as inputs to this ANN 
structure, including input, hidden and output layers. The 
input layer contains for selected features from the time 
domain. The output layer contains of nodes indicating the 
fault type code. The final neural network used in this study 
consists of the input layer, one hidden layer and the output 
layer. The input layer has nodes representing the features 
extracted from the measured vibration signals. The number 
of neurons in the first hidden layer was 20. The number of 
output nodes is only one. The ANN was trained and 
implemented using the MATLAB neural network toolbox 
using backpropagation with Levenberg–Marquardt 
algorithm. For training, maximum iteration number 
(epoch) of 6000 was used. The initial weights and biases 
of the ne

gram. 
All the five statistical input features (i.e., rms, σ2, γ3, 

γ4, and γ6)  were used for training and testing the neural 
network. The combination of root mean square and 
variance lead to the best result in testing and training. The 
training error was reduced from 29.1715 for kurtosis and 
six momentum feature to .04205 for root mean square and 
variance. The tuning trials of input features selection for 
the neural-networks system are highlighted in Table 6. 
Figure 10 shows the training and testing curves of the root 
mean square and variance model with performanc

 
 

igure 7. Actual and Predicted fault type values. 
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es. 

Table 5. Tuning trials of input fea

F type (Trapezoidal) , number of MFs =3 4 3 4 3 4 , Epochs =5 

 

Figure 8. Final membership functions (MF) for input featur

tures  (ANFIS)  

M

γ6 γ4 γ3 σ2 rms  

Train error=18.737 

Test error =72.28 

Train error=2.044 

Test error =99.719 

Train error=.0902 

Test error r=34.84 

Train error =9.608 
rms  

Test error=15.329 

Train error=33.236 

Test error =31.108 

Train error=30.61 

Test error =31.62 

Trainers=37.169 

Test error =73.328 
σ2   

Train error=35.084 

Test error =53.781 

Trainers=21.146 

Test error=684.99 
 γ3   

T  

Test err  =44.27 

rain error=44.7159

or

 

  γ4   

 

 

 

  γ6   
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Figure 9. The final fuzzy inference system (FIS) for faults prediction. 

Table 6. Tuning trials of input f res selection (Neural Networks). 

 rms 

res selection (Neural Networks). 

 rms 

eatu

σ2 σ γ3 γ γ4 γ γ6 γ2 3 4 6 

 
T

Test error=1.056 

rain error=.04205 Train error=14.695 

Test error1=42.414 

Train error=21.752 

Test error1=41.522 

Train error=24.99 

Test error=45.457 
rms 

σ2   
Test error1=14.112 

Train error=21.698 Train error=1.2286 

Test error1=1.5624 

Train error=20.398 

Testerror1=21.041 

γ3    
Test error1=57.250 

Train error=27.137 Train error=24.745 

Test error1=44.79 

γ4     
Test erro 34.783 

Train error=29.171 

r=

γ6      

Figure 10. Training and testing of the neural network with inputs (rms and σ2 ). 
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5.3. Models Validation 

   The ANFIS and neural networks prediction models 
for machine's faults were validated by selecting a certain 
number of data points (i.e., 19 points), different from the 
other 73 points used for ANFIS and neural nets training. 
Each validation data point (i.e., rms and σ2) in the three 
bins, as given in Table 7, was fed into the system, and then 
the predicted fault type code (i.e., FC) were computed with 

the actual values of FC. The average percent errors in the 
ANFIS fault prediction is 3%, achieving a satisfactory 
accuracy of prediction of 97% as illustrated in Table 7, and 
the percent error in the Neural nets fault diagnosis is 0.8%, 
achieving a much better accuracy (i.e., 99.2% as given in 
Table 8) than the ANFIS prediction system. Table 8 
illustrates that the neural networks-predicted values are a 
close match of the actual ones. 

Table 7. Validation table for the ANFIS fault prediction system 

 (rms, σ2 ), ANFIS, Time-domain 

rms1 σ21 rms2 σ22 rms3 σ23 
Actual Fault 

code 
Predicted  Fault 

code 
Error% 

13.15 173.73 12.63 160.30 22.77 520.75 300 300 0 
6.58 43.51 6.72 45.32 6.56 43.23 100 107 7 
1.95 3.84 1.92 3.69 1.86 3.46 200 200 0 
1.98 3.93 1.91 3.68 1.87 3.52 200 200 0 
1.02 1.05 1.08 1.17 1.03 1.07 200 200 0 
3.97 15.85 3.83 14.75 3.93 15.54 300 287 4.3 
1.80 3.26 1.78 3.17 1.95 3.81 200 200 0 
6.50 42.46 6.72 45.32 6.64 44.33 100 112 12 
1.45 2.10 1.42 2.03 1.31 1.73 200 200 0 
1.37 1.88 1.43 2.06 1.41 1.99 200 200 0 
7.65 57.42 7.69 59.48 7.59 57.79 100 105 5 
5.87 34.66 4.90 24.12 5.55 30.93 100 92 8 
4.09 16.86 3.90 15.31 4.48 20.13 300 270 10 
13.15 173.73 12.63 160.30 22.77 520.75 300 300 0 
3.34 11.19 3.54 12.59 4.08 16.74 300 317 5.7 
3.92 15.42 3.94 15.56 4.15 17.28 300 287 4.3 
1.87 3.53 1.76 3.09 1.76 3.11 200 200 0 
1.41 2.00 1.43 2.04 1.44 2.08 200 200 0 
2.69 7.30 2.06 4.26 2.06 4.26 200 201 0.5 

Average Percent Error                                  3 % 

 

Table 8. Validation table for the neural-networks fault prediction system 

(rms, σ2 ), Neural Nets, Time-domain 

rms1 σ21 rms2 σ22 rms3 σ23 
Actual Fault 

code 
Predicted  Fault 

code 
Error% 

13.15 173.73 12.63 160.30 22.77 520.75 300 300.29 0.10 
6.58 43.51 6.72 45.32 6.56 43.23 100 102.65 2.65 
1.95 3.84 1.92 3.69 1.86 3.46 200 199.47 0.27 
1.98 3.93 1.91 3.68 1.87 3.52 200 199.38 0.31 
1.02 1.05 1.08 1.17 1.03 1.07 200 200.61 0.31 
3.97 15.85 3.83 14.75 3.93 15.54 300 299.56 0.15 
1.80 3.26 1.78 3.17 1.95 3.81 200 202.20 1.10 
6.50 42.46 6.72 45.32 6.64 44.33 100 97.70 2.30 
1.45 2.10 1.42 2.03 1.31 1.73 200 199.31 0.35 
1.37 1.88 1.43 2.06 1.41 1.99 200 199.70 0.15 
7.65 57.42 7.69 59.48 7.59 57.79 100 103.30 3.30 
5.87 34.66 4.90 24.12 5.55 30.93 100 102.50 2.50 
4.09 16.86 3.90 15.31 4.48 20.13 300 300.28 0.09 

13.15 173.73 12.63 160.30 22.77 520.75 300 299.10 0.30 
3.34 11.19 3.54 12.59 4.08 16.74 300 300.00 0.00 
3.92 15.42 3.94 15.56 4.15 17.28 300 299.00 0.33 
1.87 3.53 1.76 3.09 1.76 3.11 200 200.00 0.00 
1.41 2.00 1.43 2.04 1.44 2.08 200 199.20 0.40 
2.69 7.30 2.06 4.26 2.06 4.26 200 199.80 0.10 

Average Percent Error                                  0.8 % 
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6. Conclusions 

An adaptive neuro-fuzzy system and a neural network 
are applied to predict the fault types of a mechanical 
system (carnallite surge tank pump). The time domain 
features (rms and σ2) were used as inputs to ANFIS as well 
as neural nets to predict machine's fault type. 
The following conclusions can be drawn from this study: 
 The average percent error predicted by ANFIS with the 

trapezoidal membership function in the axial direction 
is only 5 %, achieving an accuracy of 95% using time-
domain features. 

 The average percent error predicted by neural-network 
with cascade network type in the axial direction is only 
0.7 %, achieving an accuracy of 99.3 % using time-
domain features. 

 Analysis of time domain in both ANFIS and NN shows 
that, the most significant group of vibration signals and 
the characteristic features were root mean square and 
variance. 

 Artificial neural networks (ANN) have potential 
applications in automated detection and diagnosis of 
machine conditions. Many of the ANNs for machine 
condition monitoring used the preprocessed frequency-
domain features of the measured vibration signals 

 ANFIS technique in parallel with time-based analysis 
can be used to predict and diagnose the machine's faults 
and failures. It is believed that this approach can be 
applied to identify other maintenance-related 
parameters. 

 Neural networks, fuzzy logic and Neuro-fuzzy systems 
have an inherent shortcoming  that they need to be 
retrained for different process parameters. 

 A future work may be focused on constructing a real-
time condition monitoring system by implementing an 
adaptive self-learning intelligent system for predicting 
and diagnosing machine's faults online.   
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